![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ngpsubcan | Structured version Visualization version GIF version |
Description: Cancel right subtraction inside a distance calculation. (Contributed by Mario Carneiro, 4-Oct-2015.) |
Ref | Expression |
---|---|
ngpsubcan.x | ⊢ 𝑋 = (Base‘𝐺) |
ngpsubcan.m | ⊢ − = (-g‘𝐺) |
ngpsubcan.d | ⊢ 𝐷 = (dist‘𝐺) |
Ref | Expression |
---|---|
ngpsubcan | ⊢ ((𝐺 ∈ NrmGrp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴 − 𝐶)𝐷(𝐵 − 𝐶)) = (𝐴𝐷𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr1 1191 | . . . 4 ⊢ ((𝐺 ∈ NrmGrp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → 𝐴 ∈ 𝑋) | |
2 | simpr3 1193 | . . . 4 ⊢ ((𝐺 ∈ NrmGrp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → 𝐶 ∈ 𝑋) | |
3 | ngpsubcan.x | . . . . 5 ⊢ 𝑋 = (Base‘𝐺) | |
4 | eqid 2726 | . . . . 5 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
5 | eqid 2726 | . . . . 5 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
6 | ngpsubcan.m | . . . . 5 ⊢ − = (-g‘𝐺) | |
7 | 3, 4, 5, 6 | grpsubval 18980 | . . . 4 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐴 − 𝐶) = (𝐴(+g‘𝐺)((invg‘𝐺)‘𝐶))) |
8 | 1, 2, 7 | syl2anc 582 | . . 3 ⊢ ((𝐺 ∈ NrmGrp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴 − 𝐶) = (𝐴(+g‘𝐺)((invg‘𝐺)‘𝐶))) |
9 | simpr2 1192 | . . . 4 ⊢ ((𝐺 ∈ NrmGrp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → 𝐵 ∈ 𝑋) | |
10 | 3, 4, 5, 6 | grpsubval 18980 | . . . 4 ⊢ ((𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐵 − 𝐶) = (𝐵(+g‘𝐺)((invg‘𝐺)‘𝐶))) |
11 | 9, 2, 10 | syl2anc 582 | . . 3 ⊢ ((𝐺 ∈ NrmGrp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐵 − 𝐶) = (𝐵(+g‘𝐺)((invg‘𝐺)‘𝐶))) |
12 | 8, 11 | oveq12d 7442 | . 2 ⊢ ((𝐺 ∈ NrmGrp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴 − 𝐶)𝐷(𝐵 − 𝐶)) = ((𝐴(+g‘𝐺)((invg‘𝐺)‘𝐶))𝐷(𝐵(+g‘𝐺)((invg‘𝐺)‘𝐶)))) |
13 | simpl 481 | . . 3 ⊢ ((𝐺 ∈ NrmGrp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → 𝐺 ∈ NrmGrp) | |
14 | ngpgrp 24599 | . . . 4 ⊢ (𝐺 ∈ NrmGrp → 𝐺 ∈ Grp) | |
15 | 3, 5 | grpinvcl 18982 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐶 ∈ 𝑋) → ((invg‘𝐺)‘𝐶) ∈ 𝑋) |
16 | 14, 2, 15 | syl2an2r 683 | . . 3 ⊢ ((𝐺 ∈ NrmGrp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((invg‘𝐺)‘𝐶) ∈ 𝑋) |
17 | ngpsubcan.d | . . . 4 ⊢ 𝐷 = (dist‘𝐺) | |
18 | 3, 4, 17 | ngprcan 24610 | . . 3 ⊢ ((𝐺 ∈ NrmGrp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ ((invg‘𝐺)‘𝐶) ∈ 𝑋)) → ((𝐴(+g‘𝐺)((invg‘𝐺)‘𝐶))𝐷(𝐵(+g‘𝐺)((invg‘𝐺)‘𝐶))) = (𝐴𝐷𝐵)) |
19 | 13, 1, 9, 16, 18 | syl13anc 1369 | . 2 ⊢ ((𝐺 ∈ NrmGrp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴(+g‘𝐺)((invg‘𝐺)‘𝐶))𝐷(𝐵(+g‘𝐺)((invg‘𝐺)‘𝐶))) = (𝐴𝐷𝐵)) |
20 | 12, 19 | eqtrd 2766 | 1 ⊢ ((𝐺 ∈ NrmGrp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴 − 𝐶)𝐷(𝐵 − 𝐶)) = (𝐴𝐷𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1534 ∈ wcel 2099 ‘cfv 6554 (class class class)co 7424 Basecbs 17213 +gcplusg 17266 distcds 17275 Grpcgrp 18928 invgcminusg 18929 -gcsg 18930 NrmGrpcngp 24577 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11214 ax-resscn 11215 ax-1cn 11216 ax-icn 11217 ax-addcl 11218 ax-addrcl 11219 ax-mulcl 11220 ax-mulrcl 11221 ax-mulcom 11222 ax-addass 11223 ax-mulass 11224 ax-distr 11225 ax-i2m1 11226 ax-1ne0 11227 ax-1rid 11228 ax-rnegex 11229 ax-rrecex 11230 ax-cnre 11231 ax-pre-lttri 11232 ax-pre-lttrn 11233 ax-pre-ltadd 11234 ax-pre-mulgt0 11235 ax-pre-sup 11236 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-tr 5271 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6312 df-ord 6379 df-on 6380 df-lim 6381 df-suc 6382 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7877 df-1st 8003 df-2nd 8004 df-frecs 8296 df-wrecs 8327 df-recs 8401 df-rdg 8440 df-er 8734 df-map 8857 df-en 8975 df-dom 8976 df-sdom 8977 df-sup 9485 df-inf 9486 df-pnf 11300 df-mnf 11301 df-xr 11302 df-ltxr 11303 df-le 11304 df-sub 11496 df-neg 11497 df-div 11922 df-nn 12265 df-2 12327 df-n0 12525 df-z 12611 df-uz 12875 df-q 12985 df-rp 13029 df-xneg 13146 df-xadd 13147 df-xmul 13148 df-0g 17456 df-topgen 17458 df-mgm 18633 df-sgrp 18712 df-mnd 18728 df-grp 18931 df-minusg 18932 df-sbg 18933 df-psmet 21335 df-xmet 21336 df-met 21337 df-bl 21338 df-mopn 21339 df-top 22887 df-topon 22904 df-topsp 22926 df-bases 22940 df-xms 24317 df-ms 24318 df-nm 24582 df-ngp 24583 |
This theorem is referenced by: ngptgp 24636 |
Copyright terms: Public domain | W3C validator |