![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nm0 | Structured version Visualization version GIF version |
Description: Norm of the identity element. (Contributed by Mario Carneiro, 4-Oct-2015.) |
Ref | Expression |
---|---|
nm0.n | ⊢ 𝑁 = (norm‘𝐺) |
nm0.z | ⊢ 0 = (0g‘𝐺) |
Ref | Expression |
---|---|
nm0 | ⊢ (𝐺 ∈ NrmGrp → (𝑁‘ 0 ) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2798 | . 2 ⊢ 0 = 0 | |
2 | ngpgrp 22728 | . . . 4 ⊢ (𝐺 ∈ NrmGrp → 𝐺 ∈ Grp) | |
3 | eqid 2798 | . . . . 5 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
4 | nm0.z | . . . . 5 ⊢ 0 = (0g‘𝐺) | |
5 | 3, 4 | grpidcl 17763 | . . . 4 ⊢ (𝐺 ∈ Grp → 0 ∈ (Base‘𝐺)) |
6 | 2, 5 | syl 17 | . . 3 ⊢ (𝐺 ∈ NrmGrp → 0 ∈ (Base‘𝐺)) |
7 | nm0.n | . . . 4 ⊢ 𝑁 = (norm‘𝐺) | |
8 | 3, 7, 4 | nmeq0 22747 | . . 3 ⊢ ((𝐺 ∈ NrmGrp ∧ 0 ∈ (Base‘𝐺)) → ((𝑁‘ 0 ) = 0 ↔ 0 = 0 )) |
9 | 6, 8 | mpdan 679 | . 2 ⊢ (𝐺 ∈ NrmGrp → ((𝑁‘ 0 ) = 0 ↔ 0 = 0 )) |
10 | 1, 9 | mpbiri 250 | 1 ⊢ (𝐺 ∈ NrmGrp → (𝑁‘ 0 ) = 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 = wceq 1653 ∈ wcel 2157 ‘cfv 6100 0cc0 10223 Basecbs 16181 0gc0g 16412 Grpcgrp 17735 normcnm 22706 NrmGrpcngp 22707 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2776 ax-sep 4974 ax-nul 4982 ax-pow 5034 ax-pr 5096 ax-un 7182 ax-cnex 10279 ax-resscn 10280 ax-1cn 10281 ax-icn 10282 ax-addcl 10283 ax-addrcl 10284 ax-mulcl 10285 ax-mulrcl 10286 ax-mulcom 10287 ax-addass 10288 ax-mulass 10289 ax-distr 10290 ax-i2m1 10291 ax-1ne0 10292 ax-1rid 10293 ax-rnegex 10294 ax-rrecex 10295 ax-cnre 10296 ax-pre-lttri 10297 ax-pre-lttrn 10298 ax-pre-ltadd 10299 ax-pre-mulgt0 10300 ax-pre-sup 10301 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2785 df-cleq 2791 df-clel 2794 df-nfc 2929 df-ne 2971 df-nel 3074 df-ral 3093 df-rex 3094 df-reu 3095 df-rmo 3096 df-rab 3097 df-v 3386 df-sbc 3633 df-csb 3728 df-dif 3771 df-un 3773 df-in 3775 df-ss 3782 df-pss 3784 df-nul 4115 df-if 4277 df-pw 4350 df-sn 4368 df-pr 4370 df-tp 4372 df-op 4374 df-uni 4628 df-iun 4711 df-br 4843 df-opab 4905 df-mpt 4922 df-tr 4945 df-id 5219 df-eprel 5224 df-po 5232 df-so 5233 df-fr 5270 df-we 5272 df-xp 5317 df-rel 5318 df-cnv 5319 df-co 5320 df-dm 5321 df-rn 5322 df-res 5323 df-ima 5324 df-pred 5897 df-ord 5943 df-on 5944 df-lim 5945 df-suc 5946 df-iota 6063 df-fun 6102 df-fn 6103 df-f 6104 df-f1 6105 df-fo 6106 df-f1o 6107 df-fv 6108 df-riota 6838 df-ov 6880 df-oprab 6881 df-mpt2 6882 df-om 7299 df-1st 7400 df-2nd 7401 df-wrecs 7644 df-recs 7706 df-rdg 7744 df-er 7981 df-map 8096 df-en 8195 df-dom 8196 df-sdom 8197 df-sup 8589 df-inf 8590 df-pnf 10364 df-mnf 10365 df-xr 10366 df-ltxr 10367 df-le 10368 df-sub 10557 df-neg 10558 df-div 10976 df-nn 11312 df-2 11373 df-n0 11578 df-z 11664 df-uz 11928 df-q 12031 df-rp 12072 df-xneg 12190 df-xadd 12191 df-xmul 12192 df-0g 16414 df-topgen 16416 df-mgm 17554 df-sgrp 17596 df-mnd 17607 df-grp 17738 df-psmet 20057 df-xmet 20058 df-bl 20060 df-mopn 20061 df-top 21024 df-topon 21041 df-topsp 21063 df-bases 21076 df-xms 22450 df-ms 22451 df-nm 22712 df-ngp 22713 |
This theorem is referenced by: nmolb2d 22847 nmoi 22857 nmoix 22858 nmoleub 22860 nmo0 22864 nmoleub2lem2 23240 |
Copyright terms: Public domain | W3C validator |