| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ngpi | Structured version Visualization version GIF version | ||
| Description: The properties of a normed group, which is a group accompanied by a norm. (Contributed by AV, 7-Oct-2021.) |
| Ref | Expression |
|---|---|
| ngpi.v | ⊢ 𝑉 = (Base‘𝑊) |
| ngpi.n | ⊢ 𝑁 = (norm‘𝑊) |
| ngpi.m | ⊢ − = (-g‘𝑊) |
| ngpi.0 | ⊢ 0 = (0g‘𝑊) |
| Ref | Expression |
|---|---|
| ngpi | ⊢ (𝑊 ∈ NrmGrp → (𝑊 ∈ Grp ∧ 𝑁:𝑉⟶ℝ ∧ ∀𝑥 ∈ 𝑉 (((𝑁‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝑉 (𝑁‘(𝑥 − 𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ngpgrp 24543 | . 2 ⊢ (𝑊 ∈ NrmGrp → 𝑊 ∈ Grp) | |
| 2 | ngpi.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
| 3 | ngpi.n | . . 3 ⊢ 𝑁 = (norm‘𝑊) | |
| 4 | 2, 3 | nmf 24559 | . 2 ⊢ (𝑊 ∈ NrmGrp → 𝑁:𝑉⟶ℝ) |
| 5 | ngpi.0 | . . . . 5 ⊢ 0 = (0g‘𝑊) | |
| 6 | 2, 3, 5 | nmeq0 24562 | . . . 4 ⊢ ((𝑊 ∈ NrmGrp ∧ 𝑥 ∈ 𝑉) → ((𝑁‘𝑥) = 0 ↔ 𝑥 = 0 )) |
| 7 | ngpi.m | . . . . . . 7 ⊢ − = (-g‘𝑊) | |
| 8 | 2, 3, 7 | nmmtri 24566 | . . . . . 6 ⊢ ((𝑊 ∈ NrmGrp ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → (𝑁‘(𝑥 − 𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))) |
| 9 | 8 | 3expa 1118 | . . . . 5 ⊢ (((𝑊 ∈ NrmGrp ∧ 𝑥 ∈ 𝑉) ∧ 𝑦 ∈ 𝑉) → (𝑁‘(𝑥 − 𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))) |
| 10 | 9 | ralrimiva 3133 | . . . 4 ⊢ ((𝑊 ∈ NrmGrp ∧ 𝑥 ∈ 𝑉) → ∀𝑦 ∈ 𝑉 (𝑁‘(𝑥 − 𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))) |
| 11 | 6, 10 | jca 511 | . . 3 ⊢ ((𝑊 ∈ NrmGrp ∧ 𝑥 ∈ 𝑉) → (((𝑁‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝑉 (𝑁‘(𝑥 − 𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦)))) |
| 12 | 11 | ralrimiva 3133 | . 2 ⊢ (𝑊 ∈ NrmGrp → ∀𝑥 ∈ 𝑉 (((𝑁‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝑉 (𝑁‘(𝑥 − 𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦)))) |
| 13 | 1, 4, 12 | 3jca 1128 | 1 ⊢ (𝑊 ∈ NrmGrp → (𝑊 ∈ Grp ∧ 𝑁:𝑉⟶ℝ ∧ ∀𝑥 ∈ 𝑉 (((𝑁‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝑉 (𝑁‘(𝑥 − 𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3052 class class class wbr 5124 ⟶wf 6532 ‘cfv 6536 (class class class)co 7410 ℝcr 11133 0cc0 11134 + caddc 11137 ≤ cle 11275 Basecbs 17233 0gc0g 17458 Grpcgrp 18921 -gcsg 18923 normcnm 24520 NrmGrpcngp 24521 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 ax-pre-sup 11212 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-sup 9459 df-inf 9460 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-nn 12246 df-2 12308 df-n0 12507 df-z 12594 df-uz 12858 df-q 12970 df-rp 13014 df-xneg 13133 df-xadd 13134 df-xmul 13135 df-0g 17460 df-topgen 17462 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-grp 18924 df-minusg 18925 df-sbg 18926 df-psmet 21312 df-xmet 21313 df-met 21314 df-bl 21315 df-mopn 21316 df-top 22837 df-topon 22854 df-topsp 22876 df-bases 22889 df-xms 24264 df-ms 24265 df-nm 24526 df-ngp 24527 |
| This theorem is referenced by: ncvsi 25108 |
| Copyright terms: Public domain | W3C validator |