MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmods Structured version   Visualization version   GIF version

Theorem nmods 24786
Description: Upper bound for the distance between the values of a bounded linear operator. (Contributed by Mario Carneiro, 22-Oct-2015.)
Hypotheses
Ref Expression
nmods.n 𝑁 = (𝑆 normOp 𝑇)
nmods.v 𝑉 = (Base‘𝑆)
nmods.c 𝐶 = (dist‘𝑆)
nmods.d 𝐷 = (dist‘𝑇)
Assertion
Ref Expression
nmods ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴𝑉𝐵𝑉) → ((𝐹𝐴)𝐷(𝐹𝐵)) ≤ ((𝑁𝐹) · (𝐴𝐶𝐵)))

Proof of Theorem nmods
StepHypRef Expression
1 simp1 1136 . . 3 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴𝑉𝐵𝑉) → 𝐹 ∈ (𝑆 NGHom 𝑇))
2 nghmrcl1 24774 . . . . 5 (𝐹 ∈ (𝑆 NGHom 𝑇) → 𝑆 ∈ NrmGrp)
3 ngpgrp 24633 . . . . 5 (𝑆 ∈ NrmGrp → 𝑆 ∈ Grp)
42, 3syl 17 . . . 4 (𝐹 ∈ (𝑆 NGHom 𝑇) → 𝑆 ∈ Grp)
5 nmods.v . . . . 5 𝑉 = (Base‘𝑆)
6 eqid 2740 . . . . 5 (-g𝑆) = (-g𝑆)
75, 6grpsubcl 19060 . . . 4 ((𝑆 ∈ Grp ∧ 𝐴𝑉𝐵𝑉) → (𝐴(-g𝑆)𝐵) ∈ 𝑉)
84, 7syl3an1 1163 . . 3 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴𝑉𝐵𝑉) → (𝐴(-g𝑆)𝐵) ∈ 𝑉)
9 nmods.n . . . 4 𝑁 = (𝑆 normOp 𝑇)
10 eqid 2740 . . . 4 (norm‘𝑆) = (norm‘𝑆)
11 eqid 2740 . . . 4 (norm‘𝑇) = (norm‘𝑇)
129, 5, 10, 11nmoi 24770 . . 3 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝐴(-g𝑆)𝐵) ∈ 𝑉) → ((norm‘𝑇)‘(𝐹‘(𝐴(-g𝑆)𝐵))) ≤ ((𝑁𝐹) · ((norm‘𝑆)‘(𝐴(-g𝑆)𝐵))))
131, 8, 12syl2anc 583 . 2 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴𝑉𝐵𝑉) → ((norm‘𝑇)‘(𝐹‘(𝐴(-g𝑆)𝐵))) ≤ ((𝑁𝐹) · ((norm‘𝑆)‘(𝐴(-g𝑆)𝐵))))
14 nghmrcl2 24775 . . . . 5 (𝐹 ∈ (𝑆 NGHom 𝑇) → 𝑇 ∈ NrmGrp)
15143ad2ant1 1133 . . . 4 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴𝑉𝐵𝑉) → 𝑇 ∈ NrmGrp)
16 nghmghm 24776 . . . . . . 7 (𝐹 ∈ (𝑆 NGHom 𝑇) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
17163ad2ant1 1133 . . . . . 6 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴𝑉𝐵𝑉) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
18 eqid 2740 . . . . . . 7 (Base‘𝑇) = (Base‘𝑇)
195, 18ghmf 19260 . . . . . 6 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:𝑉⟶(Base‘𝑇))
2017, 19syl 17 . . . . 5 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴𝑉𝐵𝑉) → 𝐹:𝑉⟶(Base‘𝑇))
21 simp2 1137 . . . . 5 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴𝑉𝐵𝑉) → 𝐴𝑉)
2220, 21ffvelcdmd 7119 . . . 4 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴𝑉𝐵𝑉) → (𝐹𝐴) ∈ (Base‘𝑇))
23 simp3 1138 . . . . 5 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴𝑉𝐵𝑉) → 𝐵𝑉)
2420, 23ffvelcdmd 7119 . . . 4 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴𝑉𝐵𝑉) → (𝐹𝐵) ∈ (Base‘𝑇))
25 eqid 2740 . . . . 5 (-g𝑇) = (-g𝑇)
26 nmods.d . . . . 5 𝐷 = (dist‘𝑇)
2711, 18, 25, 26ngpds 24638 . . . 4 ((𝑇 ∈ NrmGrp ∧ (𝐹𝐴) ∈ (Base‘𝑇) ∧ (𝐹𝐵) ∈ (Base‘𝑇)) → ((𝐹𝐴)𝐷(𝐹𝐵)) = ((norm‘𝑇)‘((𝐹𝐴)(-g𝑇)(𝐹𝐵))))
2815, 22, 24, 27syl3anc 1371 . . 3 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴𝑉𝐵𝑉) → ((𝐹𝐴)𝐷(𝐹𝐵)) = ((norm‘𝑇)‘((𝐹𝐴)(-g𝑇)(𝐹𝐵))))
295, 6, 25ghmsub 19264 . . . . 5 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐴𝑉𝐵𝑉) → (𝐹‘(𝐴(-g𝑆)𝐵)) = ((𝐹𝐴)(-g𝑇)(𝐹𝐵)))
3016, 29syl3an1 1163 . . . 4 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴𝑉𝐵𝑉) → (𝐹‘(𝐴(-g𝑆)𝐵)) = ((𝐹𝐴)(-g𝑇)(𝐹𝐵)))
3130fveq2d 6924 . . 3 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴𝑉𝐵𝑉) → ((norm‘𝑇)‘(𝐹‘(𝐴(-g𝑆)𝐵))) = ((norm‘𝑇)‘((𝐹𝐴)(-g𝑇)(𝐹𝐵))))
3228, 31eqtr4d 2783 . 2 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴𝑉𝐵𝑉) → ((𝐹𝐴)𝐷(𝐹𝐵)) = ((norm‘𝑇)‘(𝐹‘(𝐴(-g𝑆)𝐵))))
33 nmods.c . . . . 5 𝐶 = (dist‘𝑆)
3410, 5, 6, 33ngpds 24638 . . . 4 ((𝑆 ∈ NrmGrp ∧ 𝐴𝑉𝐵𝑉) → (𝐴𝐶𝐵) = ((norm‘𝑆)‘(𝐴(-g𝑆)𝐵)))
352, 34syl3an1 1163 . . 3 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴𝑉𝐵𝑉) → (𝐴𝐶𝐵) = ((norm‘𝑆)‘(𝐴(-g𝑆)𝐵)))
3635oveq2d 7464 . 2 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴𝑉𝐵𝑉) → ((𝑁𝐹) · (𝐴𝐶𝐵)) = ((𝑁𝐹) · ((norm‘𝑆)‘(𝐴(-g𝑆)𝐵))))
3713, 32, 363brtr4d 5198 1 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴𝑉𝐵𝑉) → ((𝐹𝐴)𝐷(𝐹𝐵)) ≤ ((𝑁𝐹) · (𝐴𝐶𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087   = wceq 1537  wcel 2108   class class class wbr 5166  wf 6569  cfv 6573  (class class class)co 7448   · cmul 11189  cle 11325  Basecbs 17258  distcds 17320  Grpcgrp 18973  -gcsg 18975   GrpHom cghm 19252  normcnm 24610  NrmGrpcngp 24611   normOp cnmo 24747   NGHom cnghm 24748
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-n0 12554  df-z 12640  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ico 13413  df-0g 17501  df-topgen 17503  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-minusg 18977  df-sbg 18978  df-ghm 19253  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-xms 24351  df-ms 24352  df-nm 24616  df-ngp 24617  df-nmo 24750  df-nghm 24751
This theorem is referenced by:  nghmcn  24787
  Copyright terms: Public domain W3C validator