| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ngpds | Structured version Visualization version GIF version | ||
| Description: Value of the distance function in terms of the norm of a normed group. Equation 1 of [Kreyszig] p. 59. (Contributed by NM, 28-Nov-2006.) (Revised by Mario Carneiro, 2-Oct-2015.) |
| Ref | Expression |
|---|---|
| ngpds.n | ⊢ 𝑁 = (norm‘𝐺) |
| ngpds.x | ⊢ 𝑋 = (Base‘𝐺) |
| ngpds.m | ⊢ − = (-g‘𝐺) |
| ngpds.d | ⊢ 𝐷 = (dist‘𝐺) |
| Ref | Expression |
|---|---|
| ngpds | ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) = (𝑁‘(𝐴 − 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ngpds.n | . . . . . 6 ⊢ 𝑁 = (norm‘𝐺) | |
| 2 | ngpds.m | . . . . . 6 ⊢ − = (-g‘𝐺) | |
| 3 | ngpds.d | . . . . . 6 ⊢ 𝐷 = (dist‘𝐺) | |
| 4 | ngpds.x | . . . . . 6 ⊢ 𝑋 = (Base‘𝐺) | |
| 5 | eqid 2729 | . . . . . 6 ⊢ (𝐷 ↾ (𝑋 × 𝑋)) = (𝐷 ↾ (𝑋 × 𝑋)) | |
| 6 | 1, 2, 3, 4, 5 | isngp2 24485 | . . . . 5 ⊢ (𝐺 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ (𝑁 ∘ − ) = (𝐷 ↾ (𝑋 × 𝑋)))) |
| 7 | 6 | simp3bi 1147 | . . . 4 ⊢ (𝐺 ∈ NrmGrp → (𝑁 ∘ − ) = (𝐷 ↾ (𝑋 × 𝑋))) |
| 8 | 7 | 3ad2ant1 1133 | . . 3 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑁 ∘ − ) = (𝐷 ↾ (𝑋 × 𝑋))) |
| 9 | 8 | oveqd 7404 | . 2 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴(𝑁 ∘ − )𝐵) = (𝐴(𝐷 ↾ (𝑋 × 𝑋))𝐵)) |
| 10 | ngpgrp 24487 | . . . . . 6 ⊢ (𝐺 ∈ NrmGrp → 𝐺 ∈ Grp) | |
| 11 | 4, 2 | grpsubf 18951 | . . . . . 6 ⊢ (𝐺 ∈ Grp → − :(𝑋 × 𝑋)⟶𝑋) |
| 12 | 10, 11 | syl 17 | . . . . 5 ⊢ (𝐺 ∈ NrmGrp → − :(𝑋 × 𝑋)⟶𝑋) |
| 13 | 12 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → − :(𝑋 × 𝑋)⟶𝑋) |
| 14 | opelxpi 5675 | . . . . 5 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 〈𝐴, 𝐵〉 ∈ (𝑋 × 𝑋)) | |
| 15 | 14 | 3adant1 1130 | . . . 4 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 〈𝐴, 𝐵〉 ∈ (𝑋 × 𝑋)) |
| 16 | fvco3 6960 | . . . 4 ⊢ (( − :(𝑋 × 𝑋)⟶𝑋 ∧ 〈𝐴, 𝐵〉 ∈ (𝑋 × 𝑋)) → ((𝑁 ∘ − )‘〈𝐴, 𝐵〉) = (𝑁‘( − ‘〈𝐴, 𝐵〉))) | |
| 17 | 13, 15, 16 | syl2anc 584 | . . 3 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝑁 ∘ − )‘〈𝐴, 𝐵〉) = (𝑁‘( − ‘〈𝐴, 𝐵〉))) |
| 18 | df-ov 7390 | . . 3 ⊢ (𝐴(𝑁 ∘ − )𝐵) = ((𝑁 ∘ − )‘〈𝐴, 𝐵〉) | |
| 19 | df-ov 7390 | . . . 4 ⊢ (𝐴 − 𝐵) = ( − ‘〈𝐴, 𝐵〉) | |
| 20 | 19 | fveq2i 6861 | . . 3 ⊢ (𝑁‘(𝐴 − 𝐵)) = (𝑁‘( − ‘〈𝐴, 𝐵〉)) |
| 21 | 17, 18, 20 | 3eqtr4g 2789 | . 2 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴(𝑁 ∘ − )𝐵) = (𝑁‘(𝐴 − 𝐵))) |
| 22 | ovres 7555 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴(𝐷 ↾ (𝑋 × 𝑋))𝐵) = (𝐴𝐷𝐵)) | |
| 23 | 22 | 3adant1 1130 | . 2 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴(𝐷 ↾ (𝑋 × 𝑋))𝐵) = (𝐴𝐷𝐵)) |
| 24 | 9, 21, 23 | 3eqtr3rd 2773 | 1 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) = (𝑁‘(𝐴 − 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 〈cop 4595 × cxp 5636 ↾ cres 5640 ∘ ccom 5642 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 distcds 17229 Grpcgrp 18865 -gcsg 18867 MetSpcms 24206 normcnm 24464 NrmGrpcngp 24465 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-sup 9393 df-inf 9394 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-n0 12443 df-z 12530 df-uz 12794 df-q 12908 df-rp 12952 df-xneg 13072 df-xadd 13073 df-xmul 13074 df-0g 17404 df-topgen 17406 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-grp 18868 df-minusg 18869 df-sbg 18870 df-psmet 21256 df-xmet 21257 df-met 21258 df-bl 21259 df-mopn 21260 df-top 22781 df-topon 22798 df-topsp 22820 df-bases 22833 df-xms 24208 df-ms 24209 df-nm 24470 df-ngp 24471 |
| This theorem is referenced by: ngpdsr 24493 ngpds2 24494 ngprcan 24498 ngpinvds 24501 nmmtri 24510 nmrtri 24512 subgngp 24523 nrgdsdi 24553 nrgdsdir 24554 nlmdsdi 24569 nlmdsdir 24570 nrginvrcnlem 24579 nmods 24632 ncvspds 25061 ipcnlem2 25144 minveclem2 25326 minveclem3b 25328 minveclem4 25332 minveclem6 25334 |
| Copyright terms: Public domain | W3C validator |