MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ngpds Structured version   Visualization version   GIF version

Theorem ngpds 23306
Description: Value of the distance function in terms of the norm of a normed group. Equation 1 of [Kreyszig] p. 59. (Contributed by NM, 28-Nov-2006.) (Revised by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
ngpds.n 𝑁 = (norm‘𝐺)
ngpds.x 𝑋 = (Base‘𝐺)
ngpds.m = (-g𝐺)
ngpds.d 𝐷 = (dist‘𝐺)
Assertion
Ref Expression
ngpds ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) = (𝑁‘(𝐴 𝐵)))

Proof of Theorem ngpds
StepHypRef Expression
1 ngpds.n . . . . . 6 𝑁 = (norm‘𝐺)
2 ngpds.m . . . . . 6 = (-g𝐺)
3 ngpds.d . . . . . 6 𝐷 = (dist‘𝐺)
4 ngpds.x . . . . . 6 𝑋 = (Base‘𝐺)
5 eqid 2758 . . . . . 6 (𝐷 ↾ (𝑋 × 𝑋)) = (𝐷 ↾ (𝑋 × 𝑋))
61, 2, 3, 4, 5isngp2 23299 . . . . 5 (𝐺 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ (𝑁 ) = (𝐷 ↾ (𝑋 × 𝑋))))
76simp3bi 1144 . . . 4 (𝐺 ∈ NrmGrp → (𝑁 ) = (𝐷 ↾ (𝑋 × 𝑋)))
873ad2ant1 1130 . . 3 ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋𝐵𝑋) → (𝑁 ) = (𝐷 ↾ (𝑋 × 𝑋)))
98oveqd 7167 . 2 ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋𝐵𝑋) → (𝐴(𝑁 )𝐵) = (𝐴(𝐷 ↾ (𝑋 × 𝑋))𝐵))
10 ngpgrp 23301 . . . . . 6 (𝐺 ∈ NrmGrp → 𝐺 ∈ Grp)
114, 2grpsubf 18245 . . . . . 6 (𝐺 ∈ Grp → :(𝑋 × 𝑋)⟶𝑋)
1210, 11syl 17 . . . . 5 (𝐺 ∈ NrmGrp → :(𝑋 × 𝑋)⟶𝑋)
13123ad2ant1 1130 . . . 4 ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋𝐵𝑋) → :(𝑋 × 𝑋)⟶𝑋)
14 opelxpi 5561 . . . . 5 ((𝐴𝑋𝐵𝑋) → ⟨𝐴, 𝐵⟩ ∈ (𝑋 × 𝑋))
15143adant1 1127 . . . 4 ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋𝐵𝑋) → ⟨𝐴, 𝐵⟩ ∈ (𝑋 × 𝑋))
16 fvco3 6751 . . . 4 (( :(𝑋 × 𝑋)⟶𝑋 ∧ ⟨𝐴, 𝐵⟩ ∈ (𝑋 × 𝑋)) → ((𝑁 )‘⟨𝐴, 𝐵⟩) = (𝑁‘( ‘⟨𝐴, 𝐵⟩)))
1713, 15, 16syl2anc 587 . . 3 ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋𝐵𝑋) → ((𝑁 )‘⟨𝐴, 𝐵⟩) = (𝑁‘( ‘⟨𝐴, 𝐵⟩)))
18 df-ov 7153 . . 3 (𝐴(𝑁 )𝐵) = ((𝑁 )‘⟨𝐴, 𝐵⟩)
19 df-ov 7153 . . . 4 (𝐴 𝐵) = ( ‘⟨𝐴, 𝐵⟩)
2019fveq2i 6661 . . 3 (𝑁‘(𝐴 𝐵)) = (𝑁‘( ‘⟨𝐴, 𝐵⟩))
2117, 18, 203eqtr4g 2818 . 2 ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋𝐵𝑋) → (𝐴(𝑁 )𝐵) = (𝑁‘(𝐴 𝐵)))
22 ovres 7310 . . 3 ((𝐴𝑋𝐵𝑋) → (𝐴(𝐷 ↾ (𝑋 × 𝑋))𝐵) = (𝐴𝐷𝐵))
23223adant1 1127 . 2 ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋𝐵𝑋) → (𝐴(𝐷 ↾ (𝑋 × 𝑋))𝐵) = (𝐴𝐷𝐵))
249, 21, 233eqtr3rd 2802 1 ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) = (𝑁‘(𝐴 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1084   = wceq 1538  wcel 2111  cop 4528   × cxp 5522  cres 5526  ccom 5528  wf 6331  cfv 6335  (class class class)co 7150  Basecbs 16541  distcds 16632  Grpcgrp 18169  -gcsg 18171  MetSpcms 23020  normcnm 23278  NrmGrpcngp 23279
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-cnex 10631  ax-resscn 10632  ax-1cn 10633  ax-icn 10634  ax-addcl 10635  ax-addrcl 10636  ax-mulcl 10637  ax-mulrcl 10638  ax-mulcom 10639  ax-addass 10640  ax-mulass 10641  ax-distr 10642  ax-i2m1 10643  ax-1ne0 10644  ax-1rid 10645  ax-rnegex 10646  ax-rrecex 10647  ax-cnre 10648  ax-pre-lttri 10649  ax-pre-lttrn 10650  ax-pre-ltadd 10651  ax-pre-mulgt0 10652  ax-pre-sup 10653
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-iun 4885  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7580  df-1st 7693  df-2nd 7694  df-wrecs 7957  df-recs 8018  df-rdg 8056  df-er 8299  df-map 8418  df-en 8528  df-dom 8529  df-sdom 8530  df-sup 8939  df-inf 8940  df-pnf 10715  df-mnf 10716  df-xr 10717  df-ltxr 10718  df-le 10719  df-sub 10910  df-neg 10911  df-div 11336  df-nn 11675  df-2 11737  df-n0 11935  df-z 12021  df-uz 12283  df-q 12389  df-rp 12431  df-xneg 12548  df-xadd 12549  df-xmul 12550  df-0g 16773  df-topgen 16775  df-mgm 17918  df-sgrp 17967  df-mnd 17978  df-grp 18172  df-minusg 18173  df-sbg 18174  df-psmet 20158  df-xmet 20159  df-met 20160  df-bl 20161  df-mopn 20162  df-top 21594  df-topon 21611  df-topsp 21633  df-bases 21646  df-xms 23022  df-ms 23023  df-nm 23284  df-ngp 23285
This theorem is referenced by:  ngpdsr  23307  ngpds2  23308  ngprcan  23312  ngpinvds  23315  nmmtri  23324  nmrtri  23326  subgngp  23337  nrgdsdi  23367  nrgdsdir  23368  nlmdsdi  23383  nlmdsdir  23384  nrginvrcnlem  23393  nmods  23446  ncvspds  23862  ipcnlem2  23944  minveclem2  24126  minveclem3b  24128  minveclem4  24132  minveclem6  24134
  Copyright terms: Public domain W3C validator