| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nrmtngnrm | Structured version Visualization version GIF version | ||
| Description: The augmentation of a normed group by its own norm is a normed group with the same norm. (Contributed by AV, 15-Oct-2021.) |
| Ref | Expression |
|---|---|
| nrmtngdist.t | ⊢ 𝑇 = (𝐺 toNrmGrp (norm‘𝐺)) |
| Ref | Expression |
|---|---|
| nrmtngnrm | ⊢ (𝐺 ∈ NrmGrp → (𝑇 ∈ NrmGrp ∧ (norm‘𝑇) = (norm‘𝐺))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ngpgrp 24571 | . . 3 ⊢ (𝐺 ∈ NrmGrp → 𝐺 ∈ Grp) | |
| 2 | nrmtngdist.t | . . . . 5 ⊢ 𝑇 = (𝐺 toNrmGrp (norm‘𝐺)) | |
| 3 | eqid 2734 | . . . . 5 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 4 | 2, 3 | nrmtngdist 24629 | . . . 4 ⊢ (𝐺 ∈ NrmGrp → (dist‘𝑇) = ((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))) |
| 5 | eqid 2734 | . . . . 5 ⊢ ((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺))) = ((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺))) | |
| 6 | 3, 5 | ngpmet 24575 | . . . 4 ⊢ (𝐺 ∈ NrmGrp → ((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺))) ∈ (Met‘(Base‘𝐺))) |
| 7 | 4, 6 | eqeltrd 2833 | . . 3 ⊢ (𝐺 ∈ NrmGrp → (dist‘𝑇) ∈ (Met‘(Base‘𝐺))) |
| 8 | eqid 2734 | . . . . 5 ⊢ (norm‘𝐺) = (norm‘𝐺) | |
| 9 | 3, 8 | nmf 24587 | . . . 4 ⊢ (𝐺 ∈ NrmGrp → (norm‘𝐺):(Base‘𝐺)⟶ℝ) |
| 10 | eqid 2734 | . . . . 5 ⊢ (dist‘𝑇) = (dist‘𝑇) | |
| 11 | 2, 3, 10 | tngngp2 24624 | . . . 4 ⊢ ((norm‘𝐺):(Base‘𝐺)⟶ℝ → (𝑇 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ (dist‘𝑇) ∈ (Met‘(Base‘𝐺))))) |
| 12 | 9, 11 | syl 17 | . . 3 ⊢ (𝐺 ∈ NrmGrp → (𝑇 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ (dist‘𝑇) ∈ (Met‘(Base‘𝐺))))) |
| 13 | 1, 7, 12 | mpbir2and 713 | . 2 ⊢ (𝐺 ∈ NrmGrp → 𝑇 ∈ NrmGrp) |
| 14 | 1, 9 | jca 511 | . . . 4 ⊢ (𝐺 ∈ NrmGrp → (𝐺 ∈ Grp ∧ (norm‘𝐺):(Base‘𝐺)⟶ℝ)) |
| 15 | reex 11229 | . . . . 5 ⊢ ℝ ∈ V | |
| 16 | 2, 3, 15 | tngnm 24623 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ (norm‘𝐺):(Base‘𝐺)⟶ℝ) → (norm‘𝐺) = (norm‘𝑇)) |
| 17 | 14, 16 | syl 17 | . . 3 ⊢ (𝐺 ∈ NrmGrp → (norm‘𝐺) = (norm‘𝑇)) |
| 18 | 17 | eqcomd 2740 | . 2 ⊢ (𝐺 ∈ NrmGrp → (norm‘𝑇) = (norm‘𝐺)) |
| 19 | 13, 18 | jca 511 | 1 ⊢ (𝐺 ∈ NrmGrp → (𝑇 ∈ NrmGrp ∧ (norm‘𝑇) = (norm‘𝐺))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 × cxp 5665 ↾ cres 5669 ⟶wf 6538 ‘cfv 6542 (class class class)co 7414 ℝcr 11137 Basecbs 17230 distcds 17283 Grpcgrp 18921 Metcmet 21313 normcnm 24548 NrmGrpcngp 24549 toNrmGrp ctng 24550 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5261 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 ax-pre-sup 11216 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-pss 3953 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-iun 4975 df-br 5126 df-opab 5188 df-mpt 5208 df-tr 5242 df-id 5560 df-eprel 5566 df-po 5574 df-so 5575 df-fr 5619 df-we 5621 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6303 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7871 df-1st 7997 df-2nd 7998 df-frecs 8289 df-wrecs 8320 df-recs 8394 df-rdg 8433 df-er 8728 df-map 8851 df-en 8969 df-dom 8970 df-sdom 8971 df-sup 9465 df-inf 9466 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11477 df-neg 11478 df-div 11904 df-nn 12250 df-2 12312 df-3 12313 df-4 12314 df-5 12315 df-6 12316 df-7 12317 df-8 12318 df-9 12319 df-n0 12511 df-z 12598 df-dec 12718 df-uz 12862 df-q 12974 df-rp 13018 df-xneg 13137 df-xadd 13138 df-xmul 13139 df-sets 17184 df-slot 17202 df-ndx 17214 df-base 17231 df-plusg 17287 df-tset 17293 df-ds 17296 df-rest 17439 df-topn 17440 df-0g 17458 df-topgen 17460 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-grp 18924 df-minusg 18925 df-sbg 18926 df-psmet 21319 df-xmet 21320 df-met 21321 df-bl 21322 df-mopn 21323 df-top 22863 df-topon 22880 df-topsp 22902 df-bases 22915 df-xms 24290 df-ms 24291 df-nm 24554 df-ngp 24555 df-tng 24556 |
| This theorem is referenced by: tngngpim 24631 |
| Copyright terms: Public domain | W3C validator |