| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > incsmflem | Structured version Visualization version GIF version | ||
| Description: A nondecreasing function is Borel measurable. Proposition 121D (c) of [Fremlin1] p. 36 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| incsmflem.x | ⊢ Ⅎ𝑥𝜑 |
| incsmflem.y | ⊢ Ⅎ𝑦𝜑 |
| incsmflem.a | ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
| incsmflem.f | ⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) |
| incsmflem.i | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≤ (𝐹‘𝑦))) |
| incsmflem.j | ⊢ 𝐽 = (topGen‘ran (,)) |
| incsmflem.b | ⊢ 𝐵 = (SalGen‘𝐽) |
| incsmflem.r | ⊢ (𝜑 → 𝑅 ∈ ℝ*) |
| incsmflem.l | ⊢ 𝑌 = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝑅} |
| incsmflem.c | ⊢ 𝐶 = sup(𝑌, ℝ*, < ) |
| incsmflem.d | ⊢ 𝐷 = (-∞(,)𝐶) |
| incsmflem.e | ⊢ 𝐸 = (-∞(,]𝐶) |
| Ref | Expression |
|---|---|
| incsmflem | ⊢ (𝜑 → ∃𝑏 ∈ 𝐵 𝑌 = (𝑏 ∩ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | incsmflem.e | . . . 4 ⊢ 𝐸 = (-∞(,]𝐶) | |
| 2 | mnfxr 11161 | . . . . . 6 ⊢ -∞ ∈ ℝ* | |
| 3 | 2 | a1i 11 | . . . . 5 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝑌) → -∞ ∈ ℝ*) |
| 4 | incsmflem.l | . . . . . . . . 9 ⊢ 𝑌 = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝑅} | |
| 5 | ssrab2 4028 | . . . . . . . . 9 ⊢ {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝑅} ⊆ 𝐴 | |
| 6 | 4, 5 | eqsstri 3979 | . . . . . . . 8 ⊢ 𝑌 ⊆ 𝐴 |
| 7 | 6 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → 𝑌 ⊆ 𝐴) |
| 8 | incsmflem.a | . . . . . . 7 ⊢ (𝜑 → 𝐴 ⊆ ℝ) | |
| 9 | 7, 8 | sstrd 3943 | . . . . . 6 ⊢ (𝜑 → 𝑌 ⊆ ℝ) |
| 10 | 9 | sselda 3932 | . . . . 5 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝑌) → 𝐶 ∈ ℝ) |
| 11 | incsmflem.j | . . . . 5 ⊢ 𝐽 = (topGen‘ran (,)) | |
| 12 | incsmflem.b | . . . . 5 ⊢ 𝐵 = (SalGen‘𝐽) | |
| 13 | 3, 10, 11, 12 | iocborel 46373 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝑌) → (-∞(,]𝐶) ∈ 𝐵) |
| 14 | 1, 13 | eqeltrid 2833 | . . 3 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝑌) → 𝐸 ∈ 𝐵) |
| 15 | incsmflem.x | . . . . 5 ⊢ Ⅎ𝑥𝜑 | |
| 16 | nfcv 2892 | . . . . . 6 ⊢ Ⅎ𝑥𝐶 | |
| 17 | nfrab1 3413 | . . . . . . 7 ⊢ Ⅎ𝑥{𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝑅} | |
| 18 | 4, 17 | nfcxfr 2890 | . . . . . 6 ⊢ Ⅎ𝑥𝑌 |
| 19 | 16, 18 | nfel 2907 | . . . . 5 ⊢ Ⅎ𝑥 𝐶 ∈ 𝑌 |
| 20 | 15, 19 | nfan 1900 | . . . 4 ⊢ Ⅎ𝑥(𝜑 ∧ 𝐶 ∈ 𝑌) |
| 21 | incsmflem.y | . . . . 5 ⊢ Ⅎ𝑦𝜑 | |
| 22 | nfv 1915 | . . . . 5 ⊢ Ⅎ𝑦 𝐶 ∈ 𝑌 | |
| 23 | 21, 22 | nfan 1900 | . . . 4 ⊢ Ⅎ𝑦(𝜑 ∧ 𝐶 ∈ 𝑌) |
| 24 | 8 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝑌) → 𝐴 ⊆ ℝ) |
| 25 | incsmflem.f | . . . . 5 ⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) | |
| 26 | 25 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝑌) → 𝐹:𝐴⟶ℝ*) |
| 27 | incsmflem.i | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≤ (𝐹‘𝑦))) | |
| 28 | 27 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝑌) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≤ (𝐹‘𝑦))) |
| 29 | incsmflem.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ ℝ*) | |
| 30 | 29 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝑌) → 𝑅 ∈ ℝ*) |
| 31 | incsmflem.c | . . . 4 ⊢ 𝐶 = sup(𝑌, ℝ*, < ) | |
| 32 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝑌) → 𝐶 ∈ 𝑌) | |
| 33 | 20, 23, 24, 26, 28, 30, 4, 31, 32, 1 | pimincfltioc 46733 | . . 3 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝑌) → 𝑌 = (𝐸 ∩ 𝐴)) |
| 34 | ineq1 4161 | . . . 4 ⊢ (𝑏 = 𝐸 → (𝑏 ∩ 𝐴) = (𝐸 ∩ 𝐴)) | |
| 35 | 34 | rspceeqv 3598 | . . 3 ⊢ ((𝐸 ∈ 𝐵 ∧ 𝑌 = (𝐸 ∩ 𝐴)) → ∃𝑏 ∈ 𝐵 𝑌 = (𝑏 ∩ 𝐴)) |
| 36 | 14, 33, 35 | syl2anc 584 | . 2 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝑌) → ∃𝑏 ∈ 𝐵 𝑌 = (𝑏 ∩ 𝐴)) |
| 37 | incsmflem.d | . . . . . 6 ⊢ 𝐷 = (-∞(,)𝐶) | |
| 38 | 11, 12 | iooborel 46368 | . . . . . 6 ⊢ (-∞(,)𝐶) ∈ 𝐵 |
| 39 | 37, 38 | eqeltri 2825 | . . . . 5 ⊢ 𝐷 ∈ 𝐵 |
| 40 | 39 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ 𝐵) |
| 41 | 40 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐶 ∈ 𝑌) → 𝐷 ∈ 𝐵) |
| 42 | 19 | nfn 1858 | . . . . 5 ⊢ Ⅎ𝑥 ¬ 𝐶 ∈ 𝑌 |
| 43 | 15, 42 | nfan 1900 | . . . 4 ⊢ Ⅎ𝑥(𝜑 ∧ ¬ 𝐶 ∈ 𝑌) |
| 44 | nfv 1915 | . . . . 5 ⊢ Ⅎ𝑦 ¬ 𝐶 ∈ 𝑌 | |
| 45 | 21, 44 | nfan 1900 | . . . 4 ⊢ Ⅎ𝑦(𝜑 ∧ ¬ 𝐶 ∈ 𝑌) |
| 46 | 8 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐶 ∈ 𝑌) → 𝐴 ⊆ ℝ) |
| 47 | 25 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐶 ∈ 𝑌) → 𝐹:𝐴⟶ℝ*) |
| 48 | 27 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐶 ∈ 𝑌) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≤ (𝐹‘𝑦))) |
| 49 | 29 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐶 ∈ 𝑌) → 𝑅 ∈ ℝ*) |
| 50 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐶 ∈ 𝑌) → ¬ 𝐶 ∈ 𝑌) | |
| 51 | 43, 45, 46, 47, 48, 49, 4, 31, 50, 37 | pimincfltioo 46735 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐶 ∈ 𝑌) → 𝑌 = (𝐷 ∩ 𝐴)) |
| 52 | ineq1 4161 | . . . 4 ⊢ (𝑏 = 𝐷 → (𝑏 ∩ 𝐴) = (𝐷 ∩ 𝐴)) | |
| 53 | 52 | rspceeqv 3598 | . . 3 ⊢ ((𝐷 ∈ 𝐵 ∧ 𝑌 = (𝐷 ∩ 𝐴)) → ∃𝑏 ∈ 𝐵 𝑌 = (𝑏 ∩ 𝐴)) |
| 54 | 41, 51, 53 | syl2anc 584 | . 2 ⊢ ((𝜑 ∧ ¬ 𝐶 ∈ 𝑌) → ∃𝑏 ∈ 𝐵 𝑌 = (𝑏 ∩ 𝐴)) |
| 55 | 36, 54 | pm2.61dan 812 | 1 ⊢ (𝜑 → ∃𝑏 ∈ 𝐵 𝑌 = (𝑏 ∩ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 Ⅎwnf 1784 ∈ wcel 2110 ∀wral 3045 ∃wrex 3054 {crab 3393 ∩ cin 3899 ⊆ wss 3900 class class class wbr 5089 ran crn 5615 ⟶wf 6473 ‘cfv 6477 (class class class)co 7341 supcsup 9319 ℝcr 10997 -∞cmnf 11136 ℝ*cxr 11137 < clt 11138 ≤ cle 11139 (,)cioo 13237 (,]cioc 13238 topGenctg 17333 SalGencsalgen 46329 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-inf2 9526 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 ax-pre-sup 11076 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-int 4896 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-isom 6486 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-map 8747 df-en 8865 df-dom 8866 df-sdom 8867 df-sup 9321 df-inf 9322 df-card 9824 df-acn 9827 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-div 11767 df-nn 12118 df-n0 12374 df-z 12461 df-uz 12725 df-q 12839 df-rp 12883 df-ioo 13241 df-ioc 13242 df-fl 13688 df-topgen 17339 df-top 22802 df-bases 22854 df-salg 46326 df-salgen 46330 |
| This theorem is referenced by: incsmf 46759 |
| Copyright terms: Public domain | W3C validator |