MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flfcntr Structured version   Visualization version   GIF version

Theorem flfcntr 23767
Description: A continuous function's value is always in the trace of its filter limit. (Contributed by Thierry Arnoux, 30-Aug-2020.)
Hypotheses
Ref Expression
flfcntr.c 𝐢 = βˆͺ 𝐽
flfcntr.b 𝐡 = βˆͺ 𝐾
flfcntr.j (πœ‘ β†’ 𝐽 ∈ Top)
flfcntr.a (πœ‘ β†’ 𝐴 βŠ† 𝐢)
flfcntr.1 (πœ‘ β†’ 𝐹 ∈ ((𝐽 β†Ύt 𝐴) Cn 𝐾))
flfcntr.y (πœ‘ β†’ 𝑋 ∈ 𝐴)
Assertion
Ref Expression
flfcntr (πœ‘ β†’ (πΉβ€˜π‘‹) ∈ ((𝐾 fLimf (((neiβ€˜π½)β€˜{𝑋}) β†Ύt 𝐴))β€˜πΉ))

Proof of Theorem flfcntr
Dummy variables π‘Ž π‘₯ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6890 . . 3 (π‘₯ = 𝑋 β†’ (πΉβ€˜π‘₯) = (πΉβ€˜π‘‹))
21eleq1d 2816 . 2 (π‘₯ = 𝑋 β†’ ((πΉβ€˜π‘₯) ∈ ((𝐾 fLimf (((neiβ€˜π½)β€˜{𝑋}) β†Ύt 𝐴))β€˜πΉ) ↔ (πΉβ€˜π‘‹) ∈ ((𝐾 fLimf (((neiβ€˜π½)β€˜{𝑋}) β†Ύt 𝐴))β€˜πΉ)))
3 oveq2 7419 . . . 4 (π‘Ž = (((neiβ€˜π½)β€˜{𝑋}) β†Ύt 𝐴) β†’ ((𝐽 β†Ύt 𝐴) fLim π‘Ž) = ((𝐽 β†Ύt 𝐴) fLim (((neiβ€˜π½)β€˜{𝑋}) β†Ύt 𝐴)))
4 oveq2 7419 . . . . . 6 (π‘Ž = (((neiβ€˜π½)β€˜{𝑋}) β†Ύt 𝐴) β†’ (𝐾 fLimf π‘Ž) = (𝐾 fLimf (((neiβ€˜π½)β€˜{𝑋}) β†Ύt 𝐴)))
54fveq1d 6892 . . . . 5 (π‘Ž = (((neiβ€˜π½)β€˜{𝑋}) β†Ύt 𝐴) β†’ ((𝐾 fLimf π‘Ž)β€˜πΉ) = ((𝐾 fLimf (((neiβ€˜π½)β€˜{𝑋}) β†Ύt 𝐴))β€˜πΉ))
65eleq2d 2817 . . . 4 (π‘Ž = (((neiβ€˜π½)β€˜{𝑋}) β†Ύt 𝐴) β†’ ((πΉβ€˜π‘₯) ∈ ((𝐾 fLimf π‘Ž)β€˜πΉ) ↔ (πΉβ€˜π‘₯) ∈ ((𝐾 fLimf (((neiβ€˜π½)β€˜{𝑋}) β†Ύt 𝐴))β€˜πΉ)))
73, 6raleqbidv 3340 . . 3 (π‘Ž = (((neiβ€˜π½)β€˜{𝑋}) β†Ύt 𝐴) β†’ (βˆ€π‘₯ ∈ ((𝐽 β†Ύt 𝐴) fLim π‘Ž)(πΉβ€˜π‘₯) ∈ ((𝐾 fLimf π‘Ž)β€˜πΉ) ↔ βˆ€π‘₯ ∈ ((𝐽 β†Ύt 𝐴) fLim (((neiβ€˜π½)β€˜{𝑋}) β†Ύt 𝐴))(πΉβ€˜π‘₯) ∈ ((𝐾 fLimf (((neiβ€˜π½)β€˜{𝑋}) β†Ύt 𝐴))β€˜πΉ)))
8 flfcntr.1 . . . . 5 (πœ‘ β†’ 𝐹 ∈ ((𝐽 β†Ύt 𝐴) Cn 𝐾))
9 flfcntr.j . . . . . . . 8 (πœ‘ β†’ 𝐽 ∈ Top)
10 flfcntr.c . . . . . . . . 9 𝐢 = βˆͺ 𝐽
1110toptopon 22639 . . . . . . . 8 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOnβ€˜πΆ))
129, 11sylib 217 . . . . . . 7 (πœ‘ β†’ 𝐽 ∈ (TopOnβ€˜πΆ))
13 flfcntr.a . . . . . . 7 (πœ‘ β†’ 𝐴 βŠ† 𝐢)
14 resttopon 22885 . . . . . . 7 ((𝐽 ∈ (TopOnβ€˜πΆ) ∧ 𝐴 βŠ† 𝐢) β†’ (𝐽 β†Ύt 𝐴) ∈ (TopOnβ€˜π΄))
1512, 13, 14syl2anc 582 . . . . . 6 (πœ‘ β†’ (𝐽 β†Ύt 𝐴) ∈ (TopOnβ€˜π΄))
16 cntop2 22965 . . . . . . . 8 (𝐹 ∈ ((𝐽 β†Ύt 𝐴) Cn 𝐾) β†’ 𝐾 ∈ Top)
178, 16syl 17 . . . . . . 7 (πœ‘ β†’ 𝐾 ∈ Top)
18 flfcntr.b . . . . . . . 8 𝐡 = βˆͺ 𝐾
1918toptopon 22639 . . . . . . 7 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOnβ€˜π΅))
2017, 19sylib 217 . . . . . 6 (πœ‘ β†’ 𝐾 ∈ (TopOnβ€˜π΅))
21 cnflf 23726 . . . . . 6 (((𝐽 β†Ύt 𝐴) ∈ (TopOnβ€˜π΄) ∧ 𝐾 ∈ (TopOnβ€˜π΅)) β†’ (𝐹 ∈ ((𝐽 β†Ύt 𝐴) Cn 𝐾) ↔ (𝐹:𝐴⟢𝐡 ∧ βˆ€π‘Ž ∈ (Filβ€˜π΄)βˆ€π‘₯ ∈ ((𝐽 β†Ύt 𝐴) fLim π‘Ž)(πΉβ€˜π‘₯) ∈ ((𝐾 fLimf π‘Ž)β€˜πΉ))))
2215, 20, 21syl2anc 582 . . . . 5 (πœ‘ β†’ (𝐹 ∈ ((𝐽 β†Ύt 𝐴) Cn 𝐾) ↔ (𝐹:𝐴⟢𝐡 ∧ βˆ€π‘Ž ∈ (Filβ€˜π΄)βˆ€π‘₯ ∈ ((𝐽 β†Ύt 𝐴) fLim π‘Ž)(πΉβ€˜π‘₯) ∈ ((𝐾 fLimf π‘Ž)β€˜πΉ))))
238, 22mpbid 231 . . . 4 (πœ‘ β†’ (𝐹:𝐴⟢𝐡 ∧ βˆ€π‘Ž ∈ (Filβ€˜π΄)βˆ€π‘₯ ∈ ((𝐽 β†Ύt 𝐴) fLim π‘Ž)(πΉβ€˜π‘₯) ∈ ((𝐾 fLimf π‘Ž)β€˜πΉ)))
2423simprd 494 . . 3 (πœ‘ β†’ βˆ€π‘Ž ∈ (Filβ€˜π΄)βˆ€π‘₯ ∈ ((𝐽 β†Ύt 𝐴) fLim π‘Ž)(πΉβ€˜π‘₯) ∈ ((𝐾 fLimf π‘Ž)β€˜πΉ))
2510sscls 22780 . . . . . 6 ((𝐽 ∈ Top ∧ 𝐴 βŠ† 𝐢) β†’ 𝐴 βŠ† ((clsβ€˜π½)β€˜π΄))
269, 13, 25syl2anc 582 . . . . 5 (πœ‘ β†’ 𝐴 βŠ† ((clsβ€˜π½)β€˜π΄))
27 flfcntr.y . . . . 5 (πœ‘ β†’ 𝑋 ∈ 𝐴)
2826, 27sseldd 3982 . . . 4 (πœ‘ β†’ 𝑋 ∈ ((clsβ€˜π½)β€˜π΄))
2913, 27sseldd 3982 . . . . 5 (πœ‘ β†’ 𝑋 ∈ 𝐢)
30 trnei 23616 . . . . 5 ((𝐽 ∈ (TopOnβ€˜πΆ) ∧ 𝐴 βŠ† 𝐢 ∧ 𝑋 ∈ 𝐢) β†’ (𝑋 ∈ ((clsβ€˜π½)β€˜π΄) ↔ (((neiβ€˜π½)β€˜{𝑋}) β†Ύt 𝐴) ∈ (Filβ€˜π΄)))
3112, 13, 29, 30syl3anc 1369 . . . 4 (πœ‘ β†’ (𝑋 ∈ ((clsβ€˜π½)β€˜π΄) ↔ (((neiβ€˜π½)β€˜{𝑋}) β†Ύt 𝐴) ∈ (Filβ€˜π΄)))
3228, 31mpbid 231 . . 3 (πœ‘ β†’ (((neiβ€˜π½)β€˜{𝑋}) β†Ύt 𝐴) ∈ (Filβ€˜π΄))
337, 24, 32rspcdva 3612 . 2 (πœ‘ β†’ βˆ€π‘₯ ∈ ((𝐽 β†Ύt 𝐴) fLim (((neiβ€˜π½)β€˜{𝑋}) β†Ύt 𝐴))(πΉβ€˜π‘₯) ∈ ((𝐾 fLimf (((neiβ€˜π½)β€˜{𝑋}) β†Ύt 𝐴))β€˜πΉ))
34 neiflim 23698 . . . 4 (((𝐽 β†Ύt 𝐴) ∈ (TopOnβ€˜π΄) ∧ 𝑋 ∈ 𝐴) β†’ 𝑋 ∈ ((𝐽 β†Ύt 𝐴) fLim ((neiβ€˜(𝐽 β†Ύt 𝐴))β€˜{𝑋})))
3515, 27, 34syl2anc 582 . . 3 (πœ‘ β†’ 𝑋 ∈ ((𝐽 β†Ύt 𝐴) fLim ((neiβ€˜(𝐽 β†Ύt 𝐴))β€˜{𝑋})))
3627snssd 4811 . . . . 5 (πœ‘ β†’ {𝑋} βŠ† 𝐴)
3710neitr 22904 . . . . 5 ((𝐽 ∈ Top ∧ 𝐴 βŠ† 𝐢 ∧ {𝑋} βŠ† 𝐴) β†’ ((neiβ€˜(𝐽 β†Ύt 𝐴))β€˜{𝑋}) = (((neiβ€˜π½)β€˜{𝑋}) β†Ύt 𝐴))
389, 13, 36, 37syl3anc 1369 . . . 4 (πœ‘ β†’ ((neiβ€˜(𝐽 β†Ύt 𝐴))β€˜{𝑋}) = (((neiβ€˜π½)β€˜{𝑋}) β†Ύt 𝐴))
3938oveq2d 7427 . . 3 (πœ‘ β†’ ((𝐽 β†Ύt 𝐴) fLim ((neiβ€˜(𝐽 β†Ύt 𝐴))β€˜{𝑋})) = ((𝐽 β†Ύt 𝐴) fLim (((neiβ€˜π½)β€˜{𝑋}) β†Ύt 𝐴)))
4035, 39eleqtrd 2833 . 2 (πœ‘ β†’ 𝑋 ∈ ((𝐽 β†Ύt 𝐴) fLim (((neiβ€˜π½)β€˜{𝑋}) β†Ύt 𝐴)))
412, 33, 40rspcdva 3612 1 (πœ‘ β†’ (πΉβ€˜π‘‹) ∈ ((𝐾 fLimf (((neiβ€˜π½)β€˜{𝑋}) β†Ύt 𝐴))β€˜πΉ))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 394   = wceq 1539   ∈ wcel 2104  βˆ€wral 3059   βŠ† wss 3947  {csn 4627  βˆͺ cuni 4907  βŸΆwf 6538  β€˜cfv 6542  (class class class)co 7411   β†Ύt crest 17370  Topctop 22615  TopOnctopon 22632  clsccl 22742  neicnei 22821   Cn ccn 22948  Filcfil 23569   fLim cflim 23658   fLimf cflf 23659
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-iin 4999  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-1st 7977  df-2nd 7978  df-map 8824  df-en 8942  df-fin 8945  df-fi 9408  df-rest 17372  df-topgen 17393  df-fbas 21141  df-fg 21142  df-top 22616  df-topon 22633  df-bases 22669  df-cld 22743  df-ntr 22744  df-cls 22745  df-nei 22822  df-cn 22951  df-cnp 22952  df-fil 23570  df-fm 23662  df-flim 23663  df-flf 23664
This theorem is referenced by:  cnextfres  23793
  Copyright terms: Public domain W3C validator