Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  incsmflem Structured version   Visualization version   GIF version

Theorem incsmflem 46732
Description: A nondecreasing function is Borel measurable. Proposition 121D (c) of [Fremlin1] p. 36 . (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
incsmflem.x 𝑥𝜑
incsmflem.y 𝑦𝜑
incsmflem.a (𝜑𝐴 ⊆ ℝ)
incsmflem.f (𝜑𝐹:𝐴⟶ℝ*)
incsmflem.i (𝜑 → ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑥) ≤ (𝐹𝑦)))
incsmflem.j 𝐽 = (topGen‘ran (,))
incsmflem.b 𝐵 = (SalGen‘𝐽)
incsmflem.r (𝜑𝑅 ∈ ℝ*)
incsmflem.l 𝑌 = {𝑥𝐴 ∣ (𝐹𝑥) < 𝑅}
incsmflem.c 𝐶 = sup(𝑌, ℝ*, < )
incsmflem.d 𝐷 = (-∞(,)𝐶)
incsmflem.e 𝐸 = (-∞(,]𝐶)
Assertion
Ref Expression
incsmflem (𝜑 → ∃𝑏𝐵 𝑌 = (𝑏𝐴))
Distinct variable groups:   𝐴,𝑏   𝑥,𝐴,𝑦   𝐵,𝑏   𝑥,𝐶,𝑦   𝐷,𝑏   𝑥,𝐷,𝑦   𝐸,𝑏   𝑥,𝐸,𝑦   𝑥,𝐹,𝑦   𝑥,𝑅,𝑦   𝑌,𝑏   𝑦,𝑌
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑏)   𝐵(𝑥,𝑦)   𝐶(𝑏)   𝑅(𝑏)   𝐹(𝑏)   𝐽(𝑥,𝑦,𝑏)   𝑌(𝑥)

Proof of Theorem incsmflem
StepHypRef Expression
1 incsmflem.e . . . 4 𝐸 = (-∞(,]𝐶)
2 mnfxr 11237 . . . . . 6 -∞ ∈ ℝ*
32a1i 11 . . . . 5 ((𝜑𝐶𝑌) → -∞ ∈ ℝ*)
4 incsmflem.l . . . . . . . . 9 𝑌 = {𝑥𝐴 ∣ (𝐹𝑥) < 𝑅}
5 ssrab2 4045 . . . . . . . . 9 {𝑥𝐴 ∣ (𝐹𝑥) < 𝑅} ⊆ 𝐴
64, 5eqsstri 3995 . . . . . . . 8 𝑌𝐴
76a1i 11 . . . . . . 7 (𝜑𝑌𝐴)
8 incsmflem.a . . . . . . 7 (𝜑𝐴 ⊆ ℝ)
97, 8sstrd 3959 . . . . . 6 (𝜑𝑌 ⊆ ℝ)
109sselda 3948 . . . . 5 ((𝜑𝐶𝑌) → 𝐶 ∈ ℝ)
11 incsmflem.j . . . . 5 𝐽 = (topGen‘ran (,))
12 incsmflem.b . . . . 5 𝐵 = (SalGen‘𝐽)
133, 10, 11, 12iocborel 46347 . . . 4 ((𝜑𝐶𝑌) → (-∞(,]𝐶) ∈ 𝐵)
141, 13eqeltrid 2833 . . 3 ((𝜑𝐶𝑌) → 𝐸𝐵)
15 incsmflem.x . . . . 5 𝑥𝜑
16 nfcv 2892 . . . . . 6 𝑥𝐶
17 nfrab1 3429 . . . . . . 7 𝑥{𝑥𝐴 ∣ (𝐹𝑥) < 𝑅}
184, 17nfcxfr 2890 . . . . . 6 𝑥𝑌
1916, 18nfel 2907 . . . . 5 𝑥 𝐶𝑌
2015, 19nfan 1899 . . . 4 𝑥(𝜑𝐶𝑌)
21 incsmflem.y . . . . 5 𝑦𝜑
22 nfv 1914 . . . . 5 𝑦 𝐶𝑌
2321, 22nfan 1899 . . . 4 𝑦(𝜑𝐶𝑌)
248adantr 480 . . . 4 ((𝜑𝐶𝑌) → 𝐴 ⊆ ℝ)
25 incsmflem.f . . . . 5 (𝜑𝐹:𝐴⟶ℝ*)
2625adantr 480 . . . 4 ((𝜑𝐶𝑌) → 𝐹:𝐴⟶ℝ*)
27 incsmflem.i . . . . 5 (𝜑 → ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑥) ≤ (𝐹𝑦)))
2827adantr 480 . . . 4 ((𝜑𝐶𝑌) → ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑥) ≤ (𝐹𝑦)))
29 incsmflem.r . . . . 5 (𝜑𝑅 ∈ ℝ*)
3029adantr 480 . . . 4 ((𝜑𝐶𝑌) → 𝑅 ∈ ℝ*)
31 incsmflem.c . . . 4 𝐶 = sup(𝑌, ℝ*, < )
32 simpr 484 . . . 4 ((𝜑𝐶𝑌) → 𝐶𝑌)
3320, 23, 24, 26, 28, 30, 4, 31, 32, 1pimincfltioc 46707 . . 3 ((𝜑𝐶𝑌) → 𝑌 = (𝐸𝐴))
34 ineq1 4178 . . . 4 (𝑏 = 𝐸 → (𝑏𝐴) = (𝐸𝐴))
3534rspceeqv 3614 . . 3 ((𝐸𝐵𝑌 = (𝐸𝐴)) → ∃𝑏𝐵 𝑌 = (𝑏𝐴))
3614, 33, 35syl2anc 584 . 2 ((𝜑𝐶𝑌) → ∃𝑏𝐵 𝑌 = (𝑏𝐴))
37 incsmflem.d . . . . . 6 𝐷 = (-∞(,)𝐶)
3811, 12iooborel 46342 . . . . . 6 (-∞(,)𝐶) ∈ 𝐵
3937, 38eqeltri 2825 . . . . 5 𝐷𝐵
4039a1i 11 . . . 4 (𝜑𝐷𝐵)
4140adantr 480 . . 3 ((𝜑 ∧ ¬ 𝐶𝑌) → 𝐷𝐵)
4219nfn 1857 . . . . 5 𝑥 ¬ 𝐶𝑌
4315, 42nfan 1899 . . . 4 𝑥(𝜑 ∧ ¬ 𝐶𝑌)
44 nfv 1914 . . . . 5 𝑦 ¬ 𝐶𝑌
4521, 44nfan 1899 . . . 4 𝑦(𝜑 ∧ ¬ 𝐶𝑌)
468adantr 480 . . . 4 ((𝜑 ∧ ¬ 𝐶𝑌) → 𝐴 ⊆ ℝ)
4725adantr 480 . . . 4 ((𝜑 ∧ ¬ 𝐶𝑌) → 𝐹:𝐴⟶ℝ*)
4827adantr 480 . . . 4 ((𝜑 ∧ ¬ 𝐶𝑌) → ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑥) ≤ (𝐹𝑦)))
4929adantr 480 . . . 4 ((𝜑 ∧ ¬ 𝐶𝑌) → 𝑅 ∈ ℝ*)
50 simpr 484 . . . 4 ((𝜑 ∧ ¬ 𝐶𝑌) → ¬ 𝐶𝑌)
5143, 45, 46, 47, 48, 49, 4, 31, 50, 37pimincfltioo 46709 . . 3 ((𝜑 ∧ ¬ 𝐶𝑌) → 𝑌 = (𝐷𝐴))
52 ineq1 4178 . . . 4 (𝑏 = 𝐷 → (𝑏𝐴) = (𝐷𝐴))
5352rspceeqv 3614 . . 3 ((𝐷𝐵𝑌 = (𝐷𝐴)) → ∃𝑏𝐵 𝑌 = (𝑏𝐴))
5441, 51, 53syl2anc 584 . 2 ((𝜑 ∧ ¬ 𝐶𝑌) → ∃𝑏𝐵 𝑌 = (𝑏𝐴))
5536, 54pm2.61dan 812 1 (𝜑 → ∃𝑏𝐵 𝑌 = (𝑏𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wnf 1783  wcel 2109  wral 3045  wrex 3054  {crab 3408  cin 3915  wss 3916   class class class wbr 5109  ran crn 5641  wf 6509  cfv 6513  (class class class)co 7389  supcsup 9397  cr 11073  -∞cmnf 11212  *cxr 11213   < clt 11214  cle 11215  (,)cioo 13312  (,]cioc 13313  topGenctg 17406  SalGencsalgen 46303
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-inf2 9600  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151  ax-pre-sup 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-int 4913  df-iun 4959  df-iin 4960  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-se 5594  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-isom 6522  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-om 7845  df-1st 7970  df-2nd 7971  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-er 8673  df-map 8803  df-en 8921  df-dom 8922  df-sdom 8923  df-sup 9399  df-inf 9400  df-card 9898  df-acn 9901  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-div 11842  df-nn 12188  df-n0 12449  df-z 12536  df-uz 12800  df-q 12914  df-rp 12958  df-ioo 13316  df-ioc 13317  df-fl 13760  df-topgen 17412  df-top 22787  df-bases 22839  df-salg 46300  df-salgen 46304
This theorem is referenced by:  incsmf  46733
  Copyright terms: Public domain W3C validator