MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmsub Structured version   Visualization version   GIF version

Theorem nmsub 23377
Description: The norm of the difference between two elements. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypotheses
Ref Expression
nmf.x 𝑋 = (Base‘𝐺)
nmf.n 𝑁 = (norm‘𝐺)
nmmtri.m = (-g𝐺)
Assertion
Ref Expression
nmsub ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴 𝐵)) = (𝑁‘(𝐵 𝐴)))

Proof of Theorem nmsub
StepHypRef Expression
1 simp1 1137 . . . . 5 ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋𝐵𝑋) → 𝐺 ∈ NrmGrp)
2 ngpgrp 23353 . . . . 5 (𝐺 ∈ NrmGrp → 𝐺 ∈ Grp)
31, 2syl 17 . . . 4 ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋𝐵𝑋) → 𝐺 ∈ Grp)
4 simp3 1139 . . . 4 ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋𝐵𝑋) → 𝐵𝑋)
5 simp2 1138 . . . 4 ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋𝐵𝑋) → 𝐴𝑋)
6 nmf.x . . . . 5 𝑋 = (Base‘𝐺)
7 nmmtri.m . . . . 5 = (-g𝐺)
8 eqid 2738 . . . . 5 (invg𝐺) = (invg𝐺)
96, 7, 8grpinvsub 18300 . . . 4 ((𝐺 ∈ Grp ∧ 𝐵𝑋𝐴𝑋) → ((invg𝐺)‘(𝐵 𝐴)) = (𝐴 𝐵))
103, 4, 5, 9syl3anc 1372 . . 3 ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋𝐵𝑋) → ((invg𝐺)‘(𝐵 𝐴)) = (𝐴 𝐵))
1110fveq2d 6679 . 2 ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘((invg𝐺)‘(𝐵 𝐴))) = (𝑁‘(𝐴 𝐵)))
126, 7grpsubcl 18298 . . . 4 ((𝐺 ∈ Grp ∧ 𝐵𝑋𝐴𝑋) → (𝐵 𝐴) ∈ 𝑋)
133, 4, 5, 12syl3anc 1372 . . 3 ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋𝐵𝑋) → (𝐵 𝐴) ∈ 𝑋)
14 nmf.n . . . 4 𝑁 = (norm‘𝐺)
156, 14, 8nminv 23375 . . 3 ((𝐺 ∈ NrmGrp ∧ (𝐵 𝐴) ∈ 𝑋) → (𝑁‘((invg𝐺)‘(𝐵 𝐴))) = (𝑁‘(𝐵 𝐴)))
161, 13, 15syl2anc 587 . 2 ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘((invg𝐺)‘(𝐵 𝐴))) = (𝑁‘(𝐵 𝐴)))
1711, 16eqtr3d 2775 1 ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴 𝐵)) = (𝑁‘(𝐵 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1088   = wceq 1542  wcel 2113  cfv 6340  (class class class)co 7171  Basecbs 16587  Grpcgrp 18220  invgcminusg 18221  -gcsg 18222  normcnm 23330  NrmGrpcngp 23331
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-sep 5168  ax-nul 5175  ax-pow 5233  ax-pr 5297  ax-un 7480  ax-cnex 10672  ax-resscn 10673  ax-1cn 10674  ax-icn 10675  ax-addcl 10676  ax-addrcl 10677  ax-mulcl 10678  ax-mulrcl 10679  ax-mulcom 10680  ax-addass 10681  ax-mulass 10682  ax-distr 10683  ax-i2m1 10684  ax-1ne0 10685  ax-1rid 10686  ax-rnegex 10687  ax-rrecex 10688  ax-cnre 10689  ax-pre-lttri 10690  ax-pre-lttrn 10691  ax-pre-ltadd 10692  ax-pre-mulgt0 10693  ax-pre-sup 10694
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3400  df-sbc 3683  df-csb 3792  df-dif 3847  df-un 3849  df-in 3851  df-ss 3861  df-pss 3863  df-nul 4213  df-if 4416  df-pw 4491  df-sn 4518  df-pr 4520  df-tp 4522  df-op 4524  df-uni 4798  df-iun 4884  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5484  df-we 5486  df-xp 5532  df-rel 5533  df-cnv 5534  df-co 5535  df-dm 5536  df-rn 5537  df-res 5538  df-ima 5539  df-pred 6130  df-ord 6176  df-on 6177  df-lim 6178  df-suc 6179  df-iota 6298  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-riota 7128  df-ov 7174  df-oprab 7175  df-mpo 7176  df-om 7601  df-1st 7715  df-2nd 7716  df-wrecs 7977  df-recs 8038  df-rdg 8076  df-er 8321  df-map 8440  df-en 8557  df-dom 8558  df-sdom 8559  df-sup 8980  df-inf 8981  df-pnf 10756  df-mnf 10757  df-xr 10758  df-ltxr 10759  df-le 10760  df-sub 10951  df-neg 10952  df-div 11377  df-nn 11718  df-2 11780  df-n0 11978  df-z 12064  df-uz 12326  df-q 12432  df-rp 12474  df-xneg 12591  df-xadd 12592  df-xmul 12593  df-0g 16819  df-topgen 16821  df-mgm 17969  df-sgrp 18018  df-mnd 18029  df-grp 18223  df-minusg 18224  df-sbg 18225  df-psmet 20210  df-xmet 20211  df-met 20212  df-bl 20213  df-mopn 20214  df-top 21646  df-topon 21663  df-topsp 21685  df-bases 21698  df-xms 23074  df-ms 23075  df-nm 23336  df-ngp 23337
This theorem is referenced by:  ncvsdif  23908
  Copyright terms: Public domain W3C validator