| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > incsmflem | Structured version Visualization version GIF version | ||
| Description: A nondecreasing function is Borel measurable. Proposition 121D (c) of [Fremlin1] p. 36 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| incsmflem.x | ⊢ Ⅎ𝑥𝜑 |
| incsmflem.y | ⊢ Ⅎ𝑦𝜑 |
| incsmflem.a | ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
| incsmflem.f | ⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) |
| incsmflem.i | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≤ (𝐹‘𝑦))) |
| incsmflem.j | ⊢ 𝐽 = (topGen‘ran (,)) |
| incsmflem.b | ⊢ 𝐵 = (SalGen‘𝐽) |
| incsmflem.r | ⊢ (𝜑 → 𝑅 ∈ ℝ*) |
| incsmflem.l | ⊢ 𝑌 = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝑅} |
| incsmflem.c | ⊢ 𝐶 = sup(𝑌, ℝ*, < ) |
| incsmflem.d | ⊢ 𝐷 = (-∞(,)𝐶) |
| incsmflem.e | ⊢ 𝐸 = (-∞(,]𝐶) |
| Ref | Expression |
|---|---|
| incsmflem | ⊢ (𝜑 → ∃𝑏 ∈ 𝐵 𝑌 = (𝑏 ∩ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | incsmflem.e | . . . 4 ⊢ 𝐸 = (-∞(,]𝐶) | |
| 2 | mnfxr 11290 | . . . . . 6 ⊢ -∞ ∈ ℝ* | |
| 3 | 2 | a1i 11 | . . . . 5 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝑌) → -∞ ∈ ℝ*) |
| 4 | incsmflem.l | . . . . . . . . 9 ⊢ 𝑌 = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝑅} | |
| 5 | ssrab2 4055 | . . . . . . . . 9 ⊢ {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝑅} ⊆ 𝐴 | |
| 6 | 4, 5 | eqsstri 4005 | . . . . . . . 8 ⊢ 𝑌 ⊆ 𝐴 |
| 7 | 6 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → 𝑌 ⊆ 𝐴) |
| 8 | incsmflem.a | . . . . . . 7 ⊢ (𝜑 → 𝐴 ⊆ ℝ) | |
| 9 | 7, 8 | sstrd 3969 | . . . . . 6 ⊢ (𝜑 → 𝑌 ⊆ ℝ) |
| 10 | 9 | sselda 3958 | . . . . 5 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝑌) → 𝐶 ∈ ℝ) |
| 11 | incsmflem.j | . . . . 5 ⊢ 𝐽 = (topGen‘ran (,)) | |
| 12 | incsmflem.b | . . . . 5 ⊢ 𝐵 = (SalGen‘𝐽) | |
| 13 | 3, 10, 11, 12 | iocborel 46333 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝑌) → (-∞(,]𝐶) ∈ 𝐵) |
| 14 | 1, 13 | eqeltrid 2838 | . . 3 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝑌) → 𝐸 ∈ 𝐵) |
| 15 | incsmflem.x | . . . . 5 ⊢ Ⅎ𝑥𝜑 | |
| 16 | nfcv 2898 | . . . . . 6 ⊢ Ⅎ𝑥𝐶 | |
| 17 | nfrab1 3436 | . . . . . . 7 ⊢ Ⅎ𝑥{𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝑅} | |
| 18 | 4, 17 | nfcxfr 2896 | . . . . . 6 ⊢ Ⅎ𝑥𝑌 |
| 19 | 16, 18 | nfel 2913 | . . . . 5 ⊢ Ⅎ𝑥 𝐶 ∈ 𝑌 |
| 20 | 15, 19 | nfan 1899 | . . . 4 ⊢ Ⅎ𝑥(𝜑 ∧ 𝐶 ∈ 𝑌) |
| 21 | incsmflem.y | . . . . 5 ⊢ Ⅎ𝑦𝜑 | |
| 22 | nfv 1914 | . . . . 5 ⊢ Ⅎ𝑦 𝐶 ∈ 𝑌 | |
| 23 | 21, 22 | nfan 1899 | . . . 4 ⊢ Ⅎ𝑦(𝜑 ∧ 𝐶 ∈ 𝑌) |
| 24 | 8 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝑌) → 𝐴 ⊆ ℝ) |
| 25 | incsmflem.f | . . . . 5 ⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) | |
| 26 | 25 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝑌) → 𝐹:𝐴⟶ℝ*) |
| 27 | incsmflem.i | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≤ (𝐹‘𝑦))) | |
| 28 | 27 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝑌) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≤ (𝐹‘𝑦))) |
| 29 | incsmflem.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ ℝ*) | |
| 30 | 29 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝑌) → 𝑅 ∈ ℝ*) |
| 31 | incsmflem.c | . . . 4 ⊢ 𝐶 = sup(𝑌, ℝ*, < ) | |
| 32 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝑌) → 𝐶 ∈ 𝑌) | |
| 33 | 20, 23, 24, 26, 28, 30, 4, 31, 32, 1 | pimincfltioc 46693 | . . 3 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝑌) → 𝑌 = (𝐸 ∩ 𝐴)) |
| 34 | ineq1 4188 | . . . 4 ⊢ (𝑏 = 𝐸 → (𝑏 ∩ 𝐴) = (𝐸 ∩ 𝐴)) | |
| 35 | 34 | rspceeqv 3624 | . . 3 ⊢ ((𝐸 ∈ 𝐵 ∧ 𝑌 = (𝐸 ∩ 𝐴)) → ∃𝑏 ∈ 𝐵 𝑌 = (𝑏 ∩ 𝐴)) |
| 36 | 14, 33, 35 | syl2anc 584 | . 2 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝑌) → ∃𝑏 ∈ 𝐵 𝑌 = (𝑏 ∩ 𝐴)) |
| 37 | incsmflem.d | . . . . . 6 ⊢ 𝐷 = (-∞(,)𝐶) | |
| 38 | 11, 12 | iooborel 46328 | . . . . . 6 ⊢ (-∞(,)𝐶) ∈ 𝐵 |
| 39 | 37, 38 | eqeltri 2830 | . . . . 5 ⊢ 𝐷 ∈ 𝐵 |
| 40 | 39 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ 𝐵) |
| 41 | 40 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐶 ∈ 𝑌) → 𝐷 ∈ 𝐵) |
| 42 | 19 | nfn 1857 | . . . . 5 ⊢ Ⅎ𝑥 ¬ 𝐶 ∈ 𝑌 |
| 43 | 15, 42 | nfan 1899 | . . . 4 ⊢ Ⅎ𝑥(𝜑 ∧ ¬ 𝐶 ∈ 𝑌) |
| 44 | nfv 1914 | . . . . 5 ⊢ Ⅎ𝑦 ¬ 𝐶 ∈ 𝑌 | |
| 45 | 21, 44 | nfan 1899 | . . . 4 ⊢ Ⅎ𝑦(𝜑 ∧ ¬ 𝐶 ∈ 𝑌) |
| 46 | 8 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐶 ∈ 𝑌) → 𝐴 ⊆ ℝ) |
| 47 | 25 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐶 ∈ 𝑌) → 𝐹:𝐴⟶ℝ*) |
| 48 | 27 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐶 ∈ 𝑌) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≤ (𝐹‘𝑦))) |
| 49 | 29 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐶 ∈ 𝑌) → 𝑅 ∈ ℝ*) |
| 50 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐶 ∈ 𝑌) → ¬ 𝐶 ∈ 𝑌) | |
| 51 | 43, 45, 46, 47, 48, 49, 4, 31, 50, 37 | pimincfltioo 46695 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐶 ∈ 𝑌) → 𝑌 = (𝐷 ∩ 𝐴)) |
| 52 | ineq1 4188 | . . . 4 ⊢ (𝑏 = 𝐷 → (𝑏 ∩ 𝐴) = (𝐷 ∩ 𝐴)) | |
| 53 | 52 | rspceeqv 3624 | . . 3 ⊢ ((𝐷 ∈ 𝐵 ∧ 𝑌 = (𝐷 ∩ 𝐴)) → ∃𝑏 ∈ 𝐵 𝑌 = (𝑏 ∩ 𝐴)) |
| 54 | 41, 51, 53 | syl2anc 584 | . 2 ⊢ ((𝜑 ∧ ¬ 𝐶 ∈ 𝑌) → ∃𝑏 ∈ 𝐵 𝑌 = (𝑏 ∩ 𝐴)) |
| 55 | 36, 54 | pm2.61dan 812 | 1 ⊢ (𝜑 → ∃𝑏 ∈ 𝐵 𝑌 = (𝑏 ∩ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2108 ∀wral 3051 ∃wrex 3060 {crab 3415 ∩ cin 3925 ⊆ wss 3926 class class class wbr 5119 ran crn 5655 ⟶wf 6526 ‘cfv 6530 (class class class)co 7403 supcsup 9450 ℝcr 11126 -∞cmnf 11265 ℝ*cxr 11266 < clt 11267 ≤ cle 11268 (,)cioo 13360 (,]cioc 13361 topGenctg 17449 SalGencsalgen 46289 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-inf2 9653 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 ax-pre-sup 11205 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-iin 4970 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-isom 6539 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-1st 7986 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-er 8717 df-map 8840 df-en 8958 df-dom 8959 df-sdom 8960 df-sup 9452 df-inf 9453 df-card 9951 df-acn 9954 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-div 11893 df-nn 12239 df-n0 12500 df-z 12587 df-uz 12851 df-q 12963 df-rp 13007 df-ioo 13364 df-ioc 13365 df-fl 13807 df-topgen 17455 df-top 22830 df-bases 22882 df-salg 46286 df-salgen 46290 |
| This theorem is referenced by: incsmf 46719 |
| Copyright terms: Public domain | W3C validator |