Step | Hyp | Ref
| Expression |
1 | | fveq2 6756 |
. . 3
⊢ (𝑥 = 𝑋 → (𝐹‘𝑥) = (𝐹‘𝑋)) |
2 | 1 | eleq1d 2823 |
. 2
⊢ (𝑥 = 𝑋 → ((𝐹‘𝑥) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹) ↔ (𝐹‘𝑋) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹))) |
3 | | oveq2 7263 |
. . . 4
⊢ (𝑎 = (((nei‘𝐽)‘{𝑋}) ↾t 𝐴) → ((𝐽 ↾t 𝐴) fLim 𝑎) = ((𝐽 ↾t 𝐴) fLim (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))) |
4 | | oveq2 7263 |
. . . . . 6
⊢ (𝑎 = (((nei‘𝐽)‘{𝑋}) ↾t 𝐴) → (𝐾 fLimf 𝑎) = (𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))) |
5 | 4 | fveq1d 6758 |
. . . . 5
⊢ (𝑎 = (((nei‘𝐽)‘{𝑋}) ↾t 𝐴) → ((𝐾 fLimf 𝑎)‘𝐹) = ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)) |
6 | 5 | eleq2d 2824 |
. . . 4
⊢ (𝑎 = (((nei‘𝐽)‘{𝑋}) ↾t 𝐴) → ((𝐹‘𝑥) ∈ ((𝐾 fLimf 𝑎)‘𝐹) ↔ (𝐹‘𝑥) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹))) |
7 | 3, 6 | raleqbidv 3327 |
. . 3
⊢ (𝑎 = (((nei‘𝐽)‘{𝑋}) ↾t 𝐴) → (∀𝑥 ∈ ((𝐽 ↾t 𝐴) fLim 𝑎)(𝐹‘𝑥) ∈ ((𝐾 fLimf 𝑎)‘𝐹) ↔ ∀𝑥 ∈ ((𝐽 ↾t 𝐴) fLim (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))(𝐹‘𝑥) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹))) |
8 | | flfcntr.1 |
. . . . 5
⊢ (𝜑 → 𝐹 ∈ ((𝐽 ↾t 𝐴) Cn 𝐾)) |
9 | | flfcntr.j |
. . . . . . . 8
⊢ (𝜑 → 𝐽 ∈ Top) |
10 | | flfcntr.c |
. . . . . . . . 9
⊢ 𝐶 = ∪
𝐽 |
11 | 10 | toptopon 21974 |
. . . . . . . 8
⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝐶)) |
12 | 9, 11 | sylib 217 |
. . . . . . 7
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝐶)) |
13 | | flfcntr.a |
. . . . . . 7
⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
14 | | resttopon 22220 |
. . . . . . 7
⊢ ((𝐽 ∈ (TopOn‘𝐶) ∧ 𝐴 ⊆ 𝐶) → (𝐽 ↾t 𝐴) ∈ (TopOn‘𝐴)) |
15 | 12, 13, 14 | syl2anc 583 |
. . . . . 6
⊢ (𝜑 → (𝐽 ↾t 𝐴) ∈ (TopOn‘𝐴)) |
16 | | cntop2 22300 |
. . . . . . . 8
⊢ (𝐹 ∈ ((𝐽 ↾t 𝐴) Cn 𝐾) → 𝐾 ∈ Top) |
17 | 8, 16 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝐾 ∈ Top) |
18 | | flfcntr.b |
. . . . . . . 8
⊢ 𝐵 = ∪
𝐾 |
19 | 18 | toptopon 21974 |
. . . . . . 7
⊢ (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘𝐵)) |
20 | 17, 19 | sylib 217 |
. . . . . 6
⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝐵)) |
21 | | cnflf 23061 |
. . . . . 6
⊢ (((𝐽 ↾t 𝐴) ∈ (TopOn‘𝐴) ∧ 𝐾 ∈ (TopOn‘𝐵)) → (𝐹 ∈ ((𝐽 ↾t 𝐴) Cn 𝐾) ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑎 ∈ (Fil‘𝐴)∀𝑥 ∈ ((𝐽 ↾t 𝐴) fLim 𝑎)(𝐹‘𝑥) ∈ ((𝐾 fLimf 𝑎)‘𝐹)))) |
22 | 15, 20, 21 | syl2anc 583 |
. . . . 5
⊢ (𝜑 → (𝐹 ∈ ((𝐽 ↾t 𝐴) Cn 𝐾) ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑎 ∈ (Fil‘𝐴)∀𝑥 ∈ ((𝐽 ↾t 𝐴) fLim 𝑎)(𝐹‘𝑥) ∈ ((𝐾 fLimf 𝑎)‘𝐹)))) |
23 | 8, 22 | mpbid 231 |
. . . 4
⊢ (𝜑 → (𝐹:𝐴⟶𝐵 ∧ ∀𝑎 ∈ (Fil‘𝐴)∀𝑥 ∈ ((𝐽 ↾t 𝐴) fLim 𝑎)(𝐹‘𝑥) ∈ ((𝐾 fLimf 𝑎)‘𝐹))) |
24 | 23 | simprd 495 |
. . 3
⊢ (𝜑 → ∀𝑎 ∈ (Fil‘𝐴)∀𝑥 ∈ ((𝐽 ↾t 𝐴) fLim 𝑎)(𝐹‘𝑥) ∈ ((𝐾 fLimf 𝑎)‘𝐹)) |
25 | 10 | sscls 22115 |
. . . . . 6
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝐶) → 𝐴 ⊆ ((cls‘𝐽)‘𝐴)) |
26 | 9, 13, 25 | syl2anc 583 |
. . . . 5
⊢ (𝜑 → 𝐴 ⊆ ((cls‘𝐽)‘𝐴)) |
27 | | flfcntr.y |
. . . . 5
⊢ (𝜑 → 𝑋 ∈ 𝐴) |
28 | 26, 27 | sseldd 3918 |
. . . 4
⊢ (𝜑 → 𝑋 ∈ ((cls‘𝐽)‘𝐴)) |
29 | 13, 27 | sseldd 3918 |
. . . . 5
⊢ (𝜑 → 𝑋 ∈ 𝐶) |
30 | | trnei 22951 |
. . . . 5
⊢ ((𝐽 ∈ (TopOn‘𝐶) ∧ 𝐴 ⊆ 𝐶 ∧ 𝑋 ∈ 𝐶) → (𝑋 ∈ ((cls‘𝐽)‘𝐴) ↔ (((nei‘𝐽)‘{𝑋}) ↾t 𝐴) ∈ (Fil‘𝐴))) |
31 | 12, 13, 29, 30 | syl3anc 1369 |
. . . 4
⊢ (𝜑 → (𝑋 ∈ ((cls‘𝐽)‘𝐴) ↔ (((nei‘𝐽)‘{𝑋}) ↾t 𝐴) ∈ (Fil‘𝐴))) |
32 | 28, 31 | mpbid 231 |
. . 3
⊢ (𝜑 → (((nei‘𝐽)‘{𝑋}) ↾t 𝐴) ∈ (Fil‘𝐴)) |
33 | 7, 24, 32 | rspcdva 3554 |
. 2
⊢ (𝜑 → ∀𝑥 ∈ ((𝐽 ↾t 𝐴) fLim (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))(𝐹‘𝑥) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)) |
34 | | neiflim 23033 |
. . . 4
⊢ (((𝐽 ↾t 𝐴) ∈ (TopOn‘𝐴) ∧ 𝑋 ∈ 𝐴) → 𝑋 ∈ ((𝐽 ↾t 𝐴) fLim ((nei‘(𝐽 ↾t 𝐴))‘{𝑋}))) |
35 | 15, 27, 34 | syl2anc 583 |
. . 3
⊢ (𝜑 → 𝑋 ∈ ((𝐽 ↾t 𝐴) fLim ((nei‘(𝐽 ↾t 𝐴))‘{𝑋}))) |
36 | 27 | snssd 4739 |
. . . . 5
⊢ (𝜑 → {𝑋} ⊆ 𝐴) |
37 | 10 | neitr 22239 |
. . . . 5
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝐶 ∧ {𝑋} ⊆ 𝐴) → ((nei‘(𝐽 ↾t 𝐴))‘{𝑋}) = (((nei‘𝐽)‘{𝑋}) ↾t 𝐴)) |
38 | 9, 13, 36, 37 | syl3anc 1369 |
. . . 4
⊢ (𝜑 → ((nei‘(𝐽 ↾t 𝐴))‘{𝑋}) = (((nei‘𝐽)‘{𝑋}) ↾t 𝐴)) |
39 | 38 | oveq2d 7271 |
. . 3
⊢ (𝜑 → ((𝐽 ↾t 𝐴) fLim ((nei‘(𝐽 ↾t 𝐴))‘{𝑋})) = ((𝐽 ↾t 𝐴) fLim (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))) |
40 | 35, 39 | eleqtrd 2841 |
. 2
⊢ (𝜑 → 𝑋 ∈ ((𝐽 ↾t 𝐴) fLim (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))) |
41 | 2, 33, 40 | rspcdva 3554 |
1
⊢ (𝜑 → (𝐹‘𝑋) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)) |