| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ngpds | Structured version Visualization version GIF version | ||
| Description: Value of the distance function in terms of the norm of a normed group. Equation 1 of [Kreyszig] p. 59. (Contributed by NM, 28-Nov-2006.) (Revised by Mario Carneiro, 2-Oct-2015.) |
| Ref | Expression |
|---|---|
| ngpds.n | ⊢ 𝑁 = (norm‘𝐺) |
| ngpds.x | ⊢ 𝑋 = (Base‘𝐺) |
| ngpds.m | ⊢ − = (-g‘𝐺) |
| ngpds.d | ⊢ 𝐷 = (dist‘𝐺) |
| Ref | Expression |
|---|---|
| ngpds | ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) = (𝑁‘(𝐴 − 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ngpds.n | . . . . . 6 ⊢ 𝑁 = (norm‘𝐺) | |
| 2 | ngpds.m | . . . . . 6 ⊢ − = (-g‘𝐺) | |
| 3 | ngpds.d | . . . . . 6 ⊢ 𝐷 = (dist‘𝐺) | |
| 4 | ngpds.x | . . . . . 6 ⊢ 𝑋 = (Base‘𝐺) | |
| 5 | eqid 2731 | . . . . . 6 ⊢ (𝐷 ↾ (𝑋 × 𝑋)) = (𝐷 ↾ (𝑋 × 𝑋)) | |
| 6 | 1, 2, 3, 4, 5 | isngp2 24507 | . . . . 5 ⊢ (𝐺 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ (𝑁 ∘ − ) = (𝐷 ↾ (𝑋 × 𝑋)))) |
| 7 | 6 | simp3bi 1147 | . . . 4 ⊢ (𝐺 ∈ NrmGrp → (𝑁 ∘ − ) = (𝐷 ↾ (𝑋 × 𝑋))) |
| 8 | 7 | 3ad2ant1 1133 | . . 3 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑁 ∘ − ) = (𝐷 ↾ (𝑋 × 𝑋))) |
| 9 | 8 | oveqd 7358 | . 2 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴(𝑁 ∘ − )𝐵) = (𝐴(𝐷 ↾ (𝑋 × 𝑋))𝐵)) |
| 10 | ngpgrp 24509 | . . . . . 6 ⊢ (𝐺 ∈ NrmGrp → 𝐺 ∈ Grp) | |
| 11 | 4, 2 | grpsubf 18927 | . . . . . 6 ⊢ (𝐺 ∈ Grp → − :(𝑋 × 𝑋)⟶𝑋) |
| 12 | 10, 11 | syl 17 | . . . . 5 ⊢ (𝐺 ∈ NrmGrp → − :(𝑋 × 𝑋)⟶𝑋) |
| 13 | 12 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → − :(𝑋 × 𝑋)⟶𝑋) |
| 14 | opelxpi 5648 | . . . . 5 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 〈𝐴, 𝐵〉 ∈ (𝑋 × 𝑋)) | |
| 15 | 14 | 3adant1 1130 | . . . 4 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 〈𝐴, 𝐵〉 ∈ (𝑋 × 𝑋)) |
| 16 | fvco3 6916 | . . . 4 ⊢ (( − :(𝑋 × 𝑋)⟶𝑋 ∧ 〈𝐴, 𝐵〉 ∈ (𝑋 × 𝑋)) → ((𝑁 ∘ − )‘〈𝐴, 𝐵〉) = (𝑁‘( − ‘〈𝐴, 𝐵〉))) | |
| 17 | 13, 15, 16 | syl2anc 584 | . . 3 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝑁 ∘ − )‘〈𝐴, 𝐵〉) = (𝑁‘( − ‘〈𝐴, 𝐵〉))) |
| 18 | df-ov 7344 | . . 3 ⊢ (𝐴(𝑁 ∘ − )𝐵) = ((𝑁 ∘ − )‘〈𝐴, 𝐵〉) | |
| 19 | df-ov 7344 | . . . 4 ⊢ (𝐴 − 𝐵) = ( − ‘〈𝐴, 𝐵〉) | |
| 20 | 19 | fveq2i 6820 | . . 3 ⊢ (𝑁‘(𝐴 − 𝐵)) = (𝑁‘( − ‘〈𝐴, 𝐵〉)) |
| 21 | 17, 18, 20 | 3eqtr4g 2791 | . 2 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴(𝑁 ∘ − )𝐵) = (𝑁‘(𝐴 − 𝐵))) |
| 22 | ovres 7507 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴(𝐷 ↾ (𝑋 × 𝑋))𝐵) = (𝐴𝐷𝐵)) | |
| 23 | 22 | 3adant1 1130 | . 2 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴(𝐷 ↾ (𝑋 × 𝑋))𝐵) = (𝐴𝐷𝐵)) |
| 24 | 9, 21, 23 | 3eqtr3rd 2775 | 1 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) = (𝑁‘(𝐴 − 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 〈cop 4577 × cxp 5609 ↾ cres 5613 ∘ ccom 5615 ⟶wf 6472 ‘cfv 6476 (class class class)co 7341 Basecbs 17115 distcds 17165 Grpcgrp 18841 -gcsg 18843 MetSpcms 24228 normcnm 24486 NrmGrpcngp 24487 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 ax-pre-sup 11079 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-map 8747 df-en 8865 df-dom 8866 df-sdom 8867 df-sup 9321 df-inf 9322 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-div 11770 df-nn 12121 df-2 12183 df-n0 12377 df-z 12464 df-uz 12728 df-q 12842 df-rp 12886 df-xneg 13006 df-xadd 13007 df-xmul 13008 df-0g 17340 df-topgen 17342 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-grp 18844 df-minusg 18845 df-sbg 18846 df-psmet 21278 df-xmet 21279 df-met 21280 df-bl 21281 df-mopn 21282 df-top 22804 df-topon 22821 df-topsp 22843 df-bases 22856 df-xms 24230 df-ms 24231 df-nm 24492 df-ngp 24493 |
| This theorem is referenced by: ngpdsr 24515 ngpds2 24516 ngprcan 24520 ngpinvds 24523 nmmtri 24532 nmrtri 24534 subgngp 24545 nrgdsdi 24575 nrgdsdir 24576 nlmdsdi 24591 nlmdsdir 24592 nrginvrcnlem 24601 nmods 24654 ncvspds 25083 ipcnlem2 25166 minveclem2 25348 minveclem3b 25350 minveclem4 25354 minveclem6 25356 |
| Copyright terms: Public domain | W3C validator |