![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nmsub | Structured version Visualization version GIF version |
Description: The norm of the difference between two elements. (Contributed by Mario Carneiro, 4-Oct-2015.) |
Ref | Expression |
---|---|
nmf.x | ⊢ 𝑋 = (Base‘𝐺) |
nmf.n | ⊢ 𝑁 = (norm‘𝐺) |
nmmtri.m | ⊢ − = (-g‘𝐺) |
Ref | Expression |
---|---|
nmsub | ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑁‘(𝐴 − 𝐵)) = (𝑁‘(𝐵 − 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1167 | . . . . 5 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 𝐺 ∈ NrmGrp) | |
2 | ngpgrp 22735 | . . . . 5 ⊢ (𝐺 ∈ NrmGrp → 𝐺 ∈ Grp) | |
3 | 1, 2 | syl 17 | . . . 4 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 𝐺 ∈ Grp) |
4 | simp3 1169 | . . . 4 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 𝐵 ∈ 𝑋) | |
5 | simp2 1168 | . . . 4 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 𝐴 ∈ 𝑋) | |
6 | nmf.x | . . . . 5 ⊢ 𝑋 = (Base‘𝐺) | |
7 | nmmtri.m | . . . . 5 ⊢ − = (-g‘𝐺) | |
8 | eqid 2803 | . . . . 5 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
9 | 6, 7, 8 | grpinvsub 17817 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → ((invg‘𝐺)‘(𝐵 − 𝐴)) = (𝐴 − 𝐵)) |
10 | 3, 4, 5, 9 | syl3anc 1491 | . . 3 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((invg‘𝐺)‘(𝐵 − 𝐴)) = (𝐴 − 𝐵)) |
11 | 10 | fveq2d 6419 | . 2 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑁‘((invg‘𝐺)‘(𝐵 − 𝐴))) = (𝑁‘(𝐴 − 𝐵))) |
12 | 6, 7 | grpsubcl 17815 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → (𝐵 − 𝐴) ∈ 𝑋) |
13 | 3, 4, 5, 12 | syl3anc 1491 | . . 3 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐵 − 𝐴) ∈ 𝑋) |
14 | nmf.n | . . . 4 ⊢ 𝑁 = (norm‘𝐺) | |
15 | 6, 14, 8 | nminv 22757 | . . 3 ⊢ ((𝐺 ∈ NrmGrp ∧ (𝐵 − 𝐴) ∈ 𝑋) → (𝑁‘((invg‘𝐺)‘(𝐵 − 𝐴))) = (𝑁‘(𝐵 − 𝐴))) |
16 | 1, 13, 15 | syl2anc 580 | . 2 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑁‘((invg‘𝐺)‘(𝐵 − 𝐴))) = (𝑁‘(𝐵 − 𝐴))) |
17 | 11, 16 | eqtr3d 2839 | 1 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑁‘(𝐴 − 𝐵)) = (𝑁‘(𝐵 − 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1108 = wceq 1653 ∈ wcel 2157 ‘cfv 6105 (class class class)co 6882 Basecbs 16188 Grpcgrp 17742 invgcminusg 17743 -gcsg 17744 normcnm 22713 NrmGrpcngp 22714 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2379 ax-ext 2781 ax-rep 4968 ax-sep 4979 ax-nul 4987 ax-pow 5039 ax-pr 5101 ax-un 7187 ax-cnex 10284 ax-resscn 10285 ax-1cn 10286 ax-icn 10287 ax-addcl 10288 ax-addrcl 10289 ax-mulcl 10290 ax-mulrcl 10291 ax-mulcom 10292 ax-addass 10293 ax-mulass 10294 ax-distr 10295 ax-i2m1 10296 ax-1ne0 10297 ax-1rid 10298 ax-rnegex 10299 ax-rrecex 10300 ax-cnre 10301 ax-pre-lttri 10302 ax-pre-lttrn 10303 ax-pre-ltadd 10304 ax-pre-mulgt0 10305 ax-pre-sup 10306 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2593 df-eu 2611 df-clab 2790 df-cleq 2796 df-clel 2799 df-nfc 2934 df-ne 2976 df-nel 3079 df-ral 3098 df-rex 3099 df-reu 3100 df-rmo 3101 df-rab 3102 df-v 3391 df-sbc 3638 df-csb 3733 df-dif 3776 df-un 3778 df-in 3780 df-ss 3787 df-pss 3789 df-nul 4120 df-if 4282 df-pw 4355 df-sn 4373 df-pr 4375 df-tp 4377 df-op 4379 df-uni 4633 df-iun 4716 df-br 4848 df-opab 4910 df-mpt 4927 df-tr 4950 df-id 5224 df-eprel 5229 df-po 5237 df-so 5238 df-fr 5275 df-we 5277 df-xp 5322 df-rel 5323 df-cnv 5324 df-co 5325 df-dm 5326 df-rn 5327 df-res 5328 df-ima 5329 df-pred 5902 df-ord 5948 df-on 5949 df-lim 5950 df-suc 5951 df-iota 6068 df-fun 6107 df-fn 6108 df-f 6109 df-f1 6110 df-fo 6111 df-f1o 6112 df-fv 6113 df-riota 6843 df-ov 6885 df-oprab 6886 df-mpt2 6887 df-om 7304 df-1st 7405 df-2nd 7406 df-wrecs 7649 df-recs 7711 df-rdg 7749 df-er 7986 df-map 8101 df-en 8200 df-dom 8201 df-sdom 8202 df-sup 8594 df-inf 8595 df-pnf 10369 df-mnf 10370 df-xr 10371 df-ltxr 10372 df-le 10373 df-sub 10562 df-neg 10563 df-div 10981 df-nn 11317 df-2 11380 df-n0 11585 df-z 11671 df-uz 11935 df-q 12038 df-rp 12079 df-xneg 12197 df-xadd 12198 df-xmul 12199 df-0g 16421 df-topgen 16423 df-mgm 17561 df-sgrp 17603 df-mnd 17614 df-grp 17745 df-minusg 17746 df-sbg 17747 df-psmet 20064 df-xmet 20065 df-met 20066 df-bl 20067 df-mopn 20068 df-top 21031 df-topon 21048 df-topsp 21070 df-bases 21083 df-xms 22457 df-ms 22458 df-nm 22719 df-ngp 22720 |
This theorem is referenced by: ncvsdif 23286 |
Copyright terms: Public domain | W3C validator |