Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ngpsubcan | Structured version Visualization version GIF version |
Description: Cancel right subtraction inside a distance calculation. (Contributed by Mario Carneiro, 4-Oct-2015.) |
Ref | Expression |
---|---|
ngpsubcan.x | ⊢ 𝑋 = (Base‘𝐺) |
ngpsubcan.m | ⊢ − = (-g‘𝐺) |
ngpsubcan.d | ⊢ 𝐷 = (dist‘𝐺) |
Ref | Expression |
---|---|
ngpsubcan | ⊢ ((𝐺 ∈ NrmGrp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴 − 𝐶)𝐷(𝐵 − 𝐶)) = (𝐴𝐷𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr1 1193 | . . . 4 ⊢ ((𝐺 ∈ NrmGrp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → 𝐴 ∈ 𝑋) | |
2 | simpr3 1195 | . . . 4 ⊢ ((𝐺 ∈ NrmGrp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → 𝐶 ∈ 𝑋) | |
3 | ngpsubcan.x | . . . . 5 ⊢ 𝑋 = (Base‘𝐺) | |
4 | eqid 2738 | . . . . 5 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
5 | eqid 2738 | . . . . 5 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
6 | ngpsubcan.m | . . . . 5 ⊢ − = (-g‘𝐺) | |
7 | 3, 4, 5, 6 | grpsubval 18625 | . . . 4 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐴 − 𝐶) = (𝐴(+g‘𝐺)((invg‘𝐺)‘𝐶))) |
8 | 1, 2, 7 | syl2anc 584 | . . 3 ⊢ ((𝐺 ∈ NrmGrp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴 − 𝐶) = (𝐴(+g‘𝐺)((invg‘𝐺)‘𝐶))) |
9 | simpr2 1194 | . . . 4 ⊢ ((𝐺 ∈ NrmGrp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → 𝐵 ∈ 𝑋) | |
10 | 3, 4, 5, 6 | grpsubval 18625 | . . . 4 ⊢ ((𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐵 − 𝐶) = (𝐵(+g‘𝐺)((invg‘𝐺)‘𝐶))) |
11 | 9, 2, 10 | syl2anc 584 | . . 3 ⊢ ((𝐺 ∈ NrmGrp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐵 − 𝐶) = (𝐵(+g‘𝐺)((invg‘𝐺)‘𝐶))) |
12 | 8, 11 | oveq12d 7293 | . 2 ⊢ ((𝐺 ∈ NrmGrp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴 − 𝐶)𝐷(𝐵 − 𝐶)) = ((𝐴(+g‘𝐺)((invg‘𝐺)‘𝐶))𝐷(𝐵(+g‘𝐺)((invg‘𝐺)‘𝐶)))) |
13 | simpl 483 | . . 3 ⊢ ((𝐺 ∈ NrmGrp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → 𝐺 ∈ NrmGrp) | |
14 | ngpgrp 23755 | . . . 4 ⊢ (𝐺 ∈ NrmGrp → 𝐺 ∈ Grp) | |
15 | 3, 5 | grpinvcl 18627 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐶 ∈ 𝑋) → ((invg‘𝐺)‘𝐶) ∈ 𝑋) |
16 | 14, 2, 15 | syl2an2r 682 | . . 3 ⊢ ((𝐺 ∈ NrmGrp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((invg‘𝐺)‘𝐶) ∈ 𝑋) |
17 | ngpsubcan.d | . . . 4 ⊢ 𝐷 = (dist‘𝐺) | |
18 | 3, 4, 17 | ngprcan 23766 | . . 3 ⊢ ((𝐺 ∈ NrmGrp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ ((invg‘𝐺)‘𝐶) ∈ 𝑋)) → ((𝐴(+g‘𝐺)((invg‘𝐺)‘𝐶))𝐷(𝐵(+g‘𝐺)((invg‘𝐺)‘𝐶))) = (𝐴𝐷𝐵)) |
19 | 13, 1, 9, 16, 18 | syl13anc 1371 | . 2 ⊢ ((𝐺 ∈ NrmGrp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴(+g‘𝐺)((invg‘𝐺)‘𝐶))𝐷(𝐵(+g‘𝐺)((invg‘𝐺)‘𝐶))) = (𝐴𝐷𝐵)) |
20 | 12, 19 | eqtrd 2778 | 1 ⊢ ((𝐺 ∈ NrmGrp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴 − 𝐶)𝐷(𝐵 − 𝐶)) = (𝐴𝐷𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 +gcplusg 16962 distcds 16971 Grpcgrp 18577 invgcminusg 18578 -gcsg 18579 NrmGrpcngp 23733 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-map 8617 df-en 8734 df-dom 8735 df-sdom 8736 df-sup 9201 df-inf 9202 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-n0 12234 df-z 12320 df-uz 12583 df-q 12689 df-rp 12731 df-xneg 12848 df-xadd 12849 df-xmul 12850 df-0g 17152 df-topgen 17154 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-grp 18580 df-minusg 18581 df-sbg 18582 df-psmet 20589 df-xmet 20590 df-met 20591 df-bl 20592 df-mopn 20593 df-top 22043 df-topon 22060 df-topsp 22082 df-bases 22096 df-xms 23473 df-ms 23474 df-nm 23738 df-ngp 23739 |
This theorem is referenced by: ngptgp 23792 |
Copyright terms: Public domain | W3C validator |