Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ngpds | Structured version Visualization version GIF version |
Description: Value of the distance function in terms of the norm of a normed group. Equation 1 of [Kreyszig] p. 59. (Contributed by NM, 28-Nov-2006.) (Revised by Mario Carneiro, 2-Oct-2015.) |
Ref | Expression |
---|---|
ngpds.n | ⊢ 𝑁 = (norm‘𝐺) |
ngpds.x | ⊢ 𝑋 = (Base‘𝐺) |
ngpds.m | ⊢ − = (-g‘𝐺) |
ngpds.d | ⊢ 𝐷 = (dist‘𝐺) |
Ref | Expression |
---|---|
ngpds | ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) = (𝑁‘(𝐴 − 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ngpds.n | . . . . . 6 ⊢ 𝑁 = (norm‘𝐺) | |
2 | ngpds.m | . . . . . 6 ⊢ − = (-g‘𝐺) | |
3 | ngpds.d | . . . . . 6 ⊢ 𝐷 = (dist‘𝐺) | |
4 | ngpds.x | . . . . . 6 ⊢ 𝑋 = (Base‘𝐺) | |
5 | eqid 2738 | . . . . . 6 ⊢ (𝐷 ↾ (𝑋 × 𝑋)) = (𝐷 ↾ (𝑋 × 𝑋)) | |
6 | 1, 2, 3, 4, 5 | isngp2 23659 | . . . . 5 ⊢ (𝐺 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ (𝑁 ∘ − ) = (𝐷 ↾ (𝑋 × 𝑋)))) |
7 | 6 | simp3bi 1145 | . . . 4 ⊢ (𝐺 ∈ NrmGrp → (𝑁 ∘ − ) = (𝐷 ↾ (𝑋 × 𝑋))) |
8 | 7 | 3ad2ant1 1131 | . . 3 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑁 ∘ − ) = (𝐷 ↾ (𝑋 × 𝑋))) |
9 | 8 | oveqd 7272 | . 2 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴(𝑁 ∘ − )𝐵) = (𝐴(𝐷 ↾ (𝑋 × 𝑋))𝐵)) |
10 | ngpgrp 23661 | . . . . . 6 ⊢ (𝐺 ∈ NrmGrp → 𝐺 ∈ Grp) | |
11 | 4, 2 | grpsubf 18569 | . . . . . 6 ⊢ (𝐺 ∈ Grp → − :(𝑋 × 𝑋)⟶𝑋) |
12 | 10, 11 | syl 17 | . . . . 5 ⊢ (𝐺 ∈ NrmGrp → − :(𝑋 × 𝑋)⟶𝑋) |
13 | 12 | 3ad2ant1 1131 | . . . 4 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → − :(𝑋 × 𝑋)⟶𝑋) |
14 | opelxpi 5617 | . . . . 5 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 〈𝐴, 𝐵〉 ∈ (𝑋 × 𝑋)) | |
15 | 14 | 3adant1 1128 | . . . 4 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 〈𝐴, 𝐵〉 ∈ (𝑋 × 𝑋)) |
16 | fvco3 6849 | . . . 4 ⊢ (( − :(𝑋 × 𝑋)⟶𝑋 ∧ 〈𝐴, 𝐵〉 ∈ (𝑋 × 𝑋)) → ((𝑁 ∘ − )‘〈𝐴, 𝐵〉) = (𝑁‘( − ‘〈𝐴, 𝐵〉))) | |
17 | 13, 15, 16 | syl2anc 583 | . . 3 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝑁 ∘ − )‘〈𝐴, 𝐵〉) = (𝑁‘( − ‘〈𝐴, 𝐵〉))) |
18 | df-ov 7258 | . . 3 ⊢ (𝐴(𝑁 ∘ − )𝐵) = ((𝑁 ∘ − )‘〈𝐴, 𝐵〉) | |
19 | df-ov 7258 | . . . 4 ⊢ (𝐴 − 𝐵) = ( − ‘〈𝐴, 𝐵〉) | |
20 | 19 | fveq2i 6759 | . . 3 ⊢ (𝑁‘(𝐴 − 𝐵)) = (𝑁‘( − ‘〈𝐴, 𝐵〉)) |
21 | 17, 18, 20 | 3eqtr4g 2804 | . 2 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴(𝑁 ∘ − )𝐵) = (𝑁‘(𝐴 − 𝐵))) |
22 | ovres 7416 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴(𝐷 ↾ (𝑋 × 𝑋))𝐵) = (𝐴𝐷𝐵)) | |
23 | 22 | 3adant1 1128 | . 2 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴(𝐷 ↾ (𝑋 × 𝑋))𝐵) = (𝐴𝐷𝐵)) |
24 | 9, 21, 23 | 3eqtr3rd 2787 | 1 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) = (𝑁‘(𝐴 − 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 〈cop 4564 × cxp 5578 ↾ cres 5582 ∘ ccom 5584 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 distcds 16897 Grpcgrp 18492 -gcsg 18494 MetSpcms 23379 normcnm 23638 NrmGrpcngp 23639 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-sup 9131 df-inf 9132 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-n0 12164 df-z 12250 df-uz 12512 df-q 12618 df-rp 12660 df-xneg 12777 df-xadd 12778 df-xmul 12779 df-0g 17069 df-topgen 17071 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-grp 18495 df-minusg 18496 df-sbg 18497 df-psmet 20502 df-xmet 20503 df-met 20504 df-bl 20505 df-mopn 20506 df-top 21951 df-topon 21968 df-topsp 21990 df-bases 22004 df-xms 23381 df-ms 23382 df-nm 23644 df-ngp 23645 |
This theorem is referenced by: ngpdsr 23667 ngpds2 23668 ngprcan 23672 ngpinvds 23675 nmmtri 23684 nmrtri 23686 subgngp 23697 nrgdsdi 23735 nrgdsdir 23736 nlmdsdi 23751 nlmdsdir 23752 nrginvrcnlem 23761 nmods 23814 ncvspds 24230 ipcnlem2 24313 minveclem2 24495 minveclem3b 24497 minveclem4 24501 minveclem6 24503 |
Copyright terms: Public domain | W3C validator |