| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ngprcan | Structured version Visualization version GIF version | ||
| Description: Cancel right addition inside a distance calculation. (Contributed by Mario Carneiro, 2-Oct-2015.) |
| Ref | Expression |
|---|---|
| ngprcan.x | ⊢ 𝑋 = (Base‘𝐺) |
| ngprcan.p | ⊢ + = (+g‘𝐺) |
| ngprcan.d | ⊢ 𝐷 = (dist‘𝐺) |
| Ref | Expression |
|---|---|
| ngprcan | ⊢ ((𝐺 ∈ NrmGrp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴 + 𝐶)𝐷(𝐵 + 𝐶)) = (𝐴𝐷𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ngpgrp 24512 | . . . 4 ⊢ (𝐺 ∈ NrmGrp → 𝐺 ∈ Grp) | |
| 2 | ngprcan.x | . . . . 5 ⊢ 𝑋 = (Base‘𝐺) | |
| 3 | ngprcan.p | . . . . 5 ⊢ + = (+g‘𝐺) | |
| 4 | eqid 2731 | . . . . 5 ⊢ (-g‘𝐺) = (-g‘𝐺) | |
| 5 | 2, 3, 4 | grppnpcan2 18944 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴 + 𝐶)(-g‘𝐺)(𝐵 + 𝐶)) = (𝐴(-g‘𝐺)𝐵)) |
| 6 | 1, 5 | sylan 580 | . . 3 ⊢ ((𝐺 ∈ NrmGrp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴 + 𝐶)(-g‘𝐺)(𝐵 + 𝐶)) = (𝐴(-g‘𝐺)𝐵)) |
| 7 | 6 | fveq2d 6826 | . 2 ⊢ ((𝐺 ∈ NrmGrp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((norm‘𝐺)‘((𝐴 + 𝐶)(-g‘𝐺)(𝐵 + 𝐶))) = ((norm‘𝐺)‘(𝐴(-g‘𝐺)𝐵))) |
| 8 | simpl 482 | . . 3 ⊢ ((𝐺 ∈ NrmGrp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → 𝐺 ∈ NrmGrp) | |
| 9 | 1 | adantr 480 | . . . 4 ⊢ ((𝐺 ∈ NrmGrp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → 𝐺 ∈ Grp) |
| 10 | simpr1 1195 | . . . 4 ⊢ ((𝐺 ∈ NrmGrp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → 𝐴 ∈ 𝑋) | |
| 11 | simpr3 1197 | . . . 4 ⊢ ((𝐺 ∈ NrmGrp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → 𝐶 ∈ 𝑋) | |
| 12 | 2, 3 | grpcl 18851 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐴 + 𝐶) ∈ 𝑋) |
| 13 | 9, 10, 11, 12 | syl3anc 1373 | . . 3 ⊢ ((𝐺 ∈ NrmGrp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴 + 𝐶) ∈ 𝑋) |
| 14 | simpr2 1196 | . . . 4 ⊢ ((𝐺 ∈ NrmGrp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → 𝐵 ∈ 𝑋) | |
| 15 | 2, 3 | grpcl 18851 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐵 + 𝐶) ∈ 𝑋) |
| 16 | 9, 14, 11, 15 | syl3anc 1373 | . . 3 ⊢ ((𝐺 ∈ NrmGrp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐵 + 𝐶) ∈ 𝑋) |
| 17 | eqid 2731 | . . . 4 ⊢ (norm‘𝐺) = (norm‘𝐺) | |
| 18 | ngprcan.d | . . . 4 ⊢ 𝐷 = (dist‘𝐺) | |
| 19 | 17, 2, 4, 18 | ngpds 24517 | . . 3 ⊢ ((𝐺 ∈ NrmGrp ∧ (𝐴 + 𝐶) ∈ 𝑋 ∧ (𝐵 + 𝐶) ∈ 𝑋) → ((𝐴 + 𝐶)𝐷(𝐵 + 𝐶)) = ((norm‘𝐺)‘((𝐴 + 𝐶)(-g‘𝐺)(𝐵 + 𝐶)))) |
| 20 | 8, 13, 16, 19 | syl3anc 1373 | . 2 ⊢ ((𝐺 ∈ NrmGrp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴 + 𝐶)𝐷(𝐵 + 𝐶)) = ((norm‘𝐺)‘((𝐴 + 𝐶)(-g‘𝐺)(𝐵 + 𝐶)))) |
| 21 | 17, 2, 4, 18 | ngpds 24517 | . . 3 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) = ((norm‘𝐺)‘(𝐴(-g‘𝐺)𝐵))) |
| 22 | 8, 10, 14, 21 | syl3anc 1373 | . 2 ⊢ ((𝐺 ∈ NrmGrp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝐷𝐵) = ((norm‘𝐺)‘(𝐴(-g‘𝐺)𝐵))) |
| 23 | 7, 20, 22 | 3eqtr4d 2776 | 1 ⊢ ((𝐺 ∈ NrmGrp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴 + 𝐶)𝐷(𝐵 + 𝐶)) = (𝐴𝐷𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ‘cfv 6481 (class class class)co 7346 Basecbs 17117 +gcplusg 17158 distcds 17167 Grpcgrp 18843 -gcsg 18845 normcnm 24489 NrmGrpcngp 24490 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 ax-pre-sup 11081 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-sup 9326 df-inf 9327 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-div 11772 df-nn 12123 df-2 12185 df-n0 12379 df-z 12466 df-uz 12730 df-q 12844 df-rp 12888 df-xneg 13008 df-xadd 13009 df-xmul 13010 df-0g 17342 df-topgen 17344 df-mgm 18545 df-sgrp 18624 df-mnd 18640 df-grp 18846 df-minusg 18847 df-sbg 18848 df-psmet 21281 df-xmet 21282 df-met 21283 df-bl 21284 df-mopn 21285 df-top 22807 df-topon 22824 df-topsp 22846 df-bases 22859 df-xms 24233 df-ms 24234 df-nm 24495 df-ngp 24496 |
| This theorem is referenced by: ngplcan 24524 isngp4 24525 ngpsubcan 24527 |
| Copyright terms: Public domain | W3C validator |