MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmods Structured version   Visualization version   GIF version

Theorem nmods 24639
Description: Upper bound for the distance between the values of a bounded linear operator. (Contributed by Mario Carneiro, 22-Oct-2015.)
Hypotheses
Ref Expression
nmods.n 𝑁 = (𝑆 normOp 𝑇)
nmods.v 𝑉 = (Base‘𝑆)
nmods.c 𝐶 = (dist‘𝑆)
nmods.d 𝐷 = (dist‘𝑇)
Assertion
Ref Expression
nmods ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴𝑉𝐵𝑉) → ((𝐹𝐴)𝐷(𝐹𝐵)) ≤ ((𝑁𝐹) · (𝐴𝐶𝐵)))

Proof of Theorem nmods
StepHypRef Expression
1 simp1 1136 . . 3 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴𝑉𝐵𝑉) → 𝐹 ∈ (𝑆 NGHom 𝑇))
2 nghmrcl1 24627 . . . . 5 (𝐹 ∈ (𝑆 NGHom 𝑇) → 𝑆 ∈ NrmGrp)
3 ngpgrp 24494 . . . . 5 (𝑆 ∈ NrmGrp → 𝑆 ∈ Grp)
42, 3syl 17 . . . 4 (𝐹 ∈ (𝑆 NGHom 𝑇) → 𝑆 ∈ Grp)
5 nmods.v . . . . 5 𝑉 = (Base‘𝑆)
6 eqid 2730 . . . . 5 (-g𝑆) = (-g𝑆)
75, 6grpsubcl 18959 . . . 4 ((𝑆 ∈ Grp ∧ 𝐴𝑉𝐵𝑉) → (𝐴(-g𝑆)𝐵) ∈ 𝑉)
84, 7syl3an1 1163 . . 3 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴𝑉𝐵𝑉) → (𝐴(-g𝑆)𝐵) ∈ 𝑉)
9 nmods.n . . . 4 𝑁 = (𝑆 normOp 𝑇)
10 eqid 2730 . . . 4 (norm‘𝑆) = (norm‘𝑆)
11 eqid 2730 . . . 4 (norm‘𝑇) = (norm‘𝑇)
129, 5, 10, 11nmoi 24623 . . 3 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝐴(-g𝑆)𝐵) ∈ 𝑉) → ((norm‘𝑇)‘(𝐹‘(𝐴(-g𝑆)𝐵))) ≤ ((𝑁𝐹) · ((norm‘𝑆)‘(𝐴(-g𝑆)𝐵))))
131, 8, 12syl2anc 584 . 2 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴𝑉𝐵𝑉) → ((norm‘𝑇)‘(𝐹‘(𝐴(-g𝑆)𝐵))) ≤ ((𝑁𝐹) · ((norm‘𝑆)‘(𝐴(-g𝑆)𝐵))))
14 nghmrcl2 24628 . . . . 5 (𝐹 ∈ (𝑆 NGHom 𝑇) → 𝑇 ∈ NrmGrp)
15143ad2ant1 1133 . . . 4 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴𝑉𝐵𝑉) → 𝑇 ∈ NrmGrp)
16 nghmghm 24629 . . . . . . 7 (𝐹 ∈ (𝑆 NGHom 𝑇) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
17163ad2ant1 1133 . . . . . 6 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴𝑉𝐵𝑉) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
18 eqid 2730 . . . . . . 7 (Base‘𝑇) = (Base‘𝑇)
195, 18ghmf 19159 . . . . . 6 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:𝑉⟶(Base‘𝑇))
2017, 19syl 17 . . . . 5 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴𝑉𝐵𝑉) → 𝐹:𝑉⟶(Base‘𝑇))
21 simp2 1137 . . . . 5 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴𝑉𝐵𝑉) → 𝐴𝑉)
2220, 21ffvelcdmd 7060 . . . 4 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴𝑉𝐵𝑉) → (𝐹𝐴) ∈ (Base‘𝑇))
23 simp3 1138 . . . . 5 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴𝑉𝐵𝑉) → 𝐵𝑉)
2420, 23ffvelcdmd 7060 . . . 4 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴𝑉𝐵𝑉) → (𝐹𝐵) ∈ (Base‘𝑇))
25 eqid 2730 . . . . 5 (-g𝑇) = (-g𝑇)
26 nmods.d . . . . 5 𝐷 = (dist‘𝑇)
2711, 18, 25, 26ngpds 24499 . . . 4 ((𝑇 ∈ NrmGrp ∧ (𝐹𝐴) ∈ (Base‘𝑇) ∧ (𝐹𝐵) ∈ (Base‘𝑇)) → ((𝐹𝐴)𝐷(𝐹𝐵)) = ((norm‘𝑇)‘((𝐹𝐴)(-g𝑇)(𝐹𝐵))))
2815, 22, 24, 27syl3anc 1373 . . 3 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴𝑉𝐵𝑉) → ((𝐹𝐴)𝐷(𝐹𝐵)) = ((norm‘𝑇)‘((𝐹𝐴)(-g𝑇)(𝐹𝐵))))
295, 6, 25ghmsub 19163 . . . . 5 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐴𝑉𝐵𝑉) → (𝐹‘(𝐴(-g𝑆)𝐵)) = ((𝐹𝐴)(-g𝑇)(𝐹𝐵)))
3016, 29syl3an1 1163 . . . 4 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴𝑉𝐵𝑉) → (𝐹‘(𝐴(-g𝑆)𝐵)) = ((𝐹𝐴)(-g𝑇)(𝐹𝐵)))
3130fveq2d 6865 . . 3 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴𝑉𝐵𝑉) → ((norm‘𝑇)‘(𝐹‘(𝐴(-g𝑆)𝐵))) = ((norm‘𝑇)‘((𝐹𝐴)(-g𝑇)(𝐹𝐵))))
3228, 31eqtr4d 2768 . 2 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴𝑉𝐵𝑉) → ((𝐹𝐴)𝐷(𝐹𝐵)) = ((norm‘𝑇)‘(𝐹‘(𝐴(-g𝑆)𝐵))))
33 nmods.c . . . . 5 𝐶 = (dist‘𝑆)
3410, 5, 6, 33ngpds 24499 . . . 4 ((𝑆 ∈ NrmGrp ∧ 𝐴𝑉𝐵𝑉) → (𝐴𝐶𝐵) = ((norm‘𝑆)‘(𝐴(-g𝑆)𝐵)))
352, 34syl3an1 1163 . . 3 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴𝑉𝐵𝑉) → (𝐴𝐶𝐵) = ((norm‘𝑆)‘(𝐴(-g𝑆)𝐵)))
3635oveq2d 7406 . 2 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴𝑉𝐵𝑉) → ((𝑁𝐹) · (𝐴𝐶𝐵)) = ((𝑁𝐹) · ((norm‘𝑆)‘(𝐴(-g𝑆)𝐵))))
3713, 32, 363brtr4d 5142 1 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴𝑉𝐵𝑉) → ((𝐹𝐴)𝐷(𝐹𝐵)) ≤ ((𝑁𝐹) · (𝐴𝐶𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5110  wf 6510  cfv 6514  (class class class)co 7390   · cmul 11080  cle 11216  Basecbs 17186  distcds 17236  Grpcgrp 18872  -gcsg 18874   GrpHom cghm 19151  normcnm 24471  NrmGrpcngp 24472   normOp cnmo 24600   NGHom cnghm 24601
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-n0 12450  df-z 12537  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ico 13319  df-0g 17411  df-topgen 17413  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-grp 18875  df-minusg 18876  df-sbg 18877  df-ghm 19152  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-xms 24215  df-ms 24216  df-nm 24477  df-ngp 24478  df-nmo 24603  df-nghm 24604
This theorem is referenced by:  nghmcn  24640
  Copyright terms: Public domain W3C validator