MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nrmtngnrm Structured version   Visualization version   GIF version

Theorem nrmtngnrm 24701
Description: The augmentation of a normed group by its own norm is a normed group with the same norm. (Contributed by AV, 15-Oct-2021.)
Hypothesis
Ref Expression
nrmtngdist.t 𝑇 = (𝐺 toNrmGrp (norm‘𝐺))
Assertion
Ref Expression
nrmtngnrm (𝐺 ∈ NrmGrp → (𝑇 ∈ NrmGrp ∧ (norm‘𝑇) = (norm‘𝐺)))

Proof of Theorem nrmtngnrm
StepHypRef Expression
1 ngpgrp 24634 . . 3 (𝐺 ∈ NrmGrp → 𝐺 ∈ Grp)
2 nrmtngdist.t . . . . 5 𝑇 = (𝐺 toNrmGrp (norm‘𝐺))
3 eqid 2736 . . . . 5 (Base‘𝐺) = (Base‘𝐺)
42, 3nrmtngdist 24700 . . . 4 (𝐺 ∈ NrmGrp → (dist‘𝑇) = ((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺))))
5 eqid 2736 . . . . 5 ((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺))) = ((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))
63, 5ngpmet 24638 . . . 4 (𝐺 ∈ NrmGrp → ((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺))) ∈ (Met‘(Base‘𝐺)))
74, 6eqeltrd 2840 . . 3 (𝐺 ∈ NrmGrp → (dist‘𝑇) ∈ (Met‘(Base‘𝐺)))
8 eqid 2736 . . . . 5 (norm‘𝐺) = (norm‘𝐺)
93, 8nmf 24650 . . . 4 (𝐺 ∈ NrmGrp → (norm‘𝐺):(Base‘𝐺)⟶ℝ)
10 eqid 2736 . . . . 5 (dist‘𝑇) = (dist‘𝑇)
112, 3, 10tngngp2 24695 . . . 4 ((norm‘𝐺):(Base‘𝐺)⟶ℝ → (𝑇 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ (dist‘𝑇) ∈ (Met‘(Base‘𝐺)))))
129, 11syl 17 . . 3 (𝐺 ∈ NrmGrp → (𝑇 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ (dist‘𝑇) ∈ (Met‘(Base‘𝐺)))))
131, 7, 12mpbir2and 713 . 2 (𝐺 ∈ NrmGrp → 𝑇 ∈ NrmGrp)
141, 9jca 511 . . . 4 (𝐺 ∈ NrmGrp → (𝐺 ∈ Grp ∧ (norm‘𝐺):(Base‘𝐺)⟶ℝ))
15 reex 11250 . . . . 5 ℝ ∈ V
162, 3, 15tngnm 24694 . . . 4 ((𝐺 ∈ Grp ∧ (norm‘𝐺):(Base‘𝐺)⟶ℝ) → (norm‘𝐺) = (norm‘𝑇))
1714, 16syl 17 . . 3 (𝐺 ∈ NrmGrp → (norm‘𝐺) = (norm‘𝑇))
1817eqcomd 2742 . 2 (𝐺 ∈ NrmGrp → (norm‘𝑇) = (norm‘𝐺))
1913, 18jca 511 1 (𝐺 ∈ NrmGrp → (𝑇 ∈ NrmGrp ∧ (norm‘𝑇) = (norm‘𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1538  wcel 2107   × cxp 5688  cres 5692  wf 6562  cfv 6566  (class class class)co 7435  cr 11158  Basecbs 17251  distcds 17313  Grpcgrp 18970  Metcmet 21374  normcnm 24611  NrmGrpcngp 24612   toNrmGrp ctng 24613
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5286  ax-sep 5303  ax-nul 5313  ax-pow 5372  ax-pr 5439  ax-un 7758  ax-cnex 11215  ax-resscn 11216  ax-1cn 11217  ax-icn 11218  ax-addcl 11219  ax-addrcl 11220  ax-mulcl 11221  ax-mulrcl 11222  ax-mulcom 11223  ax-addass 11224  ax-mulass 11225  ax-distr 11226  ax-i2m1 11227  ax-1ne0 11228  ax-1rid 11229  ax-rnegex 11230  ax-rrecex 11231  ax-cnre 11232  ax-pre-lttri 11233  ax-pre-lttrn 11234  ax-pre-ltadd 11235  ax-pre-mulgt0 11236  ax-pre-sup 11237
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1541  df-fal 1551  df-ex 1778  df-nf 1782  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3435  df-v 3481  df-sbc 3793  df-csb 3910  df-dif 3967  df-un 3969  df-in 3971  df-ss 3981  df-pss 3984  df-nul 4341  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4914  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5584  df-eprel 5590  df-po 5598  df-so 5599  df-fr 5642  df-we 5644  df-xp 5696  df-rel 5697  df-cnv 5698  df-co 5699  df-dm 5700  df-rn 5701  df-res 5702  df-ima 5703  df-pred 6326  df-ord 6392  df-on 6393  df-lim 6394  df-suc 6395  df-iota 6519  df-fun 6568  df-fn 6569  df-f 6570  df-f1 6571  df-fo 6572  df-f1o 6573  df-fv 6574  df-riota 7392  df-ov 7438  df-oprab 7439  df-mpo 7440  df-om 7892  df-1st 8019  df-2nd 8020  df-frecs 8311  df-wrecs 8342  df-recs 8416  df-rdg 8455  df-er 8750  df-map 8873  df-en 8991  df-dom 8992  df-sdom 8993  df-sup 9486  df-inf 9487  df-pnf 11301  df-mnf 11302  df-xr 11303  df-ltxr 11304  df-le 11305  df-sub 11498  df-neg 11499  df-div 11925  df-nn 12271  df-2 12333  df-3 12334  df-4 12335  df-5 12336  df-6 12337  df-7 12338  df-8 12339  df-9 12340  df-n0 12531  df-z 12618  df-dec 12738  df-uz 12883  df-q 12995  df-rp 13039  df-xneg 13158  df-xadd 13159  df-xmul 13160  df-sets 17204  df-slot 17222  df-ndx 17234  df-base 17252  df-plusg 17317  df-tset 17323  df-ds 17326  df-rest 17475  df-topn 17476  df-0g 17494  df-topgen 17496  df-mgm 18672  df-sgrp 18751  df-mnd 18767  df-grp 18973  df-minusg 18974  df-sbg 18975  df-psmet 21380  df-xmet 21381  df-met 21382  df-bl 21383  df-mopn 21384  df-top 22922  df-topon 22939  df-topsp 22961  df-bases 22975  df-xms 24352  df-ms 24353  df-nm 24617  df-ngp 24618  df-tng 24619
This theorem is referenced by:  tngngpim  24702
  Copyright terms: Public domain W3C validator