Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > coseq1 | Structured version Visualization version GIF version |
Description: A complex number whose cosine is one is an integer multiple of 2π. (Contributed by Mario Carneiro, 12-May-2014.) |
Ref | Expression |
---|---|
coseq1 | ⊢ (𝐴 ∈ ℂ → ((cos‘𝐴) = 1 ↔ (𝐴 / (2 · π)) ∈ ℤ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2cn 11978 | . . . . . . . 8 ⊢ 2 ∈ ℂ | |
2 | 2ne0 12007 | . . . . . . . 8 ⊢ 2 ≠ 0 | |
3 | divcan2 11571 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → (2 · (𝐴 / 2)) = 𝐴) | |
4 | 1, 2, 3 | mp3an23 1451 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (2 · (𝐴 / 2)) = 𝐴) |
5 | 4 | fveq2d 6760 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (cos‘(2 · (𝐴 / 2))) = (cos‘𝐴)) |
6 | halfcl 12128 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (𝐴 / 2) ∈ ℂ) | |
7 | cos2tsin 15816 | . . . . . . 7 ⊢ ((𝐴 / 2) ∈ ℂ → (cos‘(2 · (𝐴 / 2))) = (1 − (2 · ((sin‘(𝐴 / 2))↑2)))) | |
8 | 6, 7 | syl 17 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (cos‘(2 · (𝐴 / 2))) = (1 − (2 · ((sin‘(𝐴 / 2))↑2)))) |
9 | 5, 8 | eqtr3d 2780 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (cos‘𝐴) = (1 − (2 · ((sin‘(𝐴 / 2))↑2)))) |
10 | 9 | eqeq1d 2740 | . . . 4 ⊢ (𝐴 ∈ ℂ → ((cos‘𝐴) = 1 ↔ (1 − (2 · ((sin‘(𝐴 / 2))↑2))) = 1)) |
11 | 6 | sincld 15767 | . . . . . . . 8 ⊢ (𝐴 ∈ ℂ → (sin‘(𝐴 / 2)) ∈ ℂ) |
12 | 11 | sqcld 13790 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → ((sin‘(𝐴 / 2))↑2) ∈ ℂ) |
13 | mulcl 10886 | . . . . . . 7 ⊢ ((2 ∈ ℂ ∧ ((sin‘(𝐴 / 2))↑2) ∈ ℂ) → (2 · ((sin‘(𝐴 / 2))↑2)) ∈ ℂ) | |
14 | 1, 12, 13 | sylancr 586 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (2 · ((sin‘(𝐴 / 2))↑2)) ∈ ℂ) |
15 | ax-1cn 10860 | . . . . . . 7 ⊢ 1 ∈ ℂ | |
16 | subsub23 11156 | . . . . . . 7 ⊢ ((1 ∈ ℂ ∧ (2 · ((sin‘(𝐴 / 2))↑2)) ∈ ℂ ∧ 1 ∈ ℂ) → ((1 − (2 · ((sin‘(𝐴 / 2))↑2))) = 1 ↔ (1 − 1) = (2 · ((sin‘(𝐴 / 2))↑2)))) | |
17 | 15, 15, 16 | mp3an13 1450 | . . . . . 6 ⊢ ((2 · ((sin‘(𝐴 / 2))↑2)) ∈ ℂ → ((1 − (2 · ((sin‘(𝐴 / 2))↑2))) = 1 ↔ (1 − 1) = (2 · ((sin‘(𝐴 / 2))↑2)))) |
18 | 14, 17 | syl 17 | . . . . 5 ⊢ (𝐴 ∈ ℂ → ((1 − (2 · ((sin‘(𝐴 / 2))↑2))) = 1 ↔ (1 − 1) = (2 · ((sin‘(𝐴 / 2))↑2)))) |
19 | eqcom 2745 | . . . . . 6 ⊢ ((1 − 1) = (2 · ((sin‘(𝐴 / 2))↑2)) ↔ (2 · ((sin‘(𝐴 / 2))↑2)) = (1 − 1)) | |
20 | 1m1e0 11975 | . . . . . . 7 ⊢ (1 − 1) = 0 | |
21 | 20 | eqeq2i 2751 | . . . . . 6 ⊢ ((2 · ((sin‘(𝐴 / 2))↑2)) = (1 − 1) ↔ (2 · ((sin‘(𝐴 / 2))↑2)) = 0) |
22 | 19, 21 | bitri 274 | . . . . 5 ⊢ ((1 − 1) = (2 · ((sin‘(𝐴 / 2))↑2)) ↔ (2 · ((sin‘(𝐴 / 2))↑2)) = 0) |
23 | 18, 22 | bitrdi 286 | . . . 4 ⊢ (𝐴 ∈ ℂ → ((1 − (2 · ((sin‘(𝐴 / 2))↑2))) = 1 ↔ (2 · ((sin‘(𝐴 / 2))↑2)) = 0)) |
24 | 10, 23 | bitrd 278 | . . 3 ⊢ (𝐴 ∈ ℂ → ((cos‘𝐴) = 1 ↔ (2 · ((sin‘(𝐴 / 2))↑2)) = 0)) |
25 | mul0or 11545 | . . . . 5 ⊢ ((2 ∈ ℂ ∧ ((sin‘(𝐴 / 2))↑2) ∈ ℂ) → ((2 · ((sin‘(𝐴 / 2))↑2)) = 0 ↔ (2 = 0 ∨ ((sin‘(𝐴 / 2))↑2) = 0))) | |
26 | 1, 12, 25 | sylancr 586 | . . . 4 ⊢ (𝐴 ∈ ℂ → ((2 · ((sin‘(𝐴 / 2))↑2)) = 0 ↔ (2 = 0 ∨ ((sin‘(𝐴 / 2))↑2) = 0))) |
27 | 2 | neii 2944 | . . . . 5 ⊢ ¬ 2 = 0 |
28 | biorf 933 | . . . . 5 ⊢ (¬ 2 = 0 → (((sin‘(𝐴 / 2))↑2) = 0 ↔ (2 = 0 ∨ ((sin‘(𝐴 / 2))↑2) = 0))) | |
29 | 27, 28 | ax-mp 5 | . . . 4 ⊢ (((sin‘(𝐴 / 2))↑2) = 0 ↔ (2 = 0 ∨ ((sin‘(𝐴 / 2))↑2) = 0)) |
30 | 26, 29 | bitr4di 288 | . . 3 ⊢ (𝐴 ∈ ℂ → ((2 · ((sin‘(𝐴 / 2))↑2)) = 0 ↔ ((sin‘(𝐴 / 2))↑2) = 0)) |
31 | sqeq0 13768 | . . . 4 ⊢ ((sin‘(𝐴 / 2)) ∈ ℂ → (((sin‘(𝐴 / 2))↑2) = 0 ↔ (sin‘(𝐴 / 2)) = 0)) | |
32 | 11, 31 | syl 17 | . . 3 ⊢ (𝐴 ∈ ℂ → (((sin‘(𝐴 / 2))↑2) = 0 ↔ (sin‘(𝐴 / 2)) = 0)) |
33 | 24, 30, 32 | 3bitrd 304 | . 2 ⊢ (𝐴 ∈ ℂ → ((cos‘𝐴) = 1 ↔ (sin‘(𝐴 / 2)) = 0)) |
34 | sineq0 25585 | . . 3 ⊢ ((𝐴 / 2) ∈ ℂ → ((sin‘(𝐴 / 2)) = 0 ↔ ((𝐴 / 2) / π) ∈ ℤ)) | |
35 | 6, 34 | syl 17 | . 2 ⊢ (𝐴 ∈ ℂ → ((sin‘(𝐴 / 2)) = 0 ↔ ((𝐴 / 2) / π) ∈ ℤ)) |
36 | 1, 2 | pm3.2i 470 | . . . 4 ⊢ (2 ∈ ℂ ∧ 2 ≠ 0) |
37 | picn 25521 | . . . . 5 ⊢ π ∈ ℂ | |
38 | pire 25520 | . . . . . 6 ⊢ π ∈ ℝ | |
39 | pipos 25522 | . . . . . 6 ⊢ 0 < π | |
40 | 38, 39 | gt0ne0ii 11441 | . . . . 5 ⊢ π ≠ 0 |
41 | 37, 40 | pm3.2i 470 | . . . 4 ⊢ (π ∈ ℂ ∧ π ≠ 0) |
42 | divdiv1 11616 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0) ∧ (π ∈ ℂ ∧ π ≠ 0)) → ((𝐴 / 2) / π) = (𝐴 / (2 · π))) | |
43 | 36, 41, 42 | mp3an23 1451 | . . 3 ⊢ (𝐴 ∈ ℂ → ((𝐴 / 2) / π) = (𝐴 / (2 · π))) |
44 | 43 | eleq1d 2823 | . 2 ⊢ (𝐴 ∈ ℂ → (((𝐴 / 2) / π) ∈ ℤ ↔ (𝐴 / (2 · π)) ∈ ℤ)) |
45 | 33, 35, 44 | 3bitrd 304 | 1 ⊢ (𝐴 ∈ ℂ → ((cos‘𝐴) = 1 ↔ (𝐴 / (2 · π)) ∈ ℤ)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∨ wo 843 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ‘cfv 6418 (class class class)co 7255 ℂcc 10800 0cc0 10802 1c1 10803 · cmul 10807 − cmin 11135 / cdiv 11562 2c2 11958 ℤcz 12249 ↑cexp 13710 sincsin 15701 cosccos 15702 πcpi 15704 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 ax-addf 10881 ax-mulf 10882 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-er 8456 df-map 8575 df-pm 8576 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-fi 9100 df-sup 9131 df-inf 9132 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-q 12618 df-rp 12660 df-xneg 12777 df-xadd 12778 df-xmul 12779 df-ioo 13012 df-ioc 13013 df-ico 13014 df-icc 13015 df-fz 13169 df-fzo 13312 df-fl 13440 df-mod 13518 df-seq 13650 df-exp 13711 df-fac 13916 df-bc 13945 df-hash 13973 df-shft 14706 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-limsup 15108 df-clim 15125 df-rlim 15126 df-sum 15326 df-ef 15705 df-sin 15707 df-cos 15708 df-pi 15710 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-starv 16903 df-sca 16904 df-vsca 16905 df-ip 16906 df-tset 16907 df-ple 16908 df-ds 16910 df-unif 16911 df-hom 16912 df-cco 16913 df-rest 17050 df-topn 17051 df-0g 17069 df-gsum 17070 df-topgen 17071 df-pt 17072 df-prds 17075 df-xrs 17130 df-qtop 17135 df-imas 17136 df-xps 17138 df-mre 17212 df-mrc 17213 df-acs 17215 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-submnd 18346 df-mulg 18616 df-cntz 18838 df-cmn 19303 df-psmet 20502 df-xmet 20503 df-met 20504 df-bl 20505 df-mopn 20506 df-fbas 20507 df-fg 20508 df-cnfld 20511 df-top 21951 df-topon 21968 df-topsp 21990 df-bases 22004 df-cld 22078 df-ntr 22079 df-cls 22080 df-nei 22157 df-lp 22195 df-perf 22196 df-cn 22286 df-cnp 22287 df-haus 22374 df-tx 22621 df-hmeo 22814 df-fil 22905 df-fm 22997 df-flim 22998 df-flf 22999 df-xms 23381 df-ms 23382 df-tms 23383 df-cncf 23947 df-limc 24935 df-dv 24936 |
This theorem is referenced by: cos02pilt1 25587 taupilem1 35419 dirkertrigeqlem1 43529 dirkertrigeq 43532 |
Copyright terms: Public domain | W3C validator |