![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nmtri2 | Structured version Visualization version GIF version |
Description: Triangle inequality for the norm of two subtractions. (Contributed by NM, 24-Feb-2008.) (Revised by AV, 8-Oct-2021.) |
Ref | Expression |
---|---|
nmtri2.x | β’ π = (BaseβπΊ) |
nmtri2.n | β’ π = (normβπΊ) |
nmtri2.m | β’ β = (-gβπΊ) |
Ref | Expression |
---|---|
nmtri2 | β’ ((πΊ β NrmGrp β§ (π΄ β π β§ π΅ β π β§ πΆ β π)) β (πβ(π΄ β πΆ)) β€ ((πβ(π΄ β π΅)) + (πβ(π΅ β πΆ)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ngpgrp 24452 | . . . 4 β’ (πΊ β NrmGrp β πΊ β Grp) | |
2 | nmtri2.x | . . . . . 6 β’ π = (BaseβπΊ) | |
3 | eqid 2724 | . . . . . 6 β’ (+gβπΊ) = (+gβπΊ) | |
4 | nmtri2.m | . . . . . 6 β’ β = (-gβπΊ) | |
5 | 2, 3, 4 | grpnpncan 18959 | . . . . 5 β’ ((πΊ β Grp β§ (π΄ β π β§ π΅ β π β§ πΆ β π)) β ((π΄ β π΅)(+gβπΊ)(π΅ β πΆ)) = (π΄ β πΆ)) |
6 | 5 | eqcomd 2730 | . . . 4 β’ ((πΊ β Grp β§ (π΄ β π β§ π΅ β π β§ πΆ β π)) β (π΄ β πΆ) = ((π΄ β π΅)(+gβπΊ)(π΅ β πΆ))) |
7 | 1, 6 | sylan 579 | . . 3 β’ ((πΊ β NrmGrp β§ (π΄ β π β§ π΅ β π β§ πΆ β π)) β (π΄ β πΆ) = ((π΄ β π΅)(+gβπΊ)(π΅ β πΆ))) |
8 | 7 | fveq2d 6886 | . 2 β’ ((πΊ β NrmGrp β§ (π΄ β π β§ π΅ β π β§ πΆ β π)) β (πβ(π΄ β πΆ)) = (πβ((π΄ β π΅)(+gβπΊ)(π΅ β πΆ)))) |
9 | simpl 482 | . . 3 β’ ((πΊ β NrmGrp β§ (π΄ β π β§ π΅ β π β§ πΆ β π)) β πΊ β NrmGrp) | |
10 | 1 | adantr 480 | . . . 4 β’ ((πΊ β NrmGrp β§ (π΄ β π β§ π΅ β π β§ πΆ β π)) β πΊ β Grp) |
11 | simpr1 1191 | . . . 4 β’ ((πΊ β NrmGrp β§ (π΄ β π β§ π΅ β π β§ πΆ β π)) β π΄ β π) | |
12 | simpr2 1192 | . . . 4 β’ ((πΊ β NrmGrp β§ (π΄ β π β§ π΅ β π β§ πΆ β π)) β π΅ β π) | |
13 | 2, 4 | grpsubcl 18944 | . . . 4 β’ ((πΊ β Grp β§ π΄ β π β§ π΅ β π) β (π΄ β π΅) β π) |
14 | 10, 11, 12, 13 | syl3anc 1368 | . . 3 β’ ((πΊ β NrmGrp β§ (π΄ β π β§ π΅ β π β§ πΆ β π)) β (π΄ β π΅) β π) |
15 | simpr3 1193 | . . . 4 β’ ((πΊ β NrmGrp β§ (π΄ β π β§ π΅ β π β§ πΆ β π)) β πΆ β π) | |
16 | 2, 4 | grpsubcl 18944 | . . . 4 β’ ((πΊ β Grp β§ π΅ β π β§ πΆ β π) β (π΅ β πΆ) β π) |
17 | 10, 12, 15, 16 | syl3anc 1368 | . . 3 β’ ((πΊ β NrmGrp β§ (π΄ β π β§ π΅ β π β§ πΆ β π)) β (π΅ β πΆ) β π) |
18 | nmtri2.n | . . . 4 β’ π = (normβπΊ) | |
19 | 2, 18, 3 | nmtri 24479 | . . 3 β’ ((πΊ β NrmGrp β§ (π΄ β π΅) β π β§ (π΅ β πΆ) β π) β (πβ((π΄ β π΅)(+gβπΊ)(π΅ β πΆ))) β€ ((πβ(π΄ β π΅)) + (πβ(π΅ β πΆ)))) |
20 | 9, 14, 17, 19 | syl3anc 1368 | . 2 β’ ((πΊ β NrmGrp β§ (π΄ β π β§ π΅ β π β§ πΆ β π)) β (πβ((π΄ β π΅)(+gβπΊ)(π΅ β πΆ))) β€ ((πβ(π΄ β π΅)) + (πβ(π΅ β πΆ)))) |
21 | 8, 20 | eqbrtrd 5161 | 1 β’ ((πΊ β NrmGrp β§ (π΄ β π β§ π΅ β π β§ πΆ β π)) β (πβ(π΄ β πΆ)) β€ ((πβ(π΄ β π΅)) + (πβ(π΅ β πΆ)))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 β§ w3a 1084 = wceq 1533 β wcel 2098 class class class wbr 5139 βcfv 6534 (class class class)co 7402 + caddc 11110 β€ cle 11248 Basecbs 17149 +gcplusg 17202 Grpcgrp 18859 -gcsg 18861 normcnm 24429 NrmGrpcngp 24430 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 ax-cnex 11163 ax-resscn 11164 ax-1cn 11165 ax-icn 11166 ax-addcl 11167 ax-addrcl 11168 ax-mulcl 11169 ax-mulrcl 11170 ax-mulcom 11171 ax-addass 11172 ax-mulass 11173 ax-distr 11174 ax-i2m1 11175 ax-1ne0 11176 ax-1rid 11177 ax-rnegex 11178 ax-rrecex 11179 ax-cnre 11180 ax-pre-lttri 11181 ax-pre-lttrn 11182 ax-pre-ltadd 11183 ax-pre-mulgt0 11184 ax-pre-sup 11185 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3960 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-iun 4990 df-br 5140 df-opab 5202 df-mpt 5223 df-tr 5257 df-id 5565 df-eprel 5571 df-po 5579 df-so 5580 df-fr 5622 df-we 5624 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6291 df-ord 6358 df-on 6359 df-lim 6360 df-suc 6361 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-riota 7358 df-ov 7405 df-oprab 7406 df-mpo 7407 df-om 7850 df-1st 7969 df-2nd 7970 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-er 8700 df-map 8819 df-en 8937 df-dom 8938 df-sdom 8939 df-sup 9434 df-inf 9435 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-div 11871 df-nn 12212 df-2 12274 df-n0 12472 df-z 12558 df-uz 12822 df-q 12932 df-rp 12976 df-xneg 13093 df-xadd 13094 df-xmul 13095 df-0g 17392 df-topgen 17394 df-mgm 18569 df-sgrp 18648 df-mnd 18664 df-grp 18862 df-minusg 18863 df-sbg 18864 df-psmet 21226 df-xmet 21227 df-met 21228 df-bl 21229 df-mopn 21230 df-top 22740 df-topon 22757 df-topsp 22779 df-bases 22793 df-xms 24170 df-ms 24171 df-nm 24435 df-ngp 24436 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |