MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coseq1 Structured version   Visualization version   GIF version

Theorem coseq1 25123
Description: A complex number whose cosine is one is an integer multiple of . (Contributed by Mario Carneiro, 12-May-2014.)
Assertion
Ref Expression
coseq1 (𝐴 ∈ ℂ → ((cos‘𝐴) = 1 ↔ (𝐴 / (2 · π)) ∈ ℤ))

Proof of Theorem coseq1
StepHypRef Expression
1 2cn 11712 . . . . . . . 8 2 ∈ ℂ
2 2ne0 11741 . . . . . . . 8 2 ≠ 0
3 divcan2 11305 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → (2 · (𝐴 / 2)) = 𝐴)
41, 2, 3mp3an23 1450 . . . . . . 7 (𝐴 ∈ ℂ → (2 · (𝐴 / 2)) = 𝐴)
54fveq2d 6666 . . . . . 6 (𝐴 ∈ ℂ → (cos‘(2 · (𝐴 / 2))) = (cos‘𝐴))
6 halfcl 11862 . . . . . . 7 (𝐴 ∈ ℂ → (𝐴 / 2) ∈ ℂ)
7 cos2tsin 15535 . . . . . . 7 ((𝐴 / 2) ∈ ℂ → (cos‘(2 · (𝐴 / 2))) = (1 − (2 · ((sin‘(𝐴 / 2))↑2))))
86, 7syl 17 . . . . . 6 (𝐴 ∈ ℂ → (cos‘(2 · (𝐴 / 2))) = (1 − (2 · ((sin‘(𝐴 / 2))↑2))))
95, 8eqtr3d 2861 . . . . 5 (𝐴 ∈ ℂ → (cos‘𝐴) = (1 − (2 · ((sin‘(𝐴 / 2))↑2))))
109eqeq1d 2826 . . . 4 (𝐴 ∈ ℂ → ((cos‘𝐴) = 1 ↔ (1 − (2 · ((sin‘(𝐴 / 2))↑2))) = 1))
116sincld 15486 . . . . . . . 8 (𝐴 ∈ ℂ → (sin‘(𝐴 / 2)) ∈ ℂ)
1211sqcld 13516 . . . . . . 7 (𝐴 ∈ ℂ → ((sin‘(𝐴 / 2))↑2) ∈ ℂ)
13 mulcl 10620 . . . . . . 7 ((2 ∈ ℂ ∧ ((sin‘(𝐴 / 2))↑2) ∈ ℂ) → (2 · ((sin‘(𝐴 / 2))↑2)) ∈ ℂ)
141, 12, 13sylancr 590 . . . . . 6 (𝐴 ∈ ℂ → (2 · ((sin‘(𝐴 / 2))↑2)) ∈ ℂ)
15 ax-1cn 10594 . . . . . . 7 1 ∈ ℂ
16 subsub23 10890 . . . . . . 7 ((1 ∈ ℂ ∧ (2 · ((sin‘(𝐴 / 2))↑2)) ∈ ℂ ∧ 1 ∈ ℂ) → ((1 − (2 · ((sin‘(𝐴 / 2))↑2))) = 1 ↔ (1 − 1) = (2 · ((sin‘(𝐴 / 2))↑2))))
1715, 15, 16mp3an13 1449 . . . . . 6 ((2 · ((sin‘(𝐴 / 2))↑2)) ∈ ℂ → ((1 − (2 · ((sin‘(𝐴 / 2))↑2))) = 1 ↔ (1 − 1) = (2 · ((sin‘(𝐴 / 2))↑2))))
1814, 17syl 17 . . . . 5 (𝐴 ∈ ℂ → ((1 − (2 · ((sin‘(𝐴 / 2))↑2))) = 1 ↔ (1 − 1) = (2 · ((sin‘(𝐴 / 2))↑2))))
19 eqcom 2831 . . . . . 6 ((1 − 1) = (2 · ((sin‘(𝐴 / 2))↑2)) ↔ (2 · ((sin‘(𝐴 / 2))↑2)) = (1 − 1))
20 1m1e0 11709 . . . . . . 7 (1 − 1) = 0
2120eqeq2i 2837 . . . . . 6 ((2 · ((sin‘(𝐴 / 2))↑2)) = (1 − 1) ↔ (2 · ((sin‘(𝐴 / 2))↑2)) = 0)
2219, 21bitri 278 . . . . 5 ((1 − 1) = (2 · ((sin‘(𝐴 / 2))↑2)) ↔ (2 · ((sin‘(𝐴 / 2))↑2)) = 0)
2318, 22syl6bb 290 . . . 4 (𝐴 ∈ ℂ → ((1 − (2 · ((sin‘(𝐴 / 2))↑2))) = 1 ↔ (2 · ((sin‘(𝐴 / 2))↑2)) = 0))
2410, 23bitrd 282 . . 3 (𝐴 ∈ ℂ → ((cos‘𝐴) = 1 ↔ (2 · ((sin‘(𝐴 / 2))↑2)) = 0))
25 mul0or 11279 . . . . 5 ((2 ∈ ℂ ∧ ((sin‘(𝐴 / 2))↑2) ∈ ℂ) → ((2 · ((sin‘(𝐴 / 2))↑2)) = 0 ↔ (2 = 0 ∨ ((sin‘(𝐴 / 2))↑2) = 0)))
261, 12, 25sylancr 590 . . . 4 (𝐴 ∈ ℂ → ((2 · ((sin‘(𝐴 / 2))↑2)) = 0 ↔ (2 = 0 ∨ ((sin‘(𝐴 / 2))↑2) = 0)))
272neii 3016 . . . . 5 ¬ 2 = 0
28 biorf 934 . . . . 5 (¬ 2 = 0 → (((sin‘(𝐴 / 2))↑2) = 0 ↔ (2 = 0 ∨ ((sin‘(𝐴 / 2))↑2) = 0)))
2927, 28ax-mp 5 . . . 4 (((sin‘(𝐴 / 2))↑2) = 0 ↔ (2 = 0 ∨ ((sin‘(𝐴 / 2))↑2) = 0))
3026, 29syl6bbr 292 . . 3 (𝐴 ∈ ℂ → ((2 · ((sin‘(𝐴 / 2))↑2)) = 0 ↔ ((sin‘(𝐴 / 2))↑2) = 0))
31 sqeq0 13494 . . . 4 ((sin‘(𝐴 / 2)) ∈ ℂ → (((sin‘(𝐴 / 2))↑2) = 0 ↔ (sin‘(𝐴 / 2)) = 0))
3211, 31syl 17 . . 3 (𝐴 ∈ ℂ → (((sin‘(𝐴 / 2))↑2) = 0 ↔ (sin‘(𝐴 / 2)) = 0))
3324, 30, 323bitrd 308 . 2 (𝐴 ∈ ℂ → ((cos‘𝐴) = 1 ↔ (sin‘(𝐴 / 2)) = 0))
34 sineq0 25122 . . 3 ((𝐴 / 2) ∈ ℂ → ((sin‘(𝐴 / 2)) = 0 ↔ ((𝐴 / 2) / π) ∈ ℤ))
356, 34syl 17 . 2 (𝐴 ∈ ℂ → ((sin‘(𝐴 / 2)) = 0 ↔ ((𝐴 / 2) / π) ∈ ℤ))
361, 2pm3.2i 474 . . . 4 (2 ∈ ℂ ∧ 2 ≠ 0)
37 picn 25058 . . . . 5 π ∈ ℂ
38 pire 25057 . . . . . 6 π ∈ ℝ
39 pipos 25059 . . . . . 6 0 < π
4038, 39gt0ne0ii 11175 . . . . 5 π ≠ 0
4137, 40pm3.2i 474 . . . 4 (π ∈ ℂ ∧ π ≠ 0)
42 divdiv1 11350 . . . 4 ((𝐴 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0) ∧ (π ∈ ℂ ∧ π ≠ 0)) → ((𝐴 / 2) / π) = (𝐴 / (2 · π)))
4336, 41, 42mp3an23 1450 . . 3 (𝐴 ∈ ℂ → ((𝐴 / 2) / π) = (𝐴 / (2 · π)))
4443eleq1d 2900 . 2 (𝐴 ∈ ℂ → (((𝐴 / 2) / π) ∈ ℤ ↔ (𝐴 / (2 · π)) ∈ ℤ))
4533, 35, 443bitrd 308 1 (𝐴 ∈ ℂ → ((cos‘𝐴) = 1 ↔ (𝐴 / (2 · π)) ∈ ℤ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 844   = wceq 1538  wcel 2115  wne 3014  cfv 6344  (class class class)co 7150  cc 10534  0cc0 10536  1c1 10537   · cmul 10541  cmin 10869   / cdiv 11296  2c2 11692  cz 11981  cexp 13437  sincsin 15420  cosccos 15421  πcpi 15423
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5177  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7456  ax-inf2 9102  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613  ax-pre-sup 10614  ax-addf 10615  ax-mulf 10616
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3483  df-sbc 3760  df-csb 3868  df-dif 3923  df-un 3925  df-in 3927  df-ss 3937  df-pss 3939  df-nul 4278  df-if 4452  df-pw 4525  df-sn 4552  df-pr 4554  df-tp 4556  df-op 4558  df-uni 4826  df-int 4864  df-iun 4908  df-iin 4909  df-br 5054  df-opab 5116  df-mpt 5134  df-tr 5160  df-id 5448  df-eprel 5453  df-po 5462  df-so 5463  df-fr 5502  df-se 5503  df-we 5504  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-pred 6136  df-ord 6182  df-on 6183  df-lim 6184  df-suc 6185  df-iota 6303  df-fun 6346  df-fn 6347  df-f 6348  df-f1 6349  df-fo 6350  df-f1o 6351  df-fv 6352  df-isom 6353  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7404  df-om 7576  df-1st 7685  df-2nd 7686  df-supp 7828  df-wrecs 7944  df-recs 8005  df-rdg 8043  df-1o 8099  df-2o 8100  df-oadd 8103  df-er 8286  df-map 8405  df-pm 8406  df-ixp 8459  df-en 8507  df-dom 8508  df-sdom 8509  df-fin 8510  df-fsupp 8832  df-fi 8873  df-sup 8904  df-inf 8905  df-oi 8972  df-card 9366  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-div 11297  df-nn 11638  df-2 11700  df-3 11701  df-4 11702  df-5 11703  df-6 11704  df-7 11705  df-8 11706  df-9 11707  df-n0 11898  df-z 11982  df-dec 12099  df-uz 12244  df-q 12349  df-rp 12390  df-xneg 12507  df-xadd 12508  df-xmul 12509  df-ioo 12742  df-ioc 12743  df-ico 12744  df-icc 12745  df-fz 12898  df-fzo 13041  df-fl 13169  df-mod 13245  df-seq 13377  df-exp 13438  df-fac 13642  df-bc 13671  df-hash 13699  df-shft 14429  df-cj 14461  df-re 14462  df-im 14463  df-sqrt 14597  df-abs 14598  df-limsup 14831  df-clim 14848  df-rlim 14849  df-sum 15046  df-ef 15424  df-sin 15426  df-cos 15427  df-pi 15429  df-struct 16488  df-ndx 16489  df-slot 16490  df-base 16492  df-sets 16493  df-ress 16494  df-plusg 16581  df-mulr 16582  df-starv 16583  df-sca 16584  df-vsca 16585  df-ip 16586  df-tset 16587  df-ple 16588  df-ds 16590  df-unif 16591  df-hom 16592  df-cco 16593  df-rest 16699  df-topn 16700  df-0g 16718  df-gsum 16719  df-topgen 16720  df-pt 16721  df-prds 16724  df-xrs 16778  df-qtop 16783  df-imas 16784  df-xps 16786  df-mre 16860  df-mrc 16861  df-acs 16863  df-mgm 17855  df-sgrp 17904  df-mnd 17915  df-submnd 17960  df-mulg 18228  df-cntz 18450  df-cmn 18911  df-psmet 20540  df-xmet 20541  df-met 20542  df-bl 20543  df-mopn 20544  df-fbas 20545  df-fg 20546  df-cnfld 20549  df-top 21505  df-topon 21522  df-topsp 21544  df-bases 21557  df-cld 21630  df-ntr 21631  df-cls 21632  df-nei 21709  df-lp 21747  df-perf 21748  df-cn 21838  df-cnp 21839  df-haus 21926  df-tx 22173  df-hmeo 22366  df-fil 22457  df-fm 22549  df-flim 22550  df-flf 22551  df-xms 22933  df-ms 22934  df-tms 22935  df-cncf 23489  df-limc 24475  df-dv 24476
This theorem is referenced by:  cos02pilt1  25124  taupilem1  34683  dirkertrigeqlem1  42667  dirkertrigeq  42670
  Copyright terms: Public domain W3C validator