Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ngpsubcan | Structured version Visualization version GIF version |
Description: Cancel right subtraction inside a distance calculation. (Contributed by Mario Carneiro, 4-Oct-2015.) |
Ref | Expression |
---|---|
ngpsubcan.x | ⊢ 𝑋 = (Base‘𝐺) |
ngpsubcan.m | ⊢ − = (-g‘𝐺) |
ngpsubcan.d | ⊢ 𝐷 = (dist‘𝐺) |
Ref | Expression |
---|---|
ngpsubcan | ⊢ ((𝐺 ∈ NrmGrp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴 − 𝐶)𝐷(𝐵 − 𝐶)) = (𝐴𝐷𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr1 1196 | . . . 4 ⊢ ((𝐺 ∈ NrmGrp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → 𝐴 ∈ 𝑋) | |
2 | simpr3 1198 | . . . 4 ⊢ ((𝐺 ∈ NrmGrp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → 𝐶 ∈ 𝑋) | |
3 | ngpsubcan.x | . . . . 5 ⊢ 𝑋 = (Base‘𝐺) | |
4 | eqid 2737 | . . . . 5 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
5 | eqid 2737 | . . . . 5 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
6 | ngpsubcan.m | . . . . 5 ⊢ − = (-g‘𝐺) | |
7 | 3, 4, 5, 6 | grpsubval 18413 | . . . 4 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐴 − 𝐶) = (𝐴(+g‘𝐺)((invg‘𝐺)‘𝐶))) |
8 | 1, 2, 7 | syl2anc 587 | . . 3 ⊢ ((𝐺 ∈ NrmGrp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴 − 𝐶) = (𝐴(+g‘𝐺)((invg‘𝐺)‘𝐶))) |
9 | simpr2 1197 | . . . 4 ⊢ ((𝐺 ∈ NrmGrp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → 𝐵 ∈ 𝑋) | |
10 | 3, 4, 5, 6 | grpsubval 18413 | . . . 4 ⊢ ((𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐵 − 𝐶) = (𝐵(+g‘𝐺)((invg‘𝐺)‘𝐶))) |
11 | 9, 2, 10 | syl2anc 587 | . . 3 ⊢ ((𝐺 ∈ NrmGrp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐵 − 𝐶) = (𝐵(+g‘𝐺)((invg‘𝐺)‘𝐶))) |
12 | 8, 11 | oveq12d 7231 | . 2 ⊢ ((𝐺 ∈ NrmGrp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴 − 𝐶)𝐷(𝐵 − 𝐶)) = ((𝐴(+g‘𝐺)((invg‘𝐺)‘𝐶))𝐷(𝐵(+g‘𝐺)((invg‘𝐺)‘𝐶)))) |
13 | simpl 486 | . . 3 ⊢ ((𝐺 ∈ NrmGrp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → 𝐺 ∈ NrmGrp) | |
14 | ngpgrp 23497 | . . . 4 ⊢ (𝐺 ∈ NrmGrp → 𝐺 ∈ Grp) | |
15 | 3, 5 | grpinvcl 18415 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐶 ∈ 𝑋) → ((invg‘𝐺)‘𝐶) ∈ 𝑋) |
16 | 14, 2, 15 | syl2an2r 685 | . . 3 ⊢ ((𝐺 ∈ NrmGrp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((invg‘𝐺)‘𝐶) ∈ 𝑋) |
17 | ngpsubcan.d | . . . 4 ⊢ 𝐷 = (dist‘𝐺) | |
18 | 3, 4, 17 | ngprcan 23508 | . . 3 ⊢ ((𝐺 ∈ NrmGrp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ ((invg‘𝐺)‘𝐶) ∈ 𝑋)) → ((𝐴(+g‘𝐺)((invg‘𝐺)‘𝐶))𝐷(𝐵(+g‘𝐺)((invg‘𝐺)‘𝐶))) = (𝐴𝐷𝐵)) |
19 | 13, 1, 9, 16, 18 | syl13anc 1374 | . 2 ⊢ ((𝐺 ∈ NrmGrp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴(+g‘𝐺)((invg‘𝐺)‘𝐶))𝐷(𝐵(+g‘𝐺)((invg‘𝐺)‘𝐶))) = (𝐴𝐷𝐵)) |
20 | 12, 19 | eqtrd 2777 | 1 ⊢ ((𝐺 ∈ NrmGrp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴 − 𝐶)𝐷(𝐵 − 𝐶)) = (𝐴𝐷𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1089 = wceq 1543 ∈ wcel 2110 ‘cfv 6380 (class class class)co 7213 Basecbs 16760 +gcplusg 16802 distcds 16811 Grpcgrp 18365 invgcminusg 18366 -gcsg 18367 NrmGrpcngp 23475 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 ax-pre-sup 10807 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-1st 7761 df-2nd 7762 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-er 8391 df-map 8510 df-en 8627 df-dom 8628 df-sdom 8629 df-sup 9058 df-inf 9059 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-div 11490 df-nn 11831 df-2 11893 df-n0 12091 df-z 12177 df-uz 12439 df-q 12545 df-rp 12587 df-xneg 12704 df-xadd 12705 df-xmul 12706 df-0g 16946 df-topgen 16948 df-mgm 18114 df-sgrp 18163 df-mnd 18174 df-grp 18368 df-minusg 18369 df-sbg 18370 df-psmet 20355 df-xmet 20356 df-met 20357 df-bl 20358 df-mopn 20359 df-top 21791 df-topon 21808 df-topsp 21830 df-bases 21843 df-xms 23218 df-ms 23219 df-nm 23480 df-ngp 23481 |
This theorem is referenced by: ngptgp 23534 |
Copyright terms: Public domain | W3C validator |