Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ngpi | Structured version Visualization version GIF version |
Description: The properties of a normed group, which is a group accompanied by a norm. (Contributed by AV, 7-Oct-2021.) |
Ref | Expression |
---|---|
ngpi.v | ⊢ 𝑉 = (Base‘𝑊) |
ngpi.n | ⊢ 𝑁 = (norm‘𝑊) |
ngpi.m | ⊢ − = (-g‘𝑊) |
ngpi.0 | ⊢ 0 = (0g‘𝑊) |
Ref | Expression |
---|---|
ngpi | ⊢ (𝑊 ∈ NrmGrp → (𝑊 ∈ Grp ∧ 𝑁:𝑉⟶ℝ ∧ ∀𝑥 ∈ 𝑉 (((𝑁‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝑉 (𝑁‘(𝑥 − 𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ngpgrp 23853 | . 2 ⊢ (𝑊 ∈ NrmGrp → 𝑊 ∈ Grp) | |
2 | ngpi.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
3 | ngpi.n | . . 3 ⊢ 𝑁 = (norm‘𝑊) | |
4 | 2, 3 | nmf 23869 | . 2 ⊢ (𝑊 ∈ NrmGrp → 𝑁:𝑉⟶ℝ) |
5 | ngpi.0 | . . . . 5 ⊢ 0 = (0g‘𝑊) | |
6 | 2, 3, 5 | nmeq0 23872 | . . . 4 ⊢ ((𝑊 ∈ NrmGrp ∧ 𝑥 ∈ 𝑉) → ((𝑁‘𝑥) = 0 ↔ 𝑥 = 0 )) |
7 | ngpi.m | . . . . . . 7 ⊢ − = (-g‘𝑊) | |
8 | 2, 3, 7 | nmmtri 23876 | . . . . . 6 ⊢ ((𝑊 ∈ NrmGrp ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → (𝑁‘(𝑥 − 𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))) |
9 | 8 | 3expa 1117 | . . . . 5 ⊢ (((𝑊 ∈ NrmGrp ∧ 𝑥 ∈ 𝑉) ∧ 𝑦 ∈ 𝑉) → (𝑁‘(𝑥 − 𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))) |
10 | 9 | ralrimiva 3139 | . . . 4 ⊢ ((𝑊 ∈ NrmGrp ∧ 𝑥 ∈ 𝑉) → ∀𝑦 ∈ 𝑉 (𝑁‘(𝑥 − 𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))) |
11 | 6, 10 | jca 512 | . . 3 ⊢ ((𝑊 ∈ NrmGrp ∧ 𝑥 ∈ 𝑉) → (((𝑁‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝑉 (𝑁‘(𝑥 − 𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦)))) |
12 | 11 | ralrimiva 3139 | . 2 ⊢ (𝑊 ∈ NrmGrp → ∀𝑥 ∈ 𝑉 (((𝑁‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝑉 (𝑁‘(𝑥 − 𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦)))) |
13 | 1, 4, 12 | 3jca 1127 | 1 ⊢ (𝑊 ∈ NrmGrp → (𝑊 ∈ Grp ∧ 𝑁:𝑉⟶ℝ ∧ ∀𝑥 ∈ 𝑉 (((𝑁‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝑉 (𝑁‘(𝑥 − 𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ∀wral 3061 class class class wbr 5089 ⟶wf 6469 ‘cfv 6473 (class class class)co 7329 ℝcr 10963 0cc0 10964 + caddc 10967 ≤ cle 11103 Basecbs 17001 0gc0g 17239 Grpcgrp 18665 -gcsg 18667 normcnm 23830 NrmGrpcngp 23831 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5240 ax-nul 5247 ax-pow 5305 ax-pr 5369 ax-un 7642 ax-cnex 11020 ax-resscn 11021 ax-1cn 11022 ax-icn 11023 ax-addcl 11024 ax-addrcl 11025 ax-mulcl 11026 ax-mulrcl 11027 ax-mulcom 11028 ax-addass 11029 ax-mulass 11030 ax-distr 11031 ax-i2m1 11032 ax-1ne0 11033 ax-1rid 11034 ax-rnegex 11035 ax-rrecex 11036 ax-cnre 11037 ax-pre-lttri 11038 ax-pre-lttrn 11039 ax-pre-ltadd 11040 ax-pre-mulgt0 11041 ax-pre-sup 11042 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-iun 4940 df-br 5090 df-opab 5152 df-mpt 5173 df-tr 5207 df-id 5512 df-eprel 5518 df-po 5526 df-so 5527 df-fr 5569 df-we 5571 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6232 df-ord 6299 df-on 6300 df-lim 6301 df-suc 6302 df-iota 6425 df-fun 6475 df-fn 6476 df-f 6477 df-f1 6478 df-fo 6479 df-f1o 6480 df-fv 6481 df-riota 7286 df-ov 7332 df-oprab 7333 df-mpo 7334 df-om 7773 df-1st 7891 df-2nd 7892 df-frecs 8159 df-wrecs 8190 df-recs 8264 df-rdg 8303 df-er 8561 df-map 8680 df-en 8797 df-dom 8798 df-sdom 8799 df-sup 9291 df-inf 9292 df-pnf 11104 df-mnf 11105 df-xr 11106 df-ltxr 11107 df-le 11108 df-sub 11300 df-neg 11301 df-div 11726 df-nn 12067 df-2 12129 df-n0 12327 df-z 12413 df-uz 12676 df-q 12782 df-rp 12824 df-xneg 12941 df-xadd 12942 df-xmul 12943 df-0g 17241 df-topgen 17243 df-mgm 18415 df-sgrp 18464 df-mnd 18475 df-grp 18668 df-minusg 18669 df-sbg 18670 df-psmet 20687 df-xmet 20688 df-met 20689 df-bl 20690 df-mopn 20691 df-top 22141 df-topon 22158 df-topsp 22180 df-bases 22194 df-xms 23571 df-ms 23572 df-nm 23836 df-ngp 23837 |
This theorem is referenced by: ncvsi 24413 |
Copyright terms: Public domain | W3C validator |