Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nm2dif | Structured version Visualization version GIF version |
Description: Inequality for the difference of norms. (Contributed by Mario Carneiro, 6-Oct-2015.) |
Ref | Expression |
---|---|
nmf.x | ⊢ 𝑋 = (Base‘𝐺) |
nmf.n | ⊢ 𝑁 = (norm‘𝐺) |
nmmtri.m | ⊢ − = (-g‘𝐺) |
Ref | Expression |
---|---|
nm2dif | ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝑁‘𝐴) − (𝑁‘𝐵)) ≤ (𝑁‘(𝐴 − 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nmf.x | . . . . 5 ⊢ 𝑋 = (Base‘𝐺) | |
2 | nmf.n | . . . . 5 ⊢ 𝑁 = (norm‘𝐺) | |
3 | 1, 2 | nmcl 23323 | . . . 4 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋) → (𝑁‘𝐴) ∈ ℝ) |
4 | 3 | 3adant3 1129 | . . 3 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑁‘𝐴) ∈ ℝ) |
5 | 1, 2 | nmcl 23323 | . . . 4 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐵 ∈ 𝑋) → (𝑁‘𝐵) ∈ ℝ) |
6 | 5 | 3adant2 1128 | . . 3 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑁‘𝐵) ∈ ℝ) |
7 | 4, 6 | resubcld 11111 | . 2 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝑁‘𝐴) − (𝑁‘𝐵)) ∈ ℝ) |
8 | 7 | recnd 10712 | . . 3 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝑁‘𝐴) − (𝑁‘𝐵)) ∈ ℂ) |
9 | 8 | abscld 14849 | . 2 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (abs‘((𝑁‘𝐴) − (𝑁‘𝐵))) ∈ ℝ) |
10 | simp1 1133 | . . 3 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 𝐺 ∈ NrmGrp) | |
11 | ngpgrp 23306 | . . . 4 ⊢ (𝐺 ∈ NrmGrp → 𝐺 ∈ Grp) | |
12 | nmmtri.m | . . . . 5 ⊢ − = (-g‘𝐺) | |
13 | 1, 12 | grpsubcl 18251 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴 − 𝐵) ∈ 𝑋) |
14 | 11, 13 | syl3an1 1160 | . . 3 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴 − 𝐵) ∈ 𝑋) |
15 | 1, 2 | nmcl 23323 | . . 3 ⊢ ((𝐺 ∈ NrmGrp ∧ (𝐴 − 𝐵) ∈ 𝑋) → (𝑁‘(𝐴 − 𝐵)) ∈ ℝ) |
16 | 10, 14, 15 | syl2anc 587 | . 2 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑁‘(𝐴 − 𝐵)) ∈ ℝ) |
17 | 7 | leabsd 14827 | . 2 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝑁‘𝐴) − (𝑁‘𝐵)) ≤ (abs‘((𝑁‘𝐴) − (𝑁‘𝐵)))) |
18 | 1, 2, 12 | nmrtri 23331 | . 2 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (abs‘((𝑁‘𝐴) − (𝑁‘𝐵))) ≤ (𝑁‘(𝐴 − 𝐵))) |
19 | 7, 9, 16, 17, 18 | letrd 10840 | 1 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝑁‘𝐴) − (𝑁‘𝐵)) ≤ (𝑁‘(𝐴 − 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1084 = wceq 1538 ∈ wcel 2111 class class class wbr 5035 ‘cfv 6339 (class class class)co 7155 ℝcr 10579 ≤ cle 10719 − cmin 10913 abscabs 14646 Basecbs 16546 Grpcgrp 18174 -gcsg 18176 normcnm 23283 NrmGrpcngp 23284 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5172 ax-nul 5179 ax-pow 5237 ax-pr 5301 ax-un 7464 ax-cnex 10636 ax-resscn 10637 ax-1cn 10638 ax-icn 10639 ax-addcl 10640 ax-addrcl 10641 ax-mulcl 10642 ax-mulrcl 10643 ax-mulcom 10644 ax-addass 10645 ax-mulass 10646 ax-distr 10647 ax-i2m1 10648 ax-1ne0 10649 ax-1rid 10650 ax-rnegex 10651 ax-rrecex 10652 ax-cnre 10653 ax-pre-lttri 10654 ax-pre-lttrn 10655 ax-pre-ltadd 10656 ax-pre-mulgt0 10657 ax-pre-sup 10658 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-iun 4888 df-br 5036 df-opab 5098 df-mpt 5116 df-tr 5142 df-id 5433 df-eprel 5438 df-po 5446 df-so 5447 df-fr 5486 df-we 5488 df-xp 5533 df-rel 5534 df-cnv 5535 df-co 5536 df-dm 5537 df-rn 5538 df-res 5539 df-ima 5540 df-pred 6130 df-ord 6176 df-on 6177 df-lim 6178 df-suc 6179 df-iota 6298 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-riota 7113 df-ov 7158 df-oprab 7159 df-mpo 7160 df-om 7585 df-1st 7698 df-2nd 7699 df-wrecs 7962 df-recs 8023 df-rdg 8061 df-1o 8117 df-er 8304 df-map 8423 df-en 8533 df-dom 8534 df-sdom 8535 df-fin 8536 df-sup 8944 df-inf 8945 df-pnf 10720 df-mnf 10721 df-xr 10722 df-ltxr 10723 df-le 10724 df-sub 10915 df-neg 10916 df-div 11341 df-nn 11680 df-2 11742 df-3 11743 df-4 11744 df-5 11745 df-6 11746 df-7 11747 df-8 11748 df-9 11749 df-n0 11940 df-z 12026 df-dec 12143 df-uz 12288 df-q 12394 df-rp 12436 df-xneg 12553 df-xadd 12554 df-xmul 12555 df-fz 12945 df-seq 13424 df-exp 13485 df-cj 14511 df-re 14512 df-im 14513 df-sqrt 14647 df-abs 14648 df-struct 16548 df-ndx 16549 df-slot 16550 df-base 16552 df-plusg 16641 df-mulr 16642 df-tset 16647 df-ple 16648 df-ds 16650 df-0g 16778 df-topgen 16780 df-xrs 16838 df-mgm 17923 df-sgrp 17972 df-mnd 17983 df-grp 18177 df-minusg 18178 df-sbg 18179 df-psmet 20163 df-xmet 20164 df-met 20165 df-bl 20166 df-mopn 20167 df-top 21599 df-topon 21616 df-topsp 21638 df-bases 21651 df-xms 23027 df-ms 23028 df-nm 23289 df-ngp 23290 |
This theorem is referenced by: nlmvscnlem2 23392 nrginvrcnlem 23398 ipcnlem2 23949 |
Copyright terms: Public domain | W3C validator |