MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmods Structured version   Visualization version   GIF version

Theorem nmods 24660
Description: Upper bound for the distance between the values of a bounded linear operator. (Contributed by Mario Carneiro, 22-Oct-2015.)
Hypotheses
Ref Expression
nmods.n 𝑁 = (𝑆 normOp 𝑇)
nmods.v 𝑉 = (Base‘𝑆)
nmods.c 𝐶 = (dist‘𝑆)
nmods.d 𝐷 = (dist‘𝑇)
Assertion
Ref Expression
nmods ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴𝑉𝐵𝑉) → ((𝐹𝐴)𝐷(𝐹𝐵)) ≤ ((𝑁𝐹) · (𝐴𝐶𝐵)))

Proof of Theorem nmods
StepHypRef Expression
1 simp1 1136 . . 3 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴𝑉𝐵𝑉) → 𝐹 ∈ (𝑆 NGHom 𝑇))
2 nghmrcl1 24648 . . . . 5 (𝐹 ∈ (𝑆 NGHom 𝑇) → 𝑆 ∈ NrmGrp)
3 ngpgrp 24515 . . . . 5 (𝑆 ∈ NrmGrp → 𝑆 ∈ Grp)
42, 3syl 17 . . . 4 (𝐹 ∈ (𝑆 NGHom 𝑇) → 𝑆 ∈ Grp)
5 nmods.v . . . . 5 𝑉 = (Base‘𝑆)
6 eqid 2733 . . . . 5 (-g𝑆) = (-g𝑆)
75, 6grpsubcl 18935 . . . 4 ((𝑆 ∈ Grp ∧ 𝐴𝑉𝐵𝑉) → (𝐴(-g𝑆)𝐵) ∈ 𝑉)
84, 7syl3an1 1163 . . 3 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴𝑉𝐵𝑉) → (𝐴(-g𝑆)𝐵) ∈ 𝑉)
9 nmods.n . . . 4 𝑁 = (𝑆 normOp 𝑇)
10 eqid 2733 . . . 4 (norm‘𝑆) = (norm‘𝑆)
11 eqid 2733 . . . 4 (norm‘𝑇) = (norm‘𝑇)
129, 5, 10, 11nmoi 24644 . . 3 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝐴(-g𝑆)𝐵) ∈ 𝑉) → ((norm‘𝑇)‘(𝐹‘(𝐴(-g𝑆)𝐵))) ≤ ((𝑁𝐹) · ((norm‘𝑆)‘(𝐴(-g𝑆)𝐵))))
131, 8, 12syl2anc 584 . 2 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴𝑉𝐵𝑉) → ((norm‘𝑇)‘(𝐹‘(𝐴(-g𝑆)𝐵))) ≤ ((𝑁𝐹) · ((norm‘𝑆)‘(𝐴(-g𝑆)𝐵))))
14 nghmrcl2 24649 . . . . 5 (𝐹 ∈ (𝑆 NGHom 𝑇) → 𝑇 ∈ NrmGrp)
15143ad2ant1 1133 . . . 4 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴𝑉𝐵𝑉) → 𝑇 ∈ NrmGrp)
16 nghmghm 24650 . . . . . . 7 (𝐹 ∈ (𝑆 NGHom 𝑇) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
17163ad2ant1 1133 . . . . . 6 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴𝑉𝐵𝑉) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
18 eqid 2733 . . . . . . 7 (Base‘𝑇) = (Base‘𝑇)
195, 18ghmf 19134 . . . . . 6 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:𝑉⟶(Base‘𝑇))
2017, 19syl 17 . . . . 5 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴𝑉𝐵𝑉) → 𝐹:𝑉⟶(Base‘𝑇))
21 simp2 1137 . . . . 5 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴𝑉𝐵𝑉) → 𝐴𝑉)
2220, 21ffvelcdmd 7024 . . . 4 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴𝑉𝐵𝑉) → (𝐹𝐴) ∈ (Base‘𝑇))
23 simp3 1138 . . . . 5 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴𝑉𝐵𝑉) → 𝐵𝑉)
2420, 23ffvelcdmd 7024 . . . 4 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴𝑉𝐵𝑉) → (𝐹𝐵) ∈ (Base‘𝑇))
25 eqid 2733 . . . . 5 (-g𝑇) = (-g𝑇)
26 nmods.d . . . . 5 𝐷 = (dist‘𝑇)
2711, 18, 25, 26ngpds 24520 . . . 4 ((𝑇 ∈ NrmGrp ∧ (𝐹𝐴) ∈ (Base‘𝑇) ∧ (𝐹𝐵) ∈ (Base‘𝑇)) → ((𝐹𝐴)𝐷(𝐹𝐵)) = ((norm‘𝑇)‘((𝐹𝐴)(-g𝑇)(𝐹𝐵))))
2815, 22, 24, 27syl3anc 1373 . . 3 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴𝑉𝐵𝑉) → ((𝐹𝐴)𝐷(𝐹𝐵)) = ((norm‘𝑇)‘((𝐹𝐴)(-g𝑇)(𝐹𝐵))))
295, 6, 25ghmsub 19138 . . . . 5 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐴𝑉𝐵𝑉) → (𝐹‘(𝐴(-g𝑆)𝐵)) = ((𝐹𝐴)(-g𝑇)(𝐹𝐵)))
3016, 29syl3an1 1163 . . . 4 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴𝑉𝐵𝑉) → (𝐹‘(𝐴(-g𝑆)𝐵)) = ((𝐹𝐴)(-g𝑇)(𝐹𝐵)))
3130fveq2d 6832 . . 3 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴𝑉𝐵𝑉) → ((norm‘𝑇)‘(𝐹‘(𝐴(-g𝑆)𝐵))) = ((norm‘𝑇)‘((𝐹𝐴)(-g𝑇)(𝐹𝐵))))
3228, 31eqtr4d 2771 . 2 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴𝑉𝐵𝑉) → ((𝐹𝐴)𝐷(𝐹𝐵)) = ((norm‘𝑇)‘(𝐹‘(𝐴(-g𝑆)𝐵))))
33 nmods.c . . . . 5 𝐶 = (dist‘𝑆)
3410, 5, 6, 33ngpds 24520 . . . 4 ((𝑆 ∈ NrmGrp ∧ 𝐴𝑉𝐵𝑉) → (𝐴𝐶𝐵) = ((norm‘𝑆)‘(𝐴(-g𝑆)𝐵)))
352, 34syl3an1 1163 . . 3 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴𝑉𝐵𝑉) → (𝐴𝐶𝐵) = ((norm‘𝑆)‘(𝐴(-g𝑆)𝐵)))
3635oveq2d 7368 . 2 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴𝑉𝐵𝑉) → ((𝑁𝐹) · (𝐴𝐶𝐵)) = ((𝑁𝐹) · ((norm‘𝑆)‘(𝐴(-g𝑆)𝐵))))
3713, 32, 363brtr4d 5125 1 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴𝑉𝐵𝑉) → ((𝐹𝐴)𝐷(𝐹𝐵)) ≤ ((𝑁𝐹) · (𝐴𝐶𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1541  wcel 2113   class class class wbr 5093  wf 6482  cfv 6486  (class class class)co 7352   · cmul 11018  cle 11154  Basecbs 17122  distcds 17172  Grpcgrp 18848  -gcsg 18850   GrpHom cghm 19126  normcnm 24492  NrmGrpcngp 24493   normOp cnmo 24621   NGHom cnghm 24622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-map 8758  df-en 8876  df-dom 8877  df-sdom 8878  df-sup 9333  df-inf 9334  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-n0 12389  df-z 12476  df-uz 12739  df-q 12849  df-rp 12893  df-xneg 13013  df-xadd 13014  df-xmul 13015  df-ico 13253  df-0g 17347  df-topgen 17349  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-grp 18851  df-minusg 18852  df-sbg 18853  df-ghm 19127  df-psmet 21285  df-xmet 21286  df-met 21287  df-bl 21288  df-mopn 21289  df-top 22810  df-topon 22827  df-topsp 22849  df-bases 22862  df-xms 24236  df-ms 24237  df-nm 24498  df-ngp 24499  df-nmo 24624  df-nghm 24625
This theorem is referenced by:  nghmcn  24661
  Copyright terms: Public domain W3C validator