Step | Hyp | Ref
| Expression |
1 | | incsmflem.e |
. . . 4
β’ πΈ = (-β(,]πΆ) |
2 | | mnfxr 11271 |
. . . . . 6
β’ -β
β β* |
3 | 2 | a1i 11 |
. . . . 5
β’ ((π β§ πΆ β π) β -β β
β*) |
4 | | incsmflem.l |
. . . . . . . . 9
β’ π = {π₯ β π΄ β£ (πΉβπ₯) < π
} |
5 | | ssrab2 4078 |
. . . . . . . . 9
β’ {π₯ β π΄ β£ (πΉβπ₯) < π
} β π΄ |
6 | 4, 5 | eqsstri 4017 |
. . . . . . . 8
β’ π β π΄ |
7 | 6 | a1i 11 |
. . . . . . 7
β’ (π β π β π΄) |
8 | | incsmflem.a |
. . . . . . 7
β’ (π β π΄ β β) |
9 | 7, 8 | sstrd 3993 |
. . . . . 6
β’ (π β π β β) |
10 | 9 | sselda 3983 |
. . . . 5
β’ ((π β§ πΆ β π) β πΆ β β) |
11 | | incsmflem.j |
. . . . 5
β’ π½ = (topGenβran
(,)) |
12 | | incsmflem.b |
. . . . 5
β’ π΅ = (SalGenβπ½) |
13 | 3, 10, 11, 12 | iocborel 45072 |
. . . 4
β’ ((π β§ πΆ β π) β (-β(,]πΆ) β π΅) |
14 | 1, 13 | eqeltrid 2838 |
. . 3
β’ ((π β§ πΆ β π) β πΈ β π΅) |
15 | | incsmflem.x |
. . . . 5
β’
β²π₯π |
16 | | nfcv 2904 |
. . . . . 6
β’
β²π₯πΆ |
17 | | nfrab1 3452 |
. . . . . . 7
β’
β²π₯{π₯ β π΄ β£ (πΉβπ₯) < π
} |
18 | 4, 17 | nfcxfr 2902 |
. . . . . 6
β’
β²π₯π |
19 | 16, 18 | nfel 2918 |
. . . . 5
β’
β²π₯ πΆ β π |
20 | 15, 19 | nfan 1903 |
. . . 4
β’
β²π₯(π β§ πΆ β π) |
21 | | incsmflem.y |
. . . . 5
β’
β²π¦π |
22 | | nfv 1918 |
. . . . 5
β’
β²π¦ πΆ β π |
23 | 21, 22 | nfan 1903 |
. . . 4
β’
β²π¦(π β§ πΆ β π) |
24 | 8 | adantr 482 |
. . . 4
β’ ((π β§ πΆ β π) β π΄ β β) |
25 | | incsmflem.f |
. . . . 5
β’ (π β πΉ:π΄βΆβ*) |
26 | 25 | adantr 482 |
. . . 4
β’ ((π β§ πΆ β π) β πΉ:π΄βΆβ*) |
27 | | incsmflem.i |
. . . . 5
β’ (π β βπ₯ β π΄ βπ¦ β π΄ (π₯ β€ π¦ β (πΉβπ₯) β€ (πΉβπ¦))) |
28 | 27 | adantr 482 |
. . . 4
β’ ((π β§ πΆ β π) β βπ₯ β π΄ βπ¦ β π΄ (π₯ β€ π¦ β (πΉβπ₯) β€ (πΉβπ¦))) |
29 | | incsmflem.r |
. . . . 5
β’ (π β π
β
β*) |
30 | 29 | adantr 482 |
. . . 4
β’ ((π β§ πΆ β π) β π
β
β*) |
31 | | incsmflem.c |
. . . 4
β’ πΆ = sup(π, β*, <
) |
32 | | simpr 486 |
. . . 4
β’ ((π β§ πΆ β π) β πΆ β π) |
33 | 20, 23, 24, 26, 28, 30, 4, 31, 32, 1 | pimincfltioc 45432 |
. . 3
β’ ((π β§ πΆ β π) β π = (πΈ β© π΄)) |
34 | | ineq1 4206 |
. . . 4
β’ (π = πΈ β (π β© π΄) = (πΈ β© π΄)) |
35 | 34 | rspceeqv 3634 |
. . 3
β’ ((πΈ β π΅ β§ π = (πΈ β© π΄)) β βπ β π΅ π = (π β© π΄)) |
36 | 14, 33, 35 | syl2anc 585 |
. 2
β’ ((π β§ πΆ β π) β βπ β π΅ π = (π β© π΄)) |
37 | | incsmflem.d |
. . . . . 6
β’ π· = (-β(,)πΆ) |
38 | 11, 12 | iooborel 45067 |
. . . . . 6
β’
(-β(,)πΆ)
β π΅ |
39 | 37, 38 | eqeltri 2830 |
. . . . 5
β’ π· β π΅ |
40 | 39 | a1i 11 |
. . . 4
β’ (π β π· β π΅) |
41 | 40 | adantr 482 |
. . 3
β’ ((π β§ Β¬ πΆ β π) β π· β π΅) |
42 | 19 | nfn 1861 |
. . . . 5
β’
β²π₯ Β¬ πΆ β π |
43 | 15, 42 | nfan 1903 |
. . . 4
β’
β²π₯(π β§ Β¬ πΆ β π) |
44 | | nfv 1918 |
. . . . 5
β’
β²π¦ Β¬ πΆ β π |
45 | 21, 44 | nfan 1903 |
. . . 4
β’
β²π¦(π β§ Β¬ πΆ β π) |
46 | 8 | adantr 482 |
. . . 4
β’ ((π β§ Β¬ πΆ β π) β π΄ β β) |
47 | 25 | adantr 482 |
. . . 4
β’ ((π β§ Β¬ πΆ β π) β πΉ:π΄βΆβ*) |
48 | 27 | adantr 482 |
. . . 4
β’ ((π β§ Β¬ πΆ β π) β βπ₯ β π΄ βπ¦ β π΄ (π₯ β€ π¦ β (πΉβπ₯) β€ (πΉβπ¦))) |
49 | 29 | adantr 482 |
. . . 4
β’ ((π β§ Β¬ πΆ β π) β π
β
β*) |
50 | | simpr 486 |
. . . 4
β’ ((π β§ Β¬ πΆ β π) β Β¬ πΆ β π) |
51 | 43, 45, 46, 47, 48, 49, 4, 31, 50, 37 | pimincfltioo 45434 |
. . 3
β’ ((π β§ Β¬ πΆ β π) β π = (π· β© π΄)) |
52 | | ineq1 4206 |
. . . 4
β’ (π = π· β (π β© π΄) = (π· β© π΄)) |
53 | 52 | rspceeqv 3634 |
. . 3
β’ ((π· β π΅ β§ π = (π· β© π΄)) β βπ β π΅ π = (π β© π΄)) |
54 | 41, 51, 53 | syl2anc 585 |
. 2
β’ ((π β§ Β¬ πΆ β π) β βπ β π΅ π = (π β© π΄)) |
55 | 36, 54 | pm2.61dan 812 |
1
β’ (π β βπ β π΅ π = (π β© π΄)) |