Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0dioph Structured version   Visualization version   GIF version

Theorem 0dioph 40244
Description: The null set is Diophantine. (Contributed by Stefan O'Rear, 10-Oct-2014.)
Assertion
Ref Expression
0dioph (𝐴 ∈ ℕ0 → ∅ ∈ (Dioph‘𝐴))

Proof of Theorem 0dioph
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 ax-1ne0 10763 . . . . 5 1 ≠ 0
21neii 2934 . . . 4 ¬ 1 = 0
32rgenw 3063 . . 3 𝑎 ∈ (ℕ0m (1...𝐴)) ¬ 1 = 0
4 rabeq0 4285 . . 3 ({𝑎 ∈ (ℕ0m (1...𝐴)) ∣ 1 = 0} = ∅ ↔ ∀𝑎 ∈ (ℕ0m (1...𝐴)) ¬ 1 = 0)
53, 4mpbir 234 . 2 {𝑎 ∈ (ℕ0m (1...𝐴)) ∣ 1 = 0} = ∅
6 ovex 7224 . . . 4 (1...𝐴) ∈ V
7 1z 12172 . . . 4 1 ∈ ℤ
8 mzpconstmpt 40206 . . . 4 (((1...𝐴) ∈ V ∧ 1 ∈ ℤ) → (𝑎 ∈ (ℤ ↑m (1...𝐴)) ↦ 1) ∈ (mzPoly‘(1...𝐴)))
96, 7, 8mp2an 692 . . 3 (𝑎 ∈ (ℤ ↑m (1...𝐴)) ↦ 1) ∈ (mzPoly‘(1...𝐴))
10 eq0rabdioph 40242 . . 3 ((𝐴 ∈ ℕ0 ∧ (𝑎 ∈ (ℤ ↑m (1...𝐴)) ↦ 1) ∈ (mzPoly‘(1...𝐴))) → {𝑎 ∈ (ℕ0m (1...𝐴)) ∣ 1 = 0} ∈ (Dioph‘𝐴))
119, 10mpan2 691 . 2 (𝐴 ∈ ℕ0 → {𝑎 ∈ (ℕ0m (1...𝐴)) ∣ 1 = 0} ∈ (Dioph‘𝐴))
125, 11eqeltrrid 2836 1 (𝐴 ∈ ℕ0 → ∅ ∈ (Dioph‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1543  wcel 2112  wral 3051  {crab 3055  Vcvv 3398  c0 4223  cmpt 5120  cfv 6358  (class class class)co 7191  m cmap 8486  0cc0 10694  1c1 10695  0cn0 12055  cz 12141  ...cfz 13060  mzPolycmzp 40188  Diophcdioph 40221
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-int 4846  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-of 7447  df-om 7623  df-1st 7739  df-2nd 7740  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-er 8369  df-map 8488  df-en 8605  df-dom 8606  df-sdom 8607  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-nn 11796  df-n0 12056  df-z 12142  df-uz 12404  df-fz 13061  df-mzpcl 40189  df-mzp 40190  df-dioph 40222
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator