| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nmods | Structured version Visualization version GIF version | ||
| Description: Upper bound for the distance between the values of a bounded linear operator. (Contributed by Mario Carneiro, 22-Oct-2015.) |
| Ref | Expression |
|---|---|
| nmods.n | ⊢ 𝑁 = (𝑆 normOp 𝑇) |
| nmods.v | ⊢ 𝑉 = (Base‘𝑆) |
| nmods.c | ⊢ 𝐶 = (dist‘𝑆) |
| nmods.d | ⊢ 𝐷 = (dist‘𝑇) |
| Ref | Expression |
|---|---|
| nmods | ⊢ ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ((𝐹‘𝐴)𝐷(𝐹‘𝐵)) ≤ ((𝑁‘𝐹) · (𝐴𝐶𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . . 3 ⊢ ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → 𝐹 ∈ (𝑆 NGHom 𝑇)) | |
| 2 | nghmrcl1 24669 | . . . . 5 ⊢ (𝐹 ∈ (𝑆 NGHom 𝑇) → 𝑆 ∈ NrmGrp) | |
| 3 | ngpgrp 24536 | . . . . 5 ⊢ (𝑆 ∈ NrmGrp → 𝑆 ∈ Grp) | |
| 4 | 2, 3 | syl 17 | . . . 4 ⊢ (𝐹 ∈ (𝑆 NGHom 𝑇) → 𝑆 ∈ Grp) |
| 5 | nmods.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑆) | |
| 6 | eqid 2735 | . . . . 5 ⊢ (-g‘𝑆) = (-g‘𝑆) | |
| 7 | 5, 6 | grpsubcl 19001 | . . . 4 ⊢ ((𝑆 ∈ Grp ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴(-g‘𝑆)𝐵) ∈ 𝑉) |
| 8 | 4, 7 | syl3an1 1163 | . . 3 ⊢ ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴(-g‘𝑆)𝐵) ∈ 𝑉) |
| 9 | nmods.n | . . . 4 ⊢ 𝑁 = (𝑆 normOp 𝑇) | |
| 10 | eqid 2735 | . . . 4 ⊢ (norm‘𝑆) = (norm‘𝑆) | |
| 11 | eqid 2735 | . . . 4 ⊢ (norm‘𝑇) = (norm‘𝑇) | |
| 12 | 9, 5, 10, 11 | nmoi 24665 | . . 3 ⊢ ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝐴(-g‘𝑆)𝐵) ∈ 𝑉) → ((norm‘𝑇)‘(𝐹‘(𝐴(-g‘𝑆)𝐵))) ≤ ((𝑁‘𝐹) · ((norm‘𝑆)‘(𝐴(-g‘𝑆)𝐵)))) |
| 13 | 1, 8, 12 | syl2anc 584 | . 2 ⊢ ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ((norm‘𝑇)‘(𝐹‘(𝐴(-g‘𝑆)𝐵))) ≤ ((𝑁‘𝐹) · ((norm‘𝑆)‘(𝐴(-g‘𝑆)𝐵)))) |
| 14 | nghmrcl2 24670 | . . . . 5 ⊢ (𝐹 ∈ (𝑆 NGHom 𝑇) → 𝑇 ∈ NrmGrp) | |
| 15 | 14 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → 𝑇 ∈ NrmGrp) |
| 16 | nghmghm 24671 | . . . . . . 7 ⊢ (𝐹 ∈ (𝑆 NGHom 𝑇) → 𝐹 ∈ (𝑆 GrpHom 𝑇)) | |
| 17 | 16 | 3ad2ant1 1133 | . . . . . 6 ⊢ ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → 𝐹 ∈ (𝑆 GrpHom 𝑇)) |
| 18 | eqid 2735 | . . . . . . 7 ⊢ (Base‘𝑇) = (Base‘𝑇) | |
| 19 | 5, 18 | ghmf 19201 | . . . . . 6 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:𝑉⟶(Base‘𝑇)) |
| 20 | 17, 19 | syl 17 | . . . . 5 ⊢ ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → 𝐹:𝑉⟶(Base‘𝑇)) |
| 21 | simp2 1137 | . . . . 5 ⊢ ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → 𝐴 ∈ 𝑉) | |
| 22 | 20, 21 | ffvelcdmd 7074 | . . . 4 ⊢ ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐹‘𝐴) ∈ (Base‘𝑇)) |
| 23 | simp3 1138 | . . . . 5 ⊢ ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → 𝐵 ∈ 𝑉) | |
| 24 | 20, 23 | ffvelcdmd 7074 | . . . 4 ⊢ ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐹‘𝐵) ∈ (Base‘𝑇)) |
| 25 | eqid 2735 | . . . . 5 ⊢ (-g‘𝑇) = (-g‘𝑇) | |
| 26 | nmods.d | . . . . 5 ⊢ 𝐷 = (dist‘𝑇) | |
| 27 | 11, 18, 25, 26 | ngpds 24541 | . . . 4 ⊢ ((𝑇 ∈ NrmGrp ∧ (𝐹‘𝐴) ∈ (Base‘𝑇) ∧ (𝐹‘𝐵) ∈ (Base‘𝑇)) → ((𝐹‘𝐴)𝐷(𝐹‘𝐵)) = ((norm‘𝑇)‘((𝐹‘𝐴)(-g‘𝑇)(𝐹‘𝐵)))) |
| 28 | 15, 22, 24, 27 | syl3anc 1373 | . . 3 ⊢ ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ((𝐹‘𝐴)𝐷(𝐹‘𝐵)) = ((norm‘𝑇)‘((𝐹‘𝐴)(-g‘𝑇)(𝐹‘𝐵)))) |
| 29 | 5, 6, 25 | ghmsub 19205 | . . . . 5 ⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐹‘(𝐴(-g‘𝑆)𝐵)) = ((𝐹‘𝐴)(-g‘𝑇)(𝐹‘𝐵))) |
| 30 | 16, 29 | syl3an1 1163 | . . . 4 ⊢ ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐹‘(𝐴(-g‘𝑆)𝐵)) = ((𝐹‘𝐴)(-g‘𝑇)(𝐹‘𝐵))) |
| 31 | 30 | fveq2d 6879 | . . 3 ⊢ ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ((norm‘𝑇)‘(𝐹‘(𝐴(-g‘𝑆)𝐵))) = ((norm‘𝑇)‘((𝐹‘𝐴)(-g‘𝑇)(𝐹‘𝐵)))) |
| 32 | 28, 31 | eqtr4d 2773 | . 2 ⊢ ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ((𝐹‘𝐴)𝐷(𝐹‘𝐵)) = ((norm‘𝑇)‘(𝐹‘(𝐴(-g‘𝑆)𝐵)))) |
| 33 | nmods.c | . . . . 5 ⊢ 𝐶 = (dist‘𝑆) | |
| 34 | 10, 5, 6, 33 | ngpds 24541 | . . . 4 ⊢ ((𝑆 ∈ NrmGrp ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴𝐶𝐵) = ((norm‘𝑆)‘(𝐴(-g‘𝑆)𝐵))) |
| 35 | 2, 34 | syl3an1 1163 | . . 3 ⊢ ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴𝐶𝐵) = ((norm‘𝑆)‘(𝐴(-g‘𝑆)𝐵))) |
| 36 | 35 | oveq2d 7419 | . 2 ⊢ ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ((𝑁‘𝐹) · (𝐴𝐶𝐵)) = ((𝑁‘𝐹) · ((norm‘𝑆)‘(𝐴(-g‘𝑆)𝐵)))) |
| 37 | 13, 32, 36 | 3brtr4d 5151 | 1 ⊢ ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ((𝐹‘𝐴)𝐷(𝐹‘𝐵)) ≤ ((𝑁‘𝐹) · (𝐴𝐶𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 class class class wbr 5119 ⟶wf 6526 ‘cfv 6530 (class class class)co 7403 · cmul 11132 ≤ cle 11268 Basecbs 17226 distcds 17278 Grpcgrp 18914 -gcsg 18916 GrpHom cghm 19193 normcnm 24513 NrmGrpcngp 24514 normOp cnmo 24642 NGHom cnghm 24643 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 ax-pre-sup 11205 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-1st 7986 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-er 8717 df-map 8840 df-en 8958 df-dom 8959 df-sdom 8960 df-sup 9452 df-inf 9453 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-div 11893 df-nn 12239 df-2 12301 df-n0 12500 df-z 12587 df-uz 12851 df-q 12963 df-rp 13007 df-xneg 13126 df-xadd 13127 df-xmul 13128 df-ico 13366 df-0g 17453 df-topgen 17455 df-mgm 18616 df-sgrp 18695 df-mnd 18711 df-grp 18917 df-minusg 18918 df-sbg 18919 df-ghm 19194 df-psmet 21305 df-xmet 21306 df-met 21307 df-bl 21308 df-mopn 21309 df-top 22830 df-topon 22847 df-topsp 22869 df-bases 22882 df-xms 24257 df-ms 24258 df-nm 24519 df-ngp 24520 df-nmo 24645 df-nghm 24646 |
| This theorem is referenced by: nghmcn 24682 |
| Copyright terms: Public domain | W3C validator |