MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flfcntr Structured version   Visualization version   GIF version

Theorem flfcntr 23937
Description: A continuous function's value is always in the trace of its filter limit. (Contributed by Thierry Arnoux, 30-Aug-2020.)
Hypotheses
Ref Expression
flfcntr.c 𝐶 = 𝐽
flfcntr.b 𝐵 = 𝐾
flfcntr.j (𝜑𝐽 ∈ Top)
flfcntr.a (𝜑𝐴𝐶)
flfcntr.1 (𝜑𝐹 ∈ ((𝐽t 𝐴) Cn 𝐾))
flfcntr.y (𝜑𝑋𝐴)
Assertion
Ref Expression
flfcntr (𝜑 → (𝐹𝑋) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹))

Proof of Theorem flfcntr
Dummy variables 𝑎 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6861 . . 3 (𝑥 = 𝑋 → (𝐹𝑥) = (𝐹𝑋))
21eleq1d 2814 . 2 (𝑥 = 𝑋 → ((𝐹𝑥) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹) ↔ (𝐹𝑋) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)))
3 oveq2 7398 . . . 4 (𝑎 = (((nei‘𝐽)‘{𝑋}) ↾t 𝐴) → ((𝐽t 𝐴) fLim 𝑎) = ((𝐽t 𝐴) fLim (((nei‘𝐽)‘{𝑋}) ↾t 𝐴)))
4 oveq2 7398 . . . . . 6 (𝑎 = (((nei‘𝐽)‘{𝑋}) ↾t 𝐴) → (𝐾 fLimf 𝑎) = (𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴)))
54fveq1d 6863 . . . . 5 (𝑎 = (((nei‘𝐽)‘{𝑋}) ↾t 𝐴) → ((𝐾 fLimf 𝑎)‘𝐹) = ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹))
65eleq2d 2815 . . . 4 (𝑎 = (((nei‘𝐽)‘{𝑋}) ↾t 𝐴) → ((𝐹𝑥) ∈ ((𝐾 fLimf 𝑎)‘𝐹) ↔ (𝐹𝑥) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)))
73, 6raleqbidv 3321 . . 3 (𝑎 = (((nei‘𝐽)‘{𝑋}) ↾t 𝐴) → (∀𝑥 ∈ ((𝐽t 𝐴) fLim 𝑎)(𝐹𝑥) ∈ ((𝐾 fLimf 𝑎)‘𝐹) ↔ ∀𝑥 ∈ ((𝐽t 𝐴) fLim (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))(𝐹𝑥) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)))
8 flfcntr.1 . . . . 5 (𝜑𝐹 ∈ ((𝐽t 𝐴) Cn 𝐾))
9 flfcntr.j . . . . . . . 8 (𝜑𝐽 ∈ Top)
10 flfcntr.c . . . . . . . . 9 𝐶 = 𝐽
1110toptopon 22811 . . . . . . . 8 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝐶))
129, 11sylib 218 . . . . . . 7 (𝜑𝐽 ∈ (TopOn‘𝐶))
13 flfcntr.a . . . . . . 7 (𝜑𝐴𝐶)
14 resttopon 23055 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝐶) ∧ 𝐴𝐶) → (𝐽t 𝐴) ∈ (TopOn‘𝐴))
1512, 13, 14syl2anc 584 . . . . . 6 (𝜑 → (𝐽t 𝐴) ∈ (TopOn‘𝐴))
16 cntop2 23135 . . . . . . . 8 (𝐹 ∈ ((𝐽t 𝐴) Cn 𝐾) → 𝐾 ∈ Top)
178, 16syl 17 . . . . . . 7 (𝜑𝐾 ∈ Top)
18 flfcntr.b . . . . . . . 8 𝐵 = 𝐾
1918toptopon 22811 . . . . . . 7 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘𝐵))
2017, 19sylib 218 . . . . . 6 (𝜑𝐾 ∈ (TopOn‘𝐵))
21 cnflf 23896 . . . . . 6 (((𝐽t 𝐴) ∈ (TopOn‘𝐴) ∧ 𝐾 ∈ (TopOn‘𝐵)) → (𝐹 ∈ ((𝐽t 𝐴) Cn 𝐾) ↔ (𝐹:𝐴𝐵 ∧ ∀𝑎 ∈ (Fil‘𝐴)∀𝑥 ∈ ((𝐽t 𝐴) fLim 𝑎)(𝐹𝑥) ∈ ((𝐾 fLimf 𝑎)‘𝐹))))
2215, 20, 21syl2anc 584 . . . . 5 (𝜑 → (𝐹 ∈ ((𝐽t 𝐴) Cn 𝐾) ↔ (𝐹:𝐴𝐵 ∧ ∀𝑎 ∈ (Fil‘𝐴)∀𝑥 ∈ ((𝐽t 𝐴) fLim 𝑎)(𝐹𝑥) ∈ ((𝐾 fLimf 𝑎)‘𝐹))))
238, 22mpbid 232 . . . 4 (𝜑 → (𝐹:𝐴𝐵 ∧ ∀𝑎 ∈ (Fil‘𝐴)∀𝑥 ∈ ((𝐽t 𝐴) fLim 𝑎)(𝐹𝑥) ∈ ((𝐾 fLimf 𝑎)‘𝐹)))
2423simprd 495 . . 3 (𝜑 → ∀𝑎 ∈ (Fil‘𝐴)∀𝑥 ∈ ((𝐽t 𝐴) fLim 𝑎)(𝐹𝑥) ∈ ((𝐾 fLimf 𝑎)‘𝐹))
2510sscls 22950 . . . . . 6 ((𝐽 ∈ Top ∧ 𝐴𝐶) → 𝐴 ⊆ ((cls‘𝐽)‘𝐴))
269, 13, 25syl2anc 584 . . . . 5 (𝜑𝐴 ⊆ ((cls‘𝐽)‘𝐴))
27 flfcntr.y . . . . 5 (𝜑𝑋𝐴)
2826, 27sseldd 3950 . . . 4 (𝜑𝑋 ∈ ((cls‘𝐽)‘𝐴))
2913, 27sseldd 3950 . . . . 5 (𝜑𝑋𝐶)
30 trnei 23786 . . . . 5 ((𝐽 ∈ (TopOn‘𝐶) ∧ 𝐴𝐶𝑋𝐶) → (𝑋 ∈ ((cls‘𝐽)‘𝐴) ↔ (((nei‘𝐽)‘{𝑋}) ↾t 𝐴) ∈ (Fil‘𝐴)))
3112, 13, 29, 30syl3anc 1373 . . . 4 (𝜑 → (𝑋 ∈ ((cls‘𝐽)‘𝐴) ↔ (((nei‘𝐽)‘{𝑋}) ↾t 𝐴) ∈ (Fil‘𝐴)))
3228, 31mpbid 232 . . 3 (𝜑 → (((nei‘𝐽)‘{𝑋}) ↾t 𝐴) ∈ (Fil‘𝐴))
337, 24, 32rspcdva 3592 . 2 (𝜑 → ∀𝑥 ∈ ((𝐽t 𝐴) fLim (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))(𝐹𝑥) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹))
34 neiflim 23868 . . . 4 (((𝐽t 𝐴) ∈ (TopOn‘𝐴) ∧ 𝑋𝐴) → 𝑋 ∈ ((𝐽t 𝐴) fLim ((nei‘(𝐽t 𝐴))‘{𝑋})))
3515, 27, 34syl2anc 584 . . 3 (𝜑𝑋 ∈ ((𝐽t 𝐴) fLim ((nei‘(𝐽t 𝐴))‘{𝑋})))
3627snssd 4776 . . . . 5 (𝜑 → {𝑋} ⊆ 𝐴)
3710neitr 23074 . . . . 5 ((𝐽 ∈ Top ∧ 𝐴𝐶 ∧ {𝑋} ⊆ 𝐴) → ((nei‘(𝐽t 𝐴))‘{𝑋}) = (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))
389, 13, 36, 37syl3anc 1373 . . . 4 (𝜑 → ((nei‘(𝐽t 𝐴))‘{𝑋}) = (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))
3938oveq2d 7406 . . 3 (𝜑 → ((𝐽t 𝐴) fLim ((nei‘(𝐽t 𝐴))‘{𝑋})) = ((𝐽t 𝐴) fLim (((nei‘𝐽)‘{𝑋}) ↾t 𝐴)))
4035, 39eleqtrd 2831 . 2 (𝜑𝑋 ∈ ((𝐽t 𝐴) fLim (((nei‘𝐽)‘{𝑋}) ↾t 𝐴)))
412, 33, 40rspcdva 3592 1 (𝜑 → (𝐹𝑋) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3045  wss 3917  {csn 4592   cuni 4874  wf 6510  cfv 6514  (class class class)co 7390  t crest 17390  Topctop 22787  TopOnctopon 22804  clsccl 22912  neicnei 22991   Cn ccn 23118  Filcfil 23739   fLim cflim 23828   fLimf cflf 23829
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-map 8804  df-en 8922  df-fin 8925  df-fi 9369  df-rest 17392  df-topgen 17413  df-fbas 21268  df-fg 21269  df-top 22788  df-topon 22805  df-bases 22840  df-cld 22913  df-ntr 22914  df-cls 22915  df-nei 22992  df-cn 23121  df-cnp 23122  df-fil 23740  df-fm 23832  df-flim 23833  df-flf 23834
This theorem is referenced by:  cnextfres  23963
  Copyright terms: Public domain W3C validator