![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nm2dif | Structured version Visualization version GIF version |
Description: Inequality for the difference of norms. (Contributed by Mario Carneiro, 6-Oct-2015.) |
Ref | Expression |
---|---|
nmf.x | β’ π = (BaseβπΊ) |
nmf.n | β’ π = (normβπΊ) |
nmmtri.m | β’ β = (-gβπΊ) |
Ref | Expression |
---|---|
nm2dif | β’ ((πΊ β NrmGrp β§ π΄ β π β§ π΅ β π) β ((πβπ΄) β (πβπ΅)) β€ (πβ(π΄ β π΅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nmf.x | . . . . 5 β’ π = (BaseβπΊ) | |
2 | nmf.n | . . . . 5 β’ π = (normβπΊ) | |
3 | 1, 2 | nmcl 24124 | . . . 4 β’ ((πΊ β NrmGrp β§ π΄ β π) β (πβπ΄) β β) |
4 | 3 | 3adant3 1132 | . . 3 β’ ((πΊ β NrmGrp β§ π΄ β π β§ π΅ β π) β (πβπ΄) β β) |
5 | 1, 2 | nmcl 24124 | . . . 4 β’ ((πΊ β NrmGrp β§ π΅ β π) β (πβπ΅) β β) |
6 | 5 | 3adant2 1131 | . . 3 β’ ((πΊ β NrmGrp β§ π΄ β π β§ π΅ β π) β (πβπ΅) β β) |
7 | 4, 6 | resubcld 11641 | . 2 β’ ((πΊ β NrmGrp β§ π΄ β π β§ π΅ β π) β ((πβπ΄) β (πβπ΅)) β β) |
8 | 7 | recnd 11241 | . . 3 β’ ((πΊ β NrmGrp β§ π΄ β π β§ π΅ β π) β ((πβπ΄) β (πβπ΅)) β β) |
9 | 8 | abscld 15382 | . 2 β’ ((πΊ β NrmGrp β§ π΄ β π β§ π΅ β π) β (absβ((πβπ΄) β (πβπ΅))) β β) |
10 | simp1 1136 | . . 3 β’ ((πΊ β NrmGrp β§ π΄ β π β§ π΅ β π) β πΊ β NrmGrp) | |
11 | ngpgrp 24107 | . . . 4 β’ (πΊ β NrmGrp β πΊ β Grp) | |
12 | nmmtri.m | . . . . 5 β’ β = (-gβπΊ) | |
13 | 1, 12 | grpsubcl 18902 | . . . 4 β’ ((πΊ β Grp β§ π΄ β π β§ π΅ β π) β (π΄ β π΅) β π) |
14 | 11, 13 | syl3an1 1163 | . . 3 β’ ((πΊ β NrmGrp β§ π΄ β π β§ π΅ β π) β (π΄ β π΅) β π) |
15 | 1, 2 | nmcl 24124 | . . 3 β’ ((πΊ β NrmGrp β§ (π΄ β π΅) β π) β (πβ(π΄ β π΅)) β β) |
16 | 10, 14, 15 | syl2anc 584 | . 2 β’ ((πΊ β NrmGrp β§ π΄ β π β§ π΅ β π) β (πβ(π΄ β π΅)) β β) |
17 | 7 | leabsd 15360 | . 2 β’ ((πΊ β NrmGrp β§ π΄ β π β§ π΅ β π) β ((πβπ΄) β (πβπ΅)) β€ (absβ((πβπ΄) β (πβπ΅)))) |
18 | 1, 2, 12 | nmrtri 24132 | . 2 β’ ((πΊ β NrmGrp β§ π΄ β π β§ π΅ β π) β (absβ((πβπ΄) β (πβπ΅))) β€ (πβ(π΄ β π΅))) |
19 | 7, 9, 16, 17, 18 | letrd 11370 | 1 β’ ((πΊ β NrmGrp β§ π΄ β π β§ π΅ β π) β ((πβπ΄) β (πβπ΅)) β€ (πβ(π΄ β π΅))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ w3a 1087 = wceq 1541 β wcel 2106 class class class wbr 5148 βcfv 6543 (class class class)co 7408 βcr 11108 β€ cle 11248 β cmin 11443 abscabs 15180 Basecbs 17143 Grpcgrp 18818 -gcsg 18820 normcnm 24084 NrmGrpcngp 24085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-pre-sup 11187 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-1st 7974 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-1o 8465 df-er 8702 df-map 8821 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-sup 9436 df-inf 9437 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-div 11871 df-nn 12212 df-2 12274 df-3 12275 df-4 12276 df-5 12277 df-6 12278 df-7 12279 df-8 12280 df-9 12281 df-n0 12472 df-z 12558 df-dec 12677 df-uz 12822 df-q 12932 df-rp 12974 df-xneg 13091 df-xadd 13092 df-xmul 13093 df-fz 13484 df-seq 13966 df-exp 14027 df-cj 15045 df-re 15046 df-im 15047 df-sqrt 15181 df-abs 15182 df-struct 17079 df-slot 17114 df-ndx 17126 df-base 17144 df-plusg 17209 df-mulr 17210 df-tset 17215 df-ple 17216 df-ds 17218 df-0g 17386 df-topgen 17388 df-xrs 17447 df-mgm 18560 df-sgrp 18609 df-mnd 18625 df-grp 18821 df-minusg 18822 df-sbg 18823 df-psmet 20935 df-xmet 20936 df-met 20937 df-bl 20938 df-mopn 20939 df-top 22395 df-topon 22412 df-topsp 22434 df-bases 22448 df-xms 23825 df-ms 23826 df-nm 24090 df-ngp 24091 |
This theorem is referenced by: nlmvscnlem2 24201 nrginvrcnlem 24207 ipcnlem2 24760 |
Copyright terms: Public domain | W3C validator |