![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nrmtngnrm | Structured version Visualization version GIF version |
Description: The augmentation of a normed group by its own norm is a normed group with the same norm. (Contributed by AV, 15-Oct-2021.) |
Ref | Expression |
---|---|
nrmtngdist.t | ⊢ 𝑇 = (𝐺 toNrmGrp (norm‘𝐺)) |
Ref | Expression |
---|---|
nrmtngnrm | ⊢ (𝐺 ∈ NrmGrp → (𝑇 ∈ NrmGrp ∧ (norm‘𝑇) = (norm‘𝐺))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ngpgrp 24634 | . . 3 ⊢ (𝐺 ∈ NrmGrp → 𝐺 ∈ Grp) | |
2 | nrmtngdist.t | . . . . 5 ⊢ 𝑇 = (𝐺 toNrmGrp (norm‘𝐺)) | |
3 | eqid 2736 | . . . . 5 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
4 | 2, 3 | nrmtngdist 24700 | . . . 4 ⊢ (𝐺 ∈ NrmGrp → (dist‘𝑇) = ((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))) |
5 | eqid 2736 | . . . . 5 ⊢ ((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺))) = ((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺))) | |
6 | 3, 5 | ngpmet 24638 | . . . 4 ⊢ (𝐺 ∈ NrmGrp → ((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺))) ∈ (Met‘(Base‘𝐺))) |
7 | 4, 6 | eqeltrd 2840 | . . 3 ⊢ (𝐺 ∈ NrmGrp → (dist‘𝑇) ∈ (Met‘(Base‘𝐺))) |
8 | eqid 2736 | . . . . 5 ⊢ (norm‘𝐺) = (norm‘𝐺) | |
9 | 3, 8 | nmf 24650 | . . . 4 ⊢ (𝐺 ∈ NrmGrp → (norm‘𝐺):(Base‘𝐺)⟶ℝ) |
10 | eqid 2736 | . . . . 5 ⊢ (dist‘𝑇) = (dist‘𝑇) | |
11 | 2, 3, 10 | tngngp2 24695 | . . . 4 ⊢ ((norm‘𝐺):(Base‘𝐺)⟶ℝ → (𝑇 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ (dist‘𝑇) ∈ (Met‘(Base‘𝐺))))) |
12 | 9, 11 | syl 17 | . . 3 ⊢ (𝐺 ∈ NrmGrp → (𝑇 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ (dist‘𝑇) ∈ (Met‘(Base‘𝐺))))) |
13 | 1, 7, 12 | mpbir2and 713 | . 2 ⊢ (𝐺 ∈ NrmGrp → 𝑇 ∈ NrmGrp) |
14 | 1, 9 | jca 511 | . . . 4 ⊢ (𝐺 ∈ NrmGrp → (𝐺 ∈ Grp ∧ (norm‘𝐺):(Base‘𝐺)⟶ℝ)) |
15 | reex 11250 | . . . . 5 ⊢ ℝ ∈ V | |
16 | 2, 3, 15 | tngnm 24694 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ (norm‘𝐺):(Base‘𝐺)⟶ℝ) → (norm‘𝐺) = (norm‘𝑇)) |
17 | 14, 16 | syl 17 | . . 3 ⊢ (𝐺 ∈ NrmGrp → (norm‘𝐺) = (norm‘𝑇)) |
18 | 17 | eqcomd 2742 | . 2 ⊢ (𝐺 ∈ NrmGrp → (norm‘𝑇) = (norm‘𝐺)) |
19 | 13, 18 | jca 511 | 1 ⊢ (𝐺 ∈ NrmGrp → (𝑇 ∈ NrmGrp ∧ (norm‘𝑇) = (norm‘𝐺))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1538 ∈ wcel 2107 × cxp 5688 ↾ cres 5692 ⟶wf 6562 ‘cfv 6566 (class class class)co 7435 ℝcr 11158 Basecbs 17251 distcds 17313 Grpcgrp 18970 Metcmet 21374 normcnm 24611 NrmGrpcngp 24612 toNrmGrp ctng 24613 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5286 ax-sep 5303 ax-nul 5313 ax-pow 5372 ax-pr 5439 ax-un 7758 ax-cnex 11215 ax-resscn 11216 ax-1cn 11217 ax-icn 11218 ax-addcl 11219 ax-addrcl 11220 ax-mulcl 11221 ax-mulrcl 11222 ax-mulcom 11223 ax-addass 11224 ax-mulass 11225 ax-distr 11226 ax-i2m1 11227 ax-1ne0 11228 ax-1rid 11229 ax-rnegex 11230 ax-rrecex 11231 ax-cnre 11232 ax-pre-lttri 11233 ax-pre-lttrn 11234 ax-pre-ltadd 11235 ax-pre-mulgt0 11236 ax-pre-sup 11237 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1541 df-fal 1551 df-ex 1778 df-nf 1782 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3435 df-v 3481 df-sbc 3793 df-csb 3910 df-dif 3967 df-un 3969 df-in 3971 df-ss 3981 df-pss 3984 df-nul 4341 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4914 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5584 df-eprel 5590 df-po 5598 df-so 5599 df-fr 5642 df-we 5644 df-xp 5696 df-rel 5697 df-cnv 5698 df-co 5699 df-dm 5700 df-rn 5701 df-res 5702 df-ima 5703 df-pred 6326 df-ord 6392 df-on 6393 df-lim 6394 df-suc 6395 df-iota 6519 df-fun 6568 df-fn 6569 df-f 6570 df-f1 6571 df-fo 6572 df-f1o 6573 df-fv 6574 df-riota 7392 df-ov 7438 df-oprab 7439 df-mpo 7440 df-om 7892 df-1st 8019 df-2nd 8020 df-frecs 8311 df-wrecs 8342 df-recs 8416 df-rdg 8455 df-er 8750 df-map 8873 df-en 8991 df-dom 8992 df-sdom 8993 df-sup 9486 df-inf 9487 df-pnf 11301 df-mnf 11302 df-xr 11303 df-ltxr 11304 df-le 11305 df-sub 11498 df-neg 11499 df-div 11925 df-nn 12271 df-2 12333 df-3 12334 df-4 12335 df-5 12336 df-6 12337 df-7 12338 df-8 12339 df-9 12340 df-n0 12531 df-z 12618 df-dec 12738 df-uz 12883 df-q 12995 df-rp 13039 df-xneg 13158 df-xadd 13159 df-xmul 13160 df-sets 17204 df-slot 17222 df-ndx 17234 df-base 17252 df-plusg 17317 df-tset 17323 df-ds 17326 df-rest 17475 df-topn 17476 df-0g 17494 df-topgen 17496 df-mgm 18672 df-sgrp 18751 df-mnd 18767 df-grp 18973 df-minusg 18974 df-sbg 18975 df-psmet 21380 df-xmet 21381 df-met 21382 df-bl 21383 df-mopn 21384 df-top 22922 df-topon 22939 df-topsp 22961 df-bases 22975 df-xms 24352 df-ms 24353 df-nm 24617 df-ngp 24618 df-tng 24619 |
This theorem is referenced by: tngngpim 24702 |
Copyright terms: Public domain | W3C validator |