![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ngpsubcan | Structured version Visualization version GIF version |
Description: Cancel right subtraction inside a distance calculation. (Contributed by Mario Carneiro, 4-Oct-2015.) |
Ref | Expression |
---|---|
ngpsubcan.x | β’ π = (BaseβπΊ) |
ngpsubcan.m | β’ β = (-gβπΊ) |
ngpsubcan.d | β’ π· = (distβπΊ) |
Ref | Expression |
---|---|
ngpsubcan | β’ ((πΊ β NrmGrp β§ (π΄ β π β§ π΅ β π β§ πΆ β π)) β ((π΄ β πΆ)π·(π΅ β πΆ)) = (π΄π·π΅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr1 1191 | . . . 4 β’ ((πΊ β NrmGrp β§ (π΄ β π β§ π΅ β π β§ πΆ β π)) β π΄ β π) | |
2 | simpr3 1193 | . . . 4 β’ ((πΊ β NrmGrp β§ (π΄ β π β§ π΅ β π β§ πΆ β π)) β πΆ β π) | |
3 | ngpsubcan.x | . . . . 5 β’ π = (BaseβπΊ) | |
4 | eqid 2728 | . . . . 5 β’ (+gβπΊ) = (+gβπΊ) | |
5 | eqid 2728 | . . . . 5 β’ (invgβπΊ) = (invgβπΊ) | |
6 | ngpsubcan.m | . . . . 5 β’ β = (-gβπΊ) | |
7 | 3, 4, 5, 6 | grpsubval 18949 | . . . 4 β’ ((π΄ β π β§ πΆ β π) β (π΄ β πΆ) = (π΄(+gβπΊ)((invgβπΊ)βπΆ))) |
8 | 1, 2, 7 | syl2anc 582 | . . 3 β’ ((πΊ β NrmGrp β§ (π΄ β π β§ π΅ β π β§ πΆ β π)) β (π΄ β πΆ) = (π΄(+gβπΊ)((invgβπΊ)βπΆ))) |
9 | simpr2 1192 | . . . 4 β’ ((πΊ β NrmGrp β§ (π΄ β π β§ π΅ β π β§ πΆ β π)) β π΅ β π) | |
10 | 3, 4, 5, 6 | grpsubval 18949 | . . . 4 β’ ((π΅ β π β§ πΆ β π) β (π΅ β πΆ) = (π΅(+gβπΊ)((invgβπΊ)βπΆ))) |
11 | 9, 2, 10 | syl2anc 582 | . . 3 β’ ((πΊ β NrmGrp β§ (π΄ β π β§ π΅ β π β§ πΆ β π)) β (π΅ β πΆ) = (π΅(+gβπΊ)((invgβπΊ)βπΆ))) |
12 | 8, 11 | oveq12d 7444 | . 2 β’ ((πΊ β NrmGrp β§ (π΄ β π β§ π΅ β π β§ πΆ β π)) β ((π΄ β πΆ)π·(π΅ β πΆ)) = ((π΄(+gβπΊ)((invgβπΊ)βπΆ))π·(π΅(+gβπΊ)((invgβπΊ)βπΆ)))) |
13 | simpl 481 | . . 3 β’ ((πΊ β NrmGrp β§ (π΄ β π β§ π΅ β π β§ πΆ β π)) β πΊ β NrmGrp) | |
14 | ngpgrp 24528 | . . . 4 β’ (πΊ β NrmGrp β πΊ β Grp) | |
15 | 3, 5 | grpinvcl 18951 | . . . 4 β’ ((πΊ β Grp β§ πΆ β π) β ((invgβπΊ)βπΆ) β π) |
16 | 14, 2, 15 | syl2an2r 683 | . . 3 β’ ((πΊ β NrmGrp β§ (π΄ β π β§ π΅ β π β§ πΆ β π)) β ((invgβπΊ)βπΆ) β π) |
17 | ngpsubcan.d | . . . 4 β’ π· = (distβπΊ) | |
18 | 3, 4, 17 | ngprcan 24539 | . . 3 β’ ((πΊ β NrmGrp β§ (π΄ β π β§ π΅ β π β§ ((invgβπΊ)βπΆ) β π)) β ((π΄(+gβπΊ)((invgβπΊ)βπΆ))π·(π΅(+gβπΊ)((invgβπΊ)βπΆ))) = (π΄π·π΅)) |
19 | 13, 1, 9, 16, 18 | syl13anc 1369 | . 2 β’ ((πΊ β NrmGrp β§ (π΄ β π β§ π΅ β π β§ πΆ β π)) β ((π΄(+gβπΊ)((invgβπΊ)βπΆ))π·(π΅(+gβπΊ)((invgβπΊ)βπΆ))) = (π΄π·π΅)) |
20 | 12, 19 | eqtrd 2768 | 1 β’ ((πΊ β NrmGrp β§ (π΄ β π β§ π΅ β π β§ πΆ β π)) β ((π΄ β πΆ)π·(π΅ β πΆ)) = (π΄π·π΅)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 β§ w3a 1084 = wceq 1533 β wcel 2098 βcfv 6553 (class class class)co 7426 Basecbs 17187 +gcplusg 17240 distcds 17249 Grpcgrp 18897 invgcminusg 18898 -gcsg 18899 NrmGrpcngp 24506 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11202 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-mulcom 11210 ax-addass 11211 ax-mulass 11212 ax-distr 11213 ax-i2m1 11214 ax-1ne0 11215 ax-1rid 11216 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 ax-pre-mulgt0 11223 ax-pre-sup 11224 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7877 df-1st 7999 df-2nd 8000 df-frecs 8293 df-wrecs 8324 df-recs 8398 df-rdg 8437 df-er 8731 df-map 8853 df-en 8971 df-dom 8972 df-sdom 8973 df-sup 9473 df-inf 9474 df-pnf 11288 df-mnf 11289 df-xr 11290 df-ltxr 11291 df-le 11292 df-sub 11484 df-neg 11485 df-div 11910 df-nn 12251 df-2 12313 df-n0 12511 df-z 12597 df-uz 12861 df-q 12971 df-rp 13015 df-xneg 13132 df-xadd 13133 df-xmul 13134 df-0g 17430 df-topgen 17432 df-mgm 18607 df-sgrp 18686 df-mnd 18702 df-grp 18900 df-minusg 18901 df-sbg 18902 df-psmet 21278 df-xmet 21279 df-met 21280 df-bl 21281 df-mopn 21282 df-top 22816 df-topon 22833 df-topsp 22855 df-bases 22869 df-xms 24246 df-ms 24247 df-nm 24511 df-ngp 24512 |
This theorem is referenced by: ngptgp 24565 |
Copyright terms: Public domain | W3C validator |