| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > coseq1 | Structured version Visualization version GIF version | ||
| Description: A complex number whose cosine is one is an integer multiple of 2π. (Contributed by Mario Carneiro, 12-May-2014.) |
| Ref | Expression |
|---|---|
| coseq1 | ⊢ (𝐴 ∈ ℂ → ((cos‘𝐴) = 1 ↔ (𝐴 / (2 · π)) ∈ ℤ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2cn 12268 | . . . . . . . 8 ⊢ 2 ∈ ℂ | |
| 2 | 2ne0 12297 | . . . . . . . 8 ⊢ 2 ≠ 0 | |
| 3 | divcan2 11852 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → (2 · (𝐴 / 2)) = 𝐴) | |
| 4 | 1, 2, 3 | mp3an23 1455 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (2 · (𝐴 / 2)) = 𝐴) |
| 5 | 4 | fveq2d 6865 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (cos‘(2 · (𝐴 / 2))) = (cos‘𝐴)) |
| 6 | halfcl 12415 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (𝐴 / 2) ∈ ℂ) | |
| 7 | cos2tsin 16154 | . . . . . . 7 ⊢ ((𝐴 / 2) ∈ ℂ → (cos‘(2 · (𝐴 / 2))) = (1 − (2 · ((sin‘(𝐴 / 2))↑2)))) | |
| 8 | 6, 7 | syl 17 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (cos‘(2 · (𝐴 / 2))) = (1 − (2 · ((sin‘(𝐴 / 2))↑2)))) |
| 9 | 5, 8 | eqtr3d 2767 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (cos‘𝐴) = (1 − (2 · ((sin‘(𝐴 / 2))↑2)))) |
| 10 | 9 | eqeq1d 2732 | . . . 4 ⊢ (𝐴 ∈ ℂ → ((cos‘𝐴) = 1 ↔ (1 − (2 · ((sin‘(𝐴 / 2))↑2))) = 1)) |
| 11 | 6 | sincld 16105 | . . . . . . . 8 ⊢ (𝐴 ∈ ℂ → (sin‘(𝐴 / 2)) ∈ ℂ) |
| 12 | 11 | sqcld 14116 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → ((sin‘(𝐴 / 2))↑2) ∈ ℂ) |
| 13 | mulcl 11159 | . . . . . . 7 ⊢ ((2 ∈ ℂ ∧ ((sin‘(𝐴 / 2))↑2) ∈ ℂ) → (2 · ((sin‘(𝐴 / 2))↑2)) ∈ ℂ) | |
| 14 | 1, 12, 13 | sylancr 587 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (2 · ((sin‘(𝐴 / 2))↑2)) ∈ ℂ) |
| 15 | ax-1cn 11133 | . . . . . . 7 ⊢ 1 ∈ ℂ | |
| 16 | subsub23 11433 | . . . . . . 7 ⊢ ((1 ∈ ℂ ∧ (2 · ((sin‘(𝐴 / 2))↑2)) ∈ ℂ ∧ 1 ∈ ℂ) → ((1 − (2 · ((sin‘(𝐴 / 2))↑2))) = 1 ↔ (1 − 1) = (2 · ((sin‘(𝐴 / 2))↑2)))) | |
| 17 | 15, 15, 16 | mp3an13 1454 | . . . . . 6 ⊢ ((2 · ((sin‘(𝐴 / 2))↑2)) ∈ ℂ → ((1 − (2 · ((sin‘(𝐴 / 2))↑2))) = 1 ↔ (1 − 1) = (2 · ((sin‘(𝐴 / 2))↑2)))) |
| 18 | 14, 17 | syl 17 | . . . . 5 ⊢ (𝐴 ∈ ℂ → ((1 − (2 · ((sin‘(𝐴 / 2))↑2))) = 1 ↔ (1 − 1) = (2 · ((sin‘(𝐴 / 2))↑2)))) |
| 19 | eqcom 2737 | . . . . . 6 ⊢ ((1 − 1) = (2 · ((sin‘(𝐴 / 2))↑2)) ↔ (2 · ((sin‘(𝐴 / 2))↑2)) = (1 − 1)) | |
| 20 | 1m1e0 12265 | . . . . . . 7 ⊢ (1 − 1) = 0 | |
| 21 | 20 | eqeq2i 2743 | . . . . . 6 ⊢ ((2 · ((sin‘(𝐴 / 2))↑2)) = (1 − 1) ↔ (2 · ((sin‘(𝐴 / 2))↑2)) = 0) |
| 22 | 19, 21 | bitri 275 | . . . . 5 ⊢ ((1 − 1) = (2 · ((sin‘(𝐴 / 2))↑2)) ↔ (2 · ((sin‘(𝐴 / 2))↑2)) = 0) |
| 23 | 18, 22 | bitrdi 287 | . . . 4 ⊢ (𝐴 ∈ ℂ → ((1 − (2 · ((sin‘(𝐴 / 2))↑2))) = 1 ↔ (2 · ((sin‘(𝐴 / 2))↑2)) = 0)) |
| 24 | 10, 23 | bitrd 279 | . . 3 ⊢ (𝐴 ∈ ℂ → ((cos‘𝐴) = 1 ↔ (2 · ((sin‘(𝐴 / 2))↑2)) = 0)) |
| 25 | mul0or 11825 | . . . . 5 ⊢ ((2 ∈ ℂ ∧ ((sin‘(𝐴 / 2))↑2) ∈ ℂ) → ((2 · ((sin‘(𝐴 / 2))↑2)) = 0 ↔ (2 = 0 ∨ ((sin‘(𝐴 / 2))↑2) = 0))) | |
| 26 | 1, 12, 25 | sylancr 587 | . . . 4 ⊢ (𝐴 ∈ ℂ → ((2 · ((sin‘(𝐴 / 2))↑2)) = 0 ↔ (2 = 0 ∨ ((sin‘(𝐴 / 2))↑2) = 0))) |
| 27 | 2 | neii 2928 | . . . . 5 ⊢ ¬ 2 = 0 |
| 28 | biorf 936 | . . . . 5 ⊢ (¬ 2 = 0 → (((sin‘(𝐴 / 2))↑2) = 0 ↔ (2 = 0 ∨ ((sin‘(𝐴 / 2))↑2) = 0))) | |
| 29 | 27, 28 | ax-mp 5 | . . . 4 ⊢ (((sin‘(𝐴 / 2))↑2) = 0 ↔ (2 = 0 ∨ ((sin‘(𝐴 / 2))↑2) = 0)) |
| 30 | 26, 29 | bitr4di 289 | . . 3 ⊢ (𝐴 ∈ ℂ → ((2 · ((sin‘(𝐴 / 2))↑2)) = 0 ↔ ((sin‘(𝐴 / 2))↑2) = 0)) |
| 31 | sqeq0 14092 | . . . 4 ⊢ ((sin‘(𝐴 / 2)) ∈ ℂ → (((sin‘(𝐴 / 2))↑2) = 0 ↔ (sin‘(𝐴 / 2)) = 0)) | |
| 32 | 11, 31 | syl 17 | . . 3 ⊢ (𝐴 ∈ ℂ → (((sin‘(𝐴 / 2))↑2) = 0 ↔ (sin‘(𝐴 / 2)) = 0)) |
| 33 | 24, 30, 32 | 3bitrd 305 | . 2 ⊢ (𝐴 ∈ ℂ → ((cos‘𝐴) = 1 ↔ (sin‘(𝐴 / 2)) = 0)) |
| 34 | sineq0 26440 | . . 3 ⊢ ((𝐴 / 2) ∈ ℂ → ((sin‘(𝐴 / 2)) = 0 ↔ ((𝐴 / 2) / π) ∈ ℤ)) | |
| 35 | 6, 34 | syl 17 | . 2 ⊢ (𝐴 ∈ ℂ → ((sin‘(𝐴 / 2)) = 0 ↔ ((𝐴 / 2) / π) ∈ ℤ)) |
| 36 | 1, 2 | pm3.2i 470 | . . . 4 ⊢ (2 ∈ ℂ ∧ 2 ≠ 0) |
| 37 | picn 26374 | . . . . 5 ⊢ π ∈ ℂ | |
| 38 | pire 26373 | . . . . . 6 ⊢ π ∈ ℝ | |
| 39 | pipos 26375 | . . . . . 6 ⊢ 0 < π | |
| 40 | 38, 39 | gt0ne0ii 11721 | . . . . 5 ⊢ π ≠ 0 |
| 41 | 37, 40 | pm3.2i 470 | . . . 4 ⊢ (π ∈ ℂ ∧ π ≠ 0) |
| 42 | divdiv1 11900 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0) ∧ (π ∈ ℂ ∧ π ≠ 0)) → ((𝐴 / 2) / π) = (𝐴 / (2 · π))) | |
| 43 | 36, 41, 42 | mp3an23 1455 | . . 3 ⊢ (𝐴 ∈ ℂ → ((𝐴 / 2) / π) = (𝐴 / (2 · π))) |
| 44 | 43 | eleq1d 2814 | . 2 ⊢ (𝐴 ∈ ℂ → (((𝐴 / 2) / π) ∈ ℤ ↔ (𝐴 / (2 · π)) ∈ ℤ)) |
| 45 | 33, 35, 44 | 3bitrd 305 | 1 ⊢ (𝐴 ∈ ℂ → ((cos‘𝐴) = 1 ↔ (𝐴 / (2 · π)) ∈ ℤ)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ‘cfv 6514 (class class class)co 7390 ℂcc 11073 0cc0 11075 1c1 11076 · cmul 11080 − cmin 11412 / cdiv 11842 2c2 12248 ℤcz 12536 ↑cexp 14033 sincsin 16036 cosccos 16037 πcpi 16039 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 ax-addf 11154 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-iin 4961 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-of 7656 df-om 7846 df-1st 7971 df-2nd 7972 df-supp 8143 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-er 8674 df-map 8804 df-pm 8805 df-ixp 8874 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-fsupp 9320 df-fi 9369 df-sup 9400 df-inf 9401 df-oi 9470 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-q 12915 df-rp 12959 df-xneg 13079 df-xadd 13080 df-xmul 13081 df-ioo 13317 df-ioc 13318 df-ico 13319 df-icc 13320 df-fz 13476 df-fzo 13623 df-fl 13761 df-mod 13839 df-seq 13974 df-exp 14034 df-fac 14246 df-bc 14275 df-hash 14303 df-shft 15040 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-limsup 15444 df-clim 15461 df-rlim 15462 df-sum 15660 df-ef 16040 df-sin 16042 df-cos 16043 df-pi 16045 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-mulr 17241 df-starv 17242 df-sca 17243 df-vsca 17244 df-ip 17245 df-tset 17246 df-ple 17247 df-ds 17249 df-unif 17250 df-hom 17251 df-cco 17252 df-rest 17392 df-topn 17393 df-0g 17411 df-gsum 17412 df-topgen 17413 df-pt 17414 df-prds 17417 df-xrs 17472 df-qtop 17477 df-imas 17478 df-xps 17480 df-mre 17554 df-mrc 17555 df-acs 17557 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-submnd 18718 df-mulg 19007 df-cntz 19256 df-cmn 19719 df-psmet 21263 df-xmet 21264 df-met 21265 df-bl 21266 df-mopn 21267 df-fbas 21268 df-fg 21269 df-cnfld 21272 df-top 22788 df-topon 22805 df-topsp 22827 df-bases 22840 df-cld 22913 df-ntr 22914 df-cls 22915 df-nei 22992 df-lp 23030 df-perf 23031 df-cn 23121 df-cnp 23122 df-haus 23209 df-tx 23456 df-hmeo 23649 df-fil 23740 df-fm 23832 df-flim 23833 df-flf 23834 df-xms 24215 df-ms 24216 df-tms 24217 df-cncf 24778 df-limc 25774 df-dv 25775 |
| This theorem is referenced by: cos02pilt1 26442 taupilem1 37316 dirkertrigeqlem1 46103 dirkertrigeq 46106 |
| Copyright terms: Public domain | W3C validator |