![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nmods | Structured version Visualization version GIF version |
Description: Upper bound for the distance between the values of a bounded linear operator. (Contributed by Mario Carneiro, 22-Oct-2015.) |
Ref | Expression |
---|---|
nmods.n | ⊢ 𝑁 = (𝑆 normOp 𝑇) |
nmods.v | ⊢ 𝑉 = (Base‘𝑆) |
nmods.c | ⊢ 𝐶 = (dist‘𝑆) |
nmods.d | ⊢ 𝐷 = (dist‘𝑇) |
Ref | Expression |
---|---|
nmods | ⊢ ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ((𝐹‘𝐴)𝐷(𝐹‘𝐵)) ≤ ((𝑁‘𝐹) · (𝐴𝐶𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1133 | . . 3 ⊢ ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → 𝐹 ∈ (𝑆 NGHom 𝑇)) | |
2 | nghmrcl1 24740 | . . . . 5 ⊢ (𝐹 ∈ (𝑆 NGHom 𝑇) → 𝑆 ∈ NrmGrp) | |
3 | ngpgrp 24599 | . . . . 5 ⊢ (𝑆 ∈ NrmGrp → 𝑆 ∈ Grp) | |
4 | 2, 3 | syl 17 | . . . 4 ⊢ (𝐹 ∈ (𝑆 NGHom 𝑇) → 𝑆 ∈ Grp) |
5 | nmods.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑆) | |
6 | eqid 2726 | . . . . 5 ⊢ (-g‘𝑆) = (-g‘𝑆) | |
7 | 5, 6 | grpsubcl 19014 | . . . 4 ⊢ ((𝑆 ∈ Grp ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴(-g‘𝑆)𝐵) ∈ 𝑉) |
8 | 4, 7 | syl3an1 1160 | . . 3 ⊢ ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴(-g‘𝑆)𝐵) ∈ 𝑉) |
9 | nmods.n | . . . 4 ⊢ 𝑁 = (𝑆 normOp 𝑇) | |
10 | eqid 2726 | . . . 4 ⊢ (norm‘𝑆) = (norm‘𝑆) | |
11 | eqid 2726 | . . . 4 ⊢ (norm‘𝑇) = (norm‘𝑇) | |
12 | 9, 5, 10, 11 | nmoi 24736 | . . 3 ⊢ ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝐴(-g‘𝑆)𝐵) ∈ 𝑉) → ((norm‘𝑇)‘(𝐹‘(𝐴(-g‘𝑆)𝐵))) ≤ ((𝑁‘𝐹) · ((norm‘𝑆)‘(𝐴(-g‘𝑆)𝐵)))) |
13 | 1, 8, 12 | syl2anc 582 | . 2 ⊢ ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ((norm‘𝑇)‘(𝐹‘(𝐴(-g‘𝑆)𝐵))) ≤ ((𝑁‘𝐹) · ((norm‘𝑆)‘(𝐴(-g‘𝑆)𝐵)))) |
14 | nghmrcl2 24741 | . . . . 5 ⊢ (𝐹 ∈ (𝑆 NGHom 𝑇) → 𝑇 ∈ NrmGrp) | |
15 | 14 | 3ad2ant1 1130 | . . . 4 ⊢ ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → 𝑇 ∈ NrmGrp) |
16 | nghmghm 24742 | . . . . . . 7 ⊢ (𝐹 ∈ (𝑆 NGHom 𝑇) → 𝐹 ∈ (𝑆 GrpHom 𝑇)) | |
17 | 16 | 3ad2ant1 1130 | . . . . . 6 ⊢ ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → 𝐹 ∈ (𝑆 GrpHom 𝑇)) |
18 | eqid 2726 | . . . . . . 7 ⊢ (Base‘𝑇) = (Base‘𝑇) | |
19 | 5, 18 | ghmf 19214 | . . . . . 6 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:𝑉⟶(Base‘𝑇)) |
20 | 17, 19 | syl 17 | . . . . 5 ⊢ ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → 𝐹:𝑉⟶(Base‘𝑇)) |
21 | simp2 1134 | . . . . 5 ⊢ ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → 𝐴 ∈ 𝑉) | |
22 | 20, 21 | ffvelcdmd 7099 | . . . 4 ⊢ ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐹‘𝐴) ∈ (Base‘𝑇)) |
23 | simp3 1135 | . . . . 5 ⊢ ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → 𝐵 ∈ 𝑉) | |
24 | 20, 23 | ffvelcdmd 7099 | . . . 4 ⊢ ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐹‘𝐵) ∈ (Base‘𝑇)) |
25 | eqid 2726 | . . . . 5 ⊢ (-g‘𝑇) = (-g‘𝑇) | |
26 | nmods.d | . . . . 5 ⊢ 𝐷 = (dist‘𝑇) | |
27 | 11, 18, 25, 26 | ngpds 24604 | . . . 4 ⊢ ((𝑇 ∈ NrmGrp ∧ (𝐹‘𝐴) ∈ (Base‘𝑇) ∧ (𝐹‘𝐵) ∈ (Base‘𝑇)) → ((𝐹‘𝐴)𝐷(𝐹‘𝐵)) = ((norm‘𝑇)‘((𝐹‘𝐴)(-g‘𝑇)(𝐹‘𝐵)))) |
28 | 15, 22, 24, 27 | syl3anc 1368 | . . 3 ⊢ ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ((𝐹‘𝐴)𝐷(𝐹‘𝐵)) = ((norm‘𝑇)‘((𝐹‘𝐴)(-g‘𝑇)(𝐹‘𝐵)))) |
29 | 5, 6, 25 | ghmsub 19218 | . . . . 5 ⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐹‘(𝐴(-g‘𝑆)𝐵)) = ((𝐹‘𝐴)(-g‘𝑇)(𝐹‘𝐵))) |
30 | 16, 29 | syl3an1 1160 | . . . 4 ⊢ ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐹‘(𝐴(-g‘𝑆)𝐵)) = ((𝐹‘𝐴)(-g‘𝑇)(𝐹‘𝐵))) |
31 | 30 | fveq2d 6905 | . . 3 ⊢ ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ((norm‘𝑇)‘(𝐹‘(𝐴(-g‘𝑆)𝐵))) = ((norm‘𝑇)‘((𝐹‘𝐴)(-g‘𝑇)(𝐹‘𝐵)))) |
32 | 28, 31 | eqtr4d 2769 | . 2 ⊢ ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ((𝐹‘𝐴)𝐷(𝐹‘𝐵)) = ((norm‘𝑇)‘(𝐹‘(𝐴(-g‘𝑆)𝐵)))) |
33 | nmods.c | . . . . 5 ⊢ 𝐶 = (dist‘𝑆) | |
34 | 10, 5, 6, 33 | ngpds 24604 | . . . 4 ⊢ ((𝑆 ∈ NrmGrp ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴𝐶𝐵) = ((norm‘𝑆)‘(𝐴(-g‘𝑆)𝐵))) |
35 | 2, 34 | syl3an1 1160 | . . 3 ⊢ ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴𝐶𝐵) = ((norm‘𝑆)‘(𝐴(-g‘𝑆)𝐵))) |
36 | 35 | oveq2d 7440 | . 2 ⊢ ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ((𝑁‘𝐹) · (𝐴𝐶𝐵)) = ((𝑁‘𝐹) · ((norm‘𝑆)‘(𝐴(-g‘𝑆)𝐵)))) |
37 | 13, 32, 36 | 3brtr4d 5185 | 1 ⊢ ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ((𝐹‘𝐴)𝐷(𝐹‘𝐵)) ≤ ((𝑁‘𝐹) · (𝐴𝐶𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1084 = wceq 1534 ∈ wcel 2099 class class class wbr 5153 ⟶wf 6550 ‘cfv 6554 (class class class)co 7424 · cmul 11163 ≤ cle 11299 Basecbs 17213 distcds 17275 Grpcgrp 18928 -gcsg 18930 GrpHom cghm 19206 normcnm 24576 NrmGrpcngp 24577 normOp cnmo 24713 NGHom cnghm 24714 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11214 ax-resscn 11215 ax-1cn 11216 ax-icn 11217 ax-addcl 11218 ax-addrcl 11219 ax-mulcl 11220 ax-mulrcl 11221 ax-mulcom 11222 ax-addass 11223 ax-mulass 11224 ax-distr 11225 ax-i2m1 11226 ax-1ne0 11227 ax-1rid 11228 ax-rnegex 11229 ax-rrecex 11230 ax-cnre 11231 ax-pre-lttri 11232 ax-pre-lttrn 11233 ax-pre-ltadd 11234 ax-pre-mulgt0 11235 ax-pre-sup 11236 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-tr 5271 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6312 df-ord 6379 df-on 6380 df-lim 6381 df-suc 6382 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7877 df-1st 8003 df-2nd 8004 df-frecs 8296 df-wrecs 8327 df-recs 8401 df-rdg 8440 df-er 8734 df-map 8857 df-en 8975 df-dom 8976 df-sdom 8977 df-sup 9485 df-inf 9486 df-pnf 11300 df-mnf 11301 df-xr 11302 df-ltxr 11303 df-le 11304 df-sub 11496 df-neg 11497 df-div 11922 df-nn 12265 df-2 12327 df-n0 12525 df-z 12611 df-uz 12875 df-q 12985 df-rp 13029 df-xneg 13146 df-xadd 13147 df-xmul 13148 df-ico 13384 df-0g 17456 df-topgen 17458 df-mgm 18633 df-sgrp 18712 df-mnd 18728 df-grp 18931 df-minusg 18932 df-sbg 18933 df-ghm 19207 df-psmet 21335 df-xmet 21336 df-met 21337 df-bl 21338 df-mopn 21339 df-top 22887 df-topon 22904 df-topsp 22926 df-bases 22940 df-xms 24317 df-ms 24318 df-nm 24582 df-ngp 24583 df-nmo 24716 df-nghm 24717 |
This theorem is referenced by: nghmcn 24753 |
Copyright terms: Public domain | W3C validator |