| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nrmtngnrm | Structured version Visualization version GIF version | ||
| Description: The augmentation of a normed group by its own norm is a normed group with the same norm. (Contributed by AV, 15-Oct-2021.) |
| Ref | Expression |
|---|---|
| nrmtngdist.t | ⊢ 𝑇 = (𝐺 toNrmGrp (norm‘𝐺)) |
| Ref | Expression |
|---|---|
| nrmtngnrm | ⊢ (𝐺 ∈ NrmGrp → (𝑇 ∈ NrmGrp ∧ (norm‘𝑇) = (norm‘𝐺))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ngpgrp 24493 | . . 3 ⊢ (𝐺 ∈ NrmGrp → 𝐺 ∈ Grp) | |
| 2 | nrmtngdist.t | . . . . 5 ⊢ 𝑇 = (𝐺 toNrmGrp (norm‘𝐺)) | |
| 3 | eqid 2730 | . . . . 5 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 4 | 2, 3 | nrmtngdist 24551 | . . . 4 ⊢ (𝐺 ∈ NrmGrp → (dist‘𝑇) = ((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))) |
| 5 | eqid 2730 | . . . . 5 ⊢ ((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺))) = ((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺))) | |
| 6 | 3, 5 | ngpmet 24497 | . . . 4 ⊢ (𝐺 ∈ NrmGrp → ((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺))) ∈ (Met‘(Base‘𝐺))) |
| 7 | 4, 6 | eqeltrd 2829 | . . 3 ⊢ (𝐺 ∈ NrmGrp → (dist‘𝑇) ∈ (Met‘(Base‘𝐺))) |
| 8 | eqid 2730 | . . . . 5 ⊢ (norm‘𝐺) = (norm‘𝐺) | |
| 9 | 3, 8 | nmf 24509 | . . . 4 ⊢ (𝐺 ∈ NrmGrp → (norm‘𝐺):(Base‘𝐺)⟶ℝ) |
| 10 | eqid 2730 | . . . . 5 ⊢ (dist‘𝑇) = (dist‘𝑇) | |
| 11 | 2, 3, 10 | tngngp2 24546 | . . . 4 ⊢ ((norm‘𝐺):(Base‘𝐺)⟶ℝ → (𝑇 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ (dist‘𝑇) ∈ (Met‘(Base‘𝐺))))) |
| 12 | 9, 11 | syl 17 | . . 3 ⊢ (𝐺 ∈ NrmGrp → (𝑇 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ (dist‘𝑇) ∈ (Met‘(Base‘𝐺))))) |
| 13 | 1, 7, 12 | mpbir2and 713 | . 2 ⊢ (𝐺 ∈ NrmGrp → 𝑇 ∈ NrmGrp) |
| 14 | 1, 9 | jca 511 | . . . 4 ⊢ (𝐺 ∈ NrmGrp → (𝐺 ∈ Grp ∧ (norm‘𝐺):(Base‘𝐺)⟶ℝ)) |
| 15 | reex 11177 | . . . . 5 ⊢ ℝ ∈ V | |
| 16 | 2, 3, 15 | tngnm 24545 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ (norm‘𝐺):(Base‘𝐺)⟶ℝ) → (norm‘𝐺) = (norm‘𝑇)) |
| 17 | 14, 16 | syl 17 | . . 3 ⊢ (𝐺 ∈ NrmGrp → (norm‘𝐺) = (norm‘𝑇)) |
| 18 | 17 | eqcomd 2736 | . 2 ⊢ (𝐺 ∈ NrmGrp → (norm‘𝑇) = (norm‘𝐺)) |
| 19 | 13, 18 | jca 511 | 1 ⊢ (𝐺 ∈ NrmGrp → (𝑇 ∈ NrmGrp ∧ (norm‘𝑇) = (norm‘𝐺))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 × cxp 5644 ↾ cres 5648 ⟶wf 6515 ‘cfv 6519 (class class class)co 7394 ℝcr 11085 Basecbs 17185 distcds 17235 Grpcgrp 18871 Metcmet 21256 normcnm 24470 NrmGrpcngp 24471 toNrmGrp ctng 24472 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 ax-cnex 11142 ax-resscn 11143 ax-1cn 11144 ax-icn 11145 ax-addcl 11146 ax-addrcl 11147 ax-mulcl 11148 ax-mulrcl 11149 ax-mulcom 11150 ax-addass 11151 ax-mulass 11152 ax-distr 11153 ax-i2m1 11154 ax-1ne0 11155 ax-1rid 11156 ax-rnegex 11157 ax-rrecex 11158 ax-cnre 11159 ax-pre-lttri 11160 ax-pre-lttrn 11161 ax-pre-ltadd 11162 ax-pre-mulgt0 11163 ax-pre-sup 11164 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-nel 3032 df-ral 3047 df-rex 3056 df-rmo 3357 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-pss 3942 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-iun 4965 df-br 5116 df-opab 5178 df-mpt 5197 df-tr 5223 df-id 5541 df-eprel 5546 df-po 5554 df-so 5555 df-fr 5599 df-we 5601 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-pred 6282 df-ord 6343 df-on 6344 df-lim 6345 df-suc 6346 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-riota 7351 df-ov 7397 df-oprab 7398 df-mpo 7399 df-om 7851 df-1st 7977 df-2nd 7978 df-frecs 8269 df-wrecs 8300 df-recs 8349 df-rdg 8387 df-er 8682 df-map 8805 df-en 8923 df-dom 8924 df-sdom 8925 df-sup 9411 df-inf 9412 df-pnf 11228 df-mnf 11229 df-xr 11230 df-ltxr 11231 df-le 11232 df-sub 11425 df-neg 11426 df-div 11852 df-nn 12198 df-2 12260 df-3 12261 df-4 12262 df-5 12263 df-6 12264 df-7 12265 df-8 12266 df-9 12267 df-n0 12459 df-z 12546 df-dec 12666 df-uz 12810 df-q 12922 df-rp 12966 df-xneg 13085 df-xadd 13086 df-xmul 13087 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17186 df-plusg 17239 df-tset 17245 df-ds 17248 df-rest 17391 df-topn 17392 df-0g 17410 df-topgen 17412 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-grp 18874 df-minusg 18875 df-sbg 18876 df-psmet 21262 df-xmet 21263 df-met 21264 df-bl 21265 df-mopn 21266 df-top 22787 df-topon 22804 df-topsp 22826 df-bases 22839 df-xms 24214 df-ms 24215 df-nm 24476 df-ngp 24477 df-tng 24478 |
| This theorem is referenced by: tngngpim 24553 |
| Copyright terms: Public domain | W3C validator |