MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nm2dif Structured version   Visualization version   GIF version

Theorem nm2dif 23332
Description: Inequality for the difference of norms. (Contributed by Mario Carneiro, 6-Oct-2015.)
Hypotheses
Ref Expression
nmf.x 𝑋 = (Base‘𝐺)
nmf.n 𝑁 = (norm‘𝐺)
nmmtri.m = (-g𝐺)
Assertion
Ref Expression
nm2dif ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋𝐵𝑋) → ((𝑁𝐴) − (𝑁𝐵)) ≤ (𝑁‘(𝐴 𝐵)))

Proof of Theorem nm2dif
StepHypRef Expression
1 nmf.x . . . . 5 𝑋 = (Base‘𝐺)
2 nmf.n . . . . 5 𝑁 = (norm‘𝐺)
31, 2nmcl 23323 . . . 4 ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋) → (𝑁𝐴) ∈ ℝ)
433adant3 1129 . . 3 ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋𝐵𝑋) → (𝑁𝐴) ∈ ℝ)
51, 2nmcl 23323 . . . 4 ((𝐺 ∈ NrmGrp ∧ 𝐵𝑋) → (𝑁𝐵) ∈ ℝ)
653adant2 1128 . . 3 ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋𝐵𝑋) → (𝑁𝐵) ∈ ℝ)
74, 6resubcld 11111 . 2 ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋𝐵𝑋) → ((𝑁𝐴) − (𝑁𝐵)) ∈ ℝ)
87recnd 10712 . . 3 ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋𝐵𝑋) → ((𝑁𝐴) − (𝑁𝐵)) ∈ ℂ)
98abscld 14849 . 2 ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋𝐵𝑋) → (abs‘((𝑁𝐴) − (𝑁𝐵))) ∈ ℝ)
10 simp1 1133 . . 3 ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋𝐵𝑋) → 𝐺 ∈ NrmGrp)
11 ngpgrp 23306 . . . 4 (𝐺 ∈ NrmGrp → 𝐺 ∈ Grp)
12 nmmtri.m . . . . 5 = (-g𝐺)
131, 12grpsubcl 18251 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝐵𝑋) → (𝐴 𝐵) ∈ 𝑋)
1411, 13syl3an1 1160 . . 3 ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋𝐵𝑋) → (𝐴 𝐵) ∈ 𝑋)
151, 2nmcl 23323 . . 3 ((𝐺 ∈ NrmGrp ∧ (𝐴 𝐵) ∈ 𝑋) → (𝑁‘(𝐴 𝐵)) ∈ ℝ)
1610, 14, 15syl2anc 587 . 2 ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴 𝐵)) ∈ ℝ)
177leabsd 14827 . 2 ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋𝐵𝑋) → ((𝑁𝐴) − (𝑁𝐵)) ≤ (abs‘((𝑁𝐴) − (𝑁𝐵))))
181, 2, 12nmrtri 23331 . 2 ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋𝐵𝑋) → (abs‘((𝑁𝐴) − (𝑁𝐵))) ≤ (𝑁‘(𝐴 𝐵)))
197, 9, 16, 17, 18letrd 10840 1 ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋𝐵𝑋) → ((𝑁𝐴) − (𝑁𝐵)) ≤ (𝑁‘(𝐴 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1084   = wceq 1538  wcel 2111   class class class wbr 5035  cfv 6339  (class class class)co 7155  cr 10579  cle 10719  cmin 10913  abscabs 14646  Basecbs 16546  Grpcgrp 18174  -gcsg 18176  normcnm 23283  NrmGrpcngp 23284
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5172  ax-nul 5179  ax-pow 5237  ax-pr 5301  ax-un 7464  ax-cnex 10636  ax-resscn 10637  ax-1cn 10638  ax-icn 10639  ax-addcl 10640  ax-addrcl 10641  ax-mulcl 10642  ax-mulrcl 10643  ax-mulcom 10644  ax-addass 10645  ax-mulass 10646  ax-distr 10647  ax-i2m1 10648  ax-1ne0 10649  ax-1rid 10650  ax-rnegex 10651  ax-rrecex 10652  ax-cnre 10653  ax-pre-lttri 10654  ax-pre-lttrn 10655  ax-pre-ltadd 10656  ax-pre-mulgt0 10657  ax-pre-sup 10658
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-iun 4888  df-br 5036  df-opab 5098  df-mpt 5116  df-tr 5142  df-id 5433  df-eprel 5438  df-po 5446  df-so 5447  df-fr 5486  df-we 5488  df-xp 5533  df-rel 5534  df-cnv 5535  df-co 5536  df-dm 5537  df-rn 5538  df-res 5539  df-ima 5540  df-pred 6130  df-ord 6176  df-on 6177  df-lim 6178  df-suc 6179  df-iota 6298  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7585  df-1st 7698  df-2nd 7699  df-wrecs 7962  df-recs 8023  df-rdg 8061  df-1o 8117  df-er 8304  df-map 8423  df-en 8533  df-dom 8534  df-sdom 8535  df-fin 8536  df-sup 8944  df-inf 8945  df-pnf 10720  df-mnf 10721  df-xr 10722  df-ltxr 10723  df-le 10724  df-sub 10915  df-neg 10916  df-div 11341  df-nn 11680  df-2 11742  df-3 11743  df-4 11744  df-5 11745  df-6 11746  df-7 11747  df-8 11748  df-9 11749  df-n0 11940  df-z 12026  df-dec 12143  df-uz 12288  df-q 12394  df-rp 12436  df-xneg 12553  df-xadd 12554  df-xmul 12555  df-fz 12945  df-seq 13424  df-exp 13485  df-cj 14511  df-re 14512  df-im 14513  df-sqrt 14647  df-abs 14648  df-struct 16548  df-ndx 16549  df-slot 16550  df-base 16552  df-plusg 16641  df-mulr 16642  df-tset 16647  df-ple 16648  df-ds 16650  df-0g 16778  df-topgen 16780  df-xrs 16838  df-mgm 17923  df-sgrp 17972  df-mnd 17983  df-grp 18177  df-minusg 18178  df-sbg 18179  df-psmet 20163  df-xmet 20164  df-met 20165  df-bl 20166  df-mopn 20167  df-top 21599  df-topon 21616  df-topsp 21638  df-bases 21651  df-xms 23027  df-ms 23028  df-nm 23289  df-ngp 23290
This theorem is referenced by:  nlmvscnlem2  23392  nrginvrcnlem  23398  ipcnlem2  23949
  Copyright terms: Public domain W3C validator