MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flfcntr Structured version   Visualization version   GIF version

Theorem flfcntr 22797
Description: A continuous function's value is always in the trace of its filter limit. (Contributed by Thierry Arnoux, 30-Aug-2020.)
Hypotheses
Ref Expression
flfcntr.c 𝐶 = 𝐽
flfcntr.b 𝐵 = 𝐾
flfcntr.j (𝜑𝐽 ∈ Top)
flfcntr.a (𝜑𝐴𝐶)
flfcntr.1 (𝜑𝐹 ∈ ((𝐽t 𝐴) Cn 𝐾))
flfcntr.y (𝜑𝑋𝐴)
Assertion
Ref Expression
flfcntr (𝜑 → (𝐹𝑋) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹))

Proof of Theorem flfcntr
Dummy variables 𝑎 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6677 . . 3 (𝑥 = 𝑋 → (𝐹𝑥) = (𝐹𝑋))
21eleq1d 2818 . 2 (𝑥 = 𝑋 → ((𝐹𝑥) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹) ↔ (𝐹𝑋) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)))
3 oveq2 7181 . . . 4 (𝑎 = (((nei‘𝐽)‘{𝑋}) ↾t 𝐴) → ((𝐽t 𝐴) fLim 𝑎) = ((𝐽t 𝐴) fLim (((nei‘𝐽)‘{𝑋}) ↾t 𝐴)))
4 oveq2 7181 . . . . . 6 (𝑎 = (((nei‘𝐽)‘{𝑋}) ↾t 𝐴) → (𝐾 fLimf 𝑎) = (𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴)))
54fveq1d 6679 . . . . 5 (𝑎 = (((nei‘𝐽)‘{𝑋}) ↾t 𝐴) → ((𝐾 fLimf 𝑎)‘𝐹) = ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹))
65eleq2d 2819 . . . 4 (𝑎 = (((nei‘𝐽)‘{𝑋}) ↾t 𝐴) → ((𝐹𝑥) ∈ ((𝐾 fLimf 𝑎)‘𝐹) ↔ (𝐹𝑥) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)))
73, 6raleqbidv 3305 . . 3 (𝑎 = (((nei‘𝐽)‘{𝑋}) ↾t 𝐴) → (∀𝑥 ∈ ((𝐽t 𝐴) fLim 𝑎)(𝐹𝑥) ∈ ((𝐾 fLimf 𝑎)‘𝐹) ↔ ∀𝑥 ∈ ((𝐽t 𝐴) fLim (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))(𝐹𝑥) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)))
8 flfcntr.1 . . . . 5 (𝜑𝐹 ∈ ((𝐽t 𝐴) Cn 𝐾))
9 flfcntr.j . . . . . . . 8 (𝜑𝐽 ∈ Top)
10 flfcntr.c . . . . . . . . 9 𝐶 = 𝐽
1110toptopon 21671 . . . . . . . 8 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝐶))
129, 11sylib 221 . . . . . . 7 (𝜑𝐽 ∈ (TopOn‘𝐶))
13 flfcntr.a . . . . . . 7 (𝜑𝐴𝐶)
14 resttopon 21915 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝐶) ∧ 𝐴𝐶) → (𝐽t 𝐴) ∈ (TopOn‘𝐴))
1512, 13, 14syl2anc 587 . . . . . 6 (𝜑 → (𝐽t 𝐴) ∈ (TopOn‘𝐴))
16 cntop2 21995 . . . . . . . 8 (𝐹 ∈ ((𝐽t 𝐴) Cn 𝐾) → 𝐾 ∈ Top)
178, 16syl 17 . . . . . . 7 (𝜑𝐾 ∈ Top)
18 flfcntr.b . . . . . . . 8 𝐵 = 𝐾
1918toptopon 21671 . . . . . . 7 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘𝐵))
2017, 19sylib 221 . . . . . 6 (𝜑𝐾 ∈ (TopOn‘𝐵))
21 cnflf 22756 . . . . . 6 (((𝐽t 𝐴) ∈ (TopOn‘𝐴) ∧ 𝐾 ∈ (TopOn‘𝐵)) → (𝐹 ∈ ((𝐽t 𝐴) Cn 𝐾) ↔ (𝐹:𝐴𝐵 ∧ ∀𝑎 ∈ (Fil‘𝐴)∀𝑥 ∈ ((𝐽t 𝐴) fLim 𝑎)(𝐹𝑥) ∈ ((𝐾 fLimf 𝑎)‘𝐹))))
2215, 20, 21syl2anc 587 . . . . 5 (𝜑 → (𝐹 ∈ ((𝐽t 𝐴) Cn 𝐾) ↔ (𝐹:𝐴𝐵 ∧ ∀𝑎 ∈ (Fil‘𝐴)∀𝑥 ∈ ((𝐽t 𝐴) fLim 𝑎)(𝐹𝑥) ∈ ((𝐾 fLimf 𝑎)‘𝐹))))
238, 22mpbid 235 . . . 4 (𝜑 → (𝐹:𝐴𝐵 ∧ ∀𝑎 ∈ (Fil‘𝐴)∀𝑥 ∈ ((𝐽t 𝐴) fLim 𝑎)(𝐹𝑥) ∈ ((𝐾 fLimf 𝑎)‘𝐹)))
2423simprd 499 . . 3 (𝜑 → ∀𝑎 ∈ (Fil‘𝐴)∀𝑥 ∈ ((𝐽t 𝐴) fLim 𝑎)(𝐹𝑥) ∈ ((𝐾 fLimf 𝑎)‘𝐹))
2510sscls 21810 . . . . . 6 ((𝐽 ∈ Top ∧ 𝐴𝐶) → 𝐴 ⊆ ((cls‘𝐽)‘𝐴))
269, 13, 25syl2anc 587 . . . . 5 (𝜑𝐴 ⊆ ((cls‘𝐽)‘𝐴))
27 flfcntr.y . . . . 5 (𝜑𝑋𝐴)
2826, 27sseldd 3879 . . . 4 (𝜑𝑋 ∈ ((cls‘𝐽)‘𝐴))
2913, 27sseldd 3879 . . . . 5 (𝜑𝑋𝐶)
30 trnei 22646 . . . . 5 ((𝐽 ∈ (TopOn‘𝐶) ∧ 𝐴𝐶𝑋𝐶) → (𝑋 ∈ ((cls‘𝐽)‘𝐴) ↔ (((nei‘𝐽)‘{𝑋}) ↾t 𝐴) ∈ (Fil‘𝐴)))
3112, 13, 29, 30syl3anc 1372 . . . 4 (𝜑 → (𝑋 ∈ ((cls‘𝐽)‘𝐴) ↔ (((nei‘𝐽)‘{𝑋}) ↾t 𝐴) ∈ (Fil‘𝐴)))
3228, 31mpbid 235 . . 3 (𝜑 → (((nei‘𝐽)‘{𝑋}) ↾t 𝐴) ∈ (Fil‘𝐴))
337, 24, 32rspcdva 3529 . 2 (𝜑 → ∀𝑥 ∈ ((𝐽t 𝐴) fLim (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))(𝐹𝑥) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹))
34 neiflim 22728 . . . 4 (((𝐽t 𝐴) ∈ (TopOn‘𝐴) ∧ 𝑋𝐴) → 𝑋 ∈ ((𝐽t 𝐴) fLim ((nei‘(𝐽t 𝐴))‘{𝑋})))
3515, 27, 34syl2anc 587 . . 3 (𝜑𝑋 ∈ ((𝐽t 𝐴) fLim ((nei‘(𝐽t 𝐴))‘{𝑋})))
3627snssd 4698 . . . . 5 (𝜑 → {𝑋} ⊆ 𝐴)
3710neitr 21934 . . . . 5 ((𝐽 ∈ Top ∧ 𝐴𝐶 ∧ {𝑋} ⊆ 𝐴) → ((nei‘(𝐽t 𝐴))‘{𝑋}) = (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))
389, 13, 36, 37syl3anc 1372 . . . 4 (𝜑 → ((nei‘(𝐽t 𝐴))‘{𝑋}) = (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))
3938oveq2d 7189 . . 3 (𝜑 → ((𝐽t 𝐴) fLim ((nei‘(𝐽t 𝐴))‘{𝑋})) = ((𝐽t 𝐴) fLim (((nei‘𝐽)‘{𝑋}) ↾t 𝐴)))
4035, 39eleqtrd 2836 . 2 (𝜑𝑋 ∈ ((𝐽t 𝐴) fLim (((nei‘𝐽)‘{𝑋}) ↾t 𝐴)))
412, 33, 40rspcdva 3529 1 (𝜑 → (𝐹𝑋) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1542  wcel 2114  wral 3054  wss 3844  {csn 4517   cuni 4797  wf 6336  cfv 6340  (class class class)co 7173  t crest 16800  Topctop 21647  TopOnctopon 21664  clsccl 21772  neicnei 21851   Cn ccn 21978  Filcfil 22599   fLim cflim 22688   fLimf cflf 22689
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-rep 5155  ax-sep 5168  ax-nul 5175  ax-pow 5233  ax-pr 5297  ax-un 7482
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rab 3063  df-v 3401  df-sbc 3682  df-csb 3792  df-dif 3847  df-un 3849  df-in 3851  df-ss 3861  df-pss 3863  df-nul 4213  df-if 4416  df-pw 4491  df-sn 4518  df-pr 4520  df-tp 4522  df-op 4524  df-uni 4798  df-int 4838  df-iun 4884  df-iin 4885  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5484  df-we 5486  df-xp 5532  df-rel 5533  df-cnv 5534  df-co 5535  df-dm 5536  df-rn 5537  df-res 5538  df-ima 5539  df-ord 6176  df-on 6177  df-lim 6178  df-suc 6179  df-iota 6298  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-ov 7176  df-oprab 7177  df-mpo 7178  df-om 7603  df-1st 7717  df-2nd 7718  df-map 8442  df-en 8559  df-fin 8562  df-fi 8951  df-rest 16802  df-topgen 16823  df-fbas 20217  df-fg 20218  df-top 21648  df-topon 21665  df-bases 21700  df-cld 21773  df-ntr 21774  df-cls 21775  df-nei 21852  df-cn 21981  df-cnp 21982  df-fil 22600  df-fm 22692  df-flim 22693  df-flf 22694
This theorem is referenced by:  cnextfres  22823
  Copyright terms: Public domain W3C validator