![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > coseq1 | Structured version Visualization version GIF version |
Description: A complex number whose cosine is one is an integer multiple of 2π. (Contributed by Mario Carneiro, 12-May-2014.) |
Ref | Expression |
---|---|
coseq1 | ⊢ (𝐴 ∈ ℂ → ((cos‘𝐴) = 1 ↔ (𝐴 / (2 · π)) ∈ ℤ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2cn 12228 | . . . . . . . 8 ⊢ 2 ∈ ℂ | |
2 | 2ne0 12257 | . . . . . . . 8 ⊢ 2 ≠ 0 | |
3 | divcan2 11821 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → (2 · (𝐴 / 2)) = 𝐴) | |
4 | 1, 2, 3 | mp3an23 1453 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (2 · (𝐴 / 2)) = 𝐴) |
5 | 4 | fveq2d 6846 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (cos‘(2 · (𝐴 / 2))) = (cos‘𝐴)) |
6 | halfcl 12378 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (𝐴 / 2) ∈ ℂ) | |
7 | cos2tsin 16061 | . . . . . . 7 ⊢ ((𝐴 / 2) ∈ ℂ → (cos‘(2 · (𝐴 / 2))) = (1 − (2 · ((sin‘(𝐴 / 2))↑2)))) | |
8 | 6, 7 | syl 17 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (cos‘(2 · (𝐴 / 2))) = (1 − (2 · ((sin‘(𝐴 / 2))↑2)))) |
9 | 5, 8 | eqtr3d 2778 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (cos‘𝐴) = (1 − (2 · ((sin‘(𝐴 / 2))↑2)))) |
10 | 9 | eqeq1d 2738 | . . . 4 ⊢ (𝐴 ∈ ℂ → ((cos‘𝐴) = 1 ↔ (1 − (2 · ((sin‘(𝐴 / 2))↑2))) = 1)) |
11 | 6 | sincld 16012 | . . . . . . . 8 ⊢ (𝐴 ∈ ℂ → (sin‘(𝐴 / 2)) ∈ ℂ) |
12 | 11 | sqcld 14049 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → ((sin‘(𝐴 / 2))↑2) ∈ ℂ) |
13 | mulcl 11135 | . . . . . . 7 ⊢ ((2 ∈ ℂ ∧ ((sin‘(𝐴 / 2))↑2) ∈ ℂ) → (2 · ((sin‘(𝐴 / 2))↑2)) ∈ ℂ) | |
14 | 1, 12, 13 | sylancr 587 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (2 · ((sin‘(𝐴 / 2))↑2)) ∈ ℂ) |
15 | ax-1cn 11109 | . . . . . . 7 ⊢ 1 ∈ ℂ | |
16 | subsub23 11406 | . . . . . . 7 ⊢ ((1 ∈ ℂ ∧ (2 · ((sin‘(𝐴 / 2))↑2)) ∈ ℂ ∧ 1 ∈ ℂ) → ((1 − (2 · ((sin‘(𝐴 / 2))↑2))) = 1 ↔ (1 − 1) = (2 · ((sin‘(𝐴 / 2))↑2)))) | |
17 | 15, 15, 16 | mp3an13 1452 | . . . . . 6 ⊢ ((2 · ((sin‘(𝐴 / 2))↑2)) ∈ ℂ → ((1 − (2 · ((sin‘(𝐴 / 2))↑2))) = 1 ↔ (1 − 1) = (2 · ((sin‘(𝐴 / 2))↑2)))) |
18 | 14, 17 | syl 17 | . . . . 5 ⊢ (𝐴 ∈ ℂ → ((1 − (2 · ((sin‘(𝐴 / 2))↑2))) = 1 ↔ (1 − 1) = (2 · ((sin‘(𝐴 / 2))↑2)))) |
19 | eqcom 2743 | . . . . . 6 ⊢ ((1 − 1) = (2 · ((sin‘(𝐴 / 2))↑2)) ↔ (2 · ((sin‘(𝐴 / 2))↑2)) = (1 − 1)) | |
20 | 1m1e0 12225 | . . . . . . 7 ⊢ (1 − 1) = 0 | |
21 | 20 | eqeq2i 2749 | . . . . . 6 ⊢ ((2 · ((sin‘(𝐴 / 2))↑2)) = (1 − 1) ↔ (2 · ((sin‘(𝐴 / 2))↑2)) = 0) |
22 | 19, 21 | bitri 274 | . . . . 5 ⊢ ((1 − 1) = (2 · ((sin‘(𝐴 / 2))↑2)) ↔ (2 · ((sin‘(𝐴 / 2))↑2)) = 0) |
23 | 18, 22 | bitrdi 286 | . . . 4 ⊢ (𝐴 ∈ ℂ → ((1 − (2 · ((sin‘(𝐴 / 2))↑2))) = 1 ↔ (2 · ((sin‘(𝐴 / 2))↑2)) = 0)) |
24 | 10, 23 | bitrd 278 | . . 3 ⊢ (𝐴 ∈ ℂ → ((cos‘𝐴) = 1 ↔ (2 · ((sin‘(𝐴 / 2))↑2)) = 0)) |
25 | mul0or 11795 | . . . . 5 ⊢ ((2 ∈ ℂ ∧ ((sin‘(𝐴 / 2))↑2) ∈ ℂ) → ((2 · ((sin‘(𝐴 / 2))↑2)) = 0 ↔ (2 = 0 ∨ ((sin‘(𝐴 / 2))↑2) = 0))) | |
26 | 1, 12, 25 | sylancr 587 | . . . 4 ⊢ (𝐴 ∈ ℂ → ((2 · ((sin‘(𝐴 / 2))↑2)) = 0 ↔ (2 = 0 ∨ ((sin‘(𝐴 / 2))↑2) = 0))) |
27 | 2 | neii 2945 | . . . . 5 ⊢ ¬ 2 = 0 |
28 | biorf 935 | . . . . 5 ⊢ (¬ 2 = 0 → (((sin‘(𝐴 / 2))↑2) = 0 ↔ (2 = 0 ∨ ((sin‘(𝐴 / 2))↑2) = 0))) | |
29 | 27, 28 | ax-mp 5 | . . . 4 ⊢ (((sin‘(𝐴 / 2))↑2) = 0 ↔ (2 = 0 ∨ ((sin‘(𝐴 / 2))↑2) = 0)) |
30 | 26, 29 | bitr4di 288 | . . 3 ⊢ (𝐴 ∈ ℂ → ((2 · ((sin‘(𝐴 / 2))↑2)) = 0 ↔ ((sin‘(𝐴 / 2))↑2) = 0)) |
31 | sqeq0 14025 | . . . 4 ⊢ ((sin‘(𝐴 / 2)) ∈ ℂ → (((sin‘(𝐴 / 2))↑2) = 0 ↔ (sin‘(𝐴 / 2)) = 0)) | |
32 | 11, 31 | syl 17 | . . 3 ⊢ (𝐴 ∈ ℂ → (((sin‘(𝐴 / 2))↑2) = 0 ↔ (sin‘(𝐴 / 2)) = 0)) |
33 | 24, 30, 32 | 3bitrd 304 | . 2 ⊢ (𝐴 ∈ ℂ → ((cos‘𝐴) = 1 ↔ (sin‘(𝐴 / 2)) = 0)) |
34 | sineq0 25880 | . . 3 ⊢ ((𝐴 / 2) ∈ ℂ → ((sin‘(𝐴 / 2)) = 0 ↔ ((𝐴 / 2) / π) ∈ ℤ)) | |
35 | 6, 34 | syl 17 | . 2 ⊢ (𝐴 ∈ ℂ → ((sin‘(𝐴 / 2)) = 0 ↔ ((𝐴 / 2) / π) ∈ ℤ)) |
36 | 1, 2 | pm3.2i 471 | . . . 4 ⊢ (2 ∈ ℂ ∧ 2 ≠ 0) |
37 | picn 25816 | . . . . 5 ⊢ π ∈ ℂ | |
38 | pire 25815 | . . . . . 6 ⊢ π ∈ ℝ | |
39 | pipos 25817 | . . . . . 6 ⊢ 0 < π | |
40 | 38, 39 | gt0ne0ii 11691 | . . . . 5 ⊢ π ≠ 0 |
41 | 37, 40 | pm3.2i 471 | . . . 4 ⊢ (π ∈ ℂ ∧ π ≠ 0) |
42 | divdiv1 11866 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0) ∧ (π ∈ ℂ ∧ π ≠ 0)) → ((𝐴 / 2) / π) = (𝐴 / (2 · π))) | |
43 | 36, 41, 42 | mp3an23 1453 | . . 3 ⊢ (𝐴 ∈ ℂ → ((𝐴 / 2) / π) = (𝐴 / (2 · π))) |
44 | 43 | eleq1d 2822 | . 2 ⊢ (𝐴 ∈ ℂ → (((𝐴 / 2) / π) ∈ ℤ ↔ (𝐴 / (2 · π)) ∈ ℤ)) |
45 | 33, 35, 44 | 3bitrd 304 | 1 ⊢ (𝐴 ∈ ℂ → ((cos‘𝐴) = 1 ↔ (𝐴 / (2 · π)) ∈ ℤ)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∨ wo 845 = wceq 1541 ∈ wcel 2106 ≠ wne 2943 ‘cfv 6496 (class class class)co 7357 ℂcc 11049 0cc0 11051 1c1 11052 · cmul 11056 − cmin 11385 / cdiv 11812 2c2 12208 ℤcz 12499 ↑cexp 13967 sincsin 15946 cosccos 15947 πcpi 15949 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5242 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-inf2 9577 ax-cnex 11107 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-pre-mulgt0 11128 ax-pre-sup 11129 ax-addf 11130 ax-mulf 11131 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-rmo 3353 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-tp 4591 df-op 4593 df-uni 4866 df-int 4908 df-iun 4956 df-iin 4957 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-se 5589 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-isom 6505 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-of 7617 df-om 7803 df-1st 7921 df-2nd 7922 df-supp 8093 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-1o 8412 df-2o 8413 df-er 8648 df-map 8767 df-pm 8768 df-ixp 8836 df-en 8884 df-dom 8885 df-sdom 8886 df-fin 8887 df-fsupp 9306 df-fi 9347 df-sup 9378 df-inf 9379 df-oi 9446 df-card 9875 df-pnf 11191 df-mnf 11192 df-xr 11193 df-ltxr 11194 df-le 11195 df-sub 11387 df-neg 11388 df-div 11813 df-nn 12154 df-2 12216 df-3 12217 df-4 12218 df-5 12219 df-6 12220 df-7 12221 df-8 12222 df-9 12223 df-n0 12414 df-z 12500 df-dec 12619 df-uz 12764 df-q 12874 df-rp 12916 df-xneg 13033 df-xadd 13034 df-xmul 13035 df-ioo 13268 df-ioc 13269 df-ico 13270 df-icc 13271 df-fz 13425 df-fzo 13568 df-fl 13697 df-mod 13775 df-seq 13907 df-exp 13968 df-fac 14174 df-bc 14203 df-hash 14231 df-shft 14952 df-cj 14984 df-re 14985 df-im 14986 df-sqrt 15120 df-abs 15121 df-limsup 15353 df-clim 15370 df-rlim 15371 df-sum 15571 df-ef 15950 df-sin 15952 df-cos 15953 df-pi 15955 df-struct 17019 df-sets 17036 df-slot 17054 df-ndx 17066 df-base 17084 df-ress 17113 df-plusg 17146 df-mulr 17147 df-starv 17148 df-sca 17149 df-vsca 17150 df-ip 17151 df-tset 17152 df-ple 17153 df-ds 17155 df-unif 17156 df-hom 17157 df-cco 17158 df-rest 17304 df-topn 17305 df-0g 17323 df-gsum 17324 df-topgen 17325 df-pt 17326 df-prds 17329 df-xrs 17384 df-qtop 17389 df-imas 17390 df-xps 17392 df-mre 17466 df-mrc 17467 df-acs 17469 df-mgm 18497 df-sgrp 18546 df-mnd 18557 df-submnd 18602 df-mulg 18873 df-cntz 19097 df-cmn 19564 df-psmet 20788 df-xmet 20789 df-met 20790 df-bl 20791 df-mopn 20792 df-fbas 20793 df-fg 20794 df-cnfld 20797 df-top 22243 df-topon 22260 df-topsp 22282 df-bases 22296 df-cld 22370 df-ntr 22371 df-cls 22372 df-nei 22449 df-lp 22487 df-perf 22488 df-cn 22578 df-cnp 22579 df-haus 22666 df-tx 22913 df-hmeo 23106 df-fil 23197 df-fm 23289 df-flim 23290 df-flf 23291 df-xms 23673 df-ms 23674 df-tms 23675 df-cncf 24241 df-limc 25230 df-dv 25231 |
This theorem is referenced by: cos02pilt1 25882 taupilem1 35792 dirkertrigeqlem1 44329 dirkertrigeq 44332 |
Copyright terms: Public domain | W3C validator |