| Step | Hyp | Ref
| Expression |
| 1 | | nmotri.1 |
. 2
⊢ 𝑁 = (𝑆 normOp 𝑇) |
| 2 | | eqid 2737 |
. 2
⊢
(Base‘𝑆) =
(Base‘𝑆) |
| 3 | | eqid 2737 |
. 2
⊢
(norm‘𝑆) =
(norm‘𝑆) |
| 4 | | eqid 2737 |
. 2
⊢
(norm‘𝑇) =
(norm‘𝑇) |
| 5 | | eqid 2737 |
. 2
⊢
(0g‘𝑆) = (0g‘𝑆) |
| 6 | | nghmrcl1 24753 |
. . 3
⊢ (𝐹 ∈ (𝑆 NGHom 𝑇) → 𝑆 ∈ NrmGrp) |
| 7 | 6 | 3ad2ant2 1135 |
. 2
⊢ ((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) → 𝑆 ∈ NrmGrp) |
| 8 | | nghmrcl2 24754 |
. . 3
⊢ (𝐹 ∈ (𝑆 NGHom 𝑇) → 𝑇 ∈ NrmGrp) |
| 9 | 8 | 3ad2ant2 1135 |
. 2
⊢ ((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) → 𝑇 ∈ NrmGrp) |
| 10 | | id 22 |
. . 3
⊢ (𝑇 ∈ Abel → 𝑇 ∈ Abel) |
| 11 | | nghmghm 24755 |
. . 3
⊢ (𝐹 ∈ (𝑆 NGHom 𝑇) → 𝐹 ∈ (𝑆 GrpHom 𝑇)) |
| 12 | | nghmghm 24755 |
. . 3
⊢ (𝐺 ∈ (𝑆 NGHom 𝑇) → 𝐺 ∈ (𝑆 GrpHom 𝑇)) |
| 13 | | nmotri.p |
. . . 4
⊢ + =
(+g‘𝑇) |
| 14 | 13 | ghmplusg 19864 |
. . 3
⊢ ((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐺 ∈ (𝑆 GrpHom 𝑇)) → (𝐹 ∘f + 𝐺) ∈ (𝑆 GrpHom 𝑇)) |
| 15 | 10, 11, 12, 14 | syl3an 1161 |
. 2
⊢ ((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) → (𝐹 ∘f + 𝐺) ∈ (𝑆 GrpHom 𝑇)) |
| 16 | 1 | nghmcl 24748 |
. . . 4
⊢ (𝐹 ∈ (𝑆 NGHom 𝑇) → (𝑁‘𝐹) ∈ ℝ) |
| 17 | 16 | 3ad2ant2 1135 |
. . 3
⊢ ((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) → (𝑁‘𝐹) ∈ ℝ) |
| 18 | 1 | nghmcl 24748 |
. . . 4
⊢ (𝐺 ∈ (𝑆 NGHom 𝑇) → (𝑁‘𝐺) ∈ ℝ) |
| 19 | 18 | 3ad2ant3 1136 |
. . 3
⊢ ((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) → (𝑁‘𝐺) ∈ ℝ) |
| 20 | 17, 19 | readdcld 11290 |
. 2
⊢ ((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) → ((𝑁‘𝐹) + (𝑁‘𝐺)) ∈ ℝ) |
| 21 | 11 | 3ad2ant2 1135 |
. . . 4
⊢ ((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) → 𝐹 ∈ (𝑆 GrpHom 𝑇)) |
| 22 | 1 | nmoge0 24742 |
. . . 4
⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → 0 ≤ (𝑁‘𝐹)) |
| 23 | 7, 9, 21, 22 | syl3anc 1373 |
. . 3
⊢ ((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) → 0 ≤ (𝑁‘𝐹)) |
| 24 | 12 | 3ad2ant3 1136 |
. . . 4
⊢ ((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) → 𝐺 ∈ (𝑆 GrpHom 𝑇)) |
| 25 | 1 | nmoge0 24742 |
. . . 4
⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐺 ∈ (𝑆 GrpHom 𝑇)) → 0 ≤ (𝑁‘𝐺)) |
| 26 | 7, 9, 24, 25 | syl3anc 1373 |
. . 3
⊢ ((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) → 0 ≤ (𝑁‘𝐺)) |
| 27 | 17, 19, 23, 26 | addge0d 11839 |
. 2
⊢ ((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) → 0 ≤ ((𝑁‘𝐹) + (𝑁‘𝐺))) |
| 28 | 9 | adantr 480 |
. . . . 5
⊢ (((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g‘𝑆))) → 𝑇 ∈ NrmGrp) |
| 29 | | ngpgrp 24612 |
. . . . . . 7
⊢ (𝑇 ∈ NrmGrp → 𝑇 ∈ Grp) |
| 30 | 28, 29 | syl 17 |
. . . . . 6
⊢ (((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g‘𝑆))) → 𝑇 ∈ Grp) |
| 31 | 21 | adantr 480 |
. . . . . . . 8
⊢ (((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g‘𝑆))) → 𝐹 ∈ (𝑆 GrpHom 𝑇)) |
| 32 | | eqid 2737 |
. . . . . . . . 9
⊢
(Base‘𝑇) =
(Base‘𝑇) |
| 33 | 2, 32 | ghmf 19238 |
. . . . . . . 8
⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇)) |
| 34 | 31, 33 | syl 17 |
. . . . . . 7
⊢ (((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g‘𝑆))) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇)) |
| 35 | | simprl 771 |
. . . . . . 7
⊢ (((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g‘𝑆))) → 𝑥 ∈ (Base‘𝑆)) |
| 36 | 34, 35 | ffvelcdmd 7105 |
. . . . . 6
⊢ (((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g‘𝑆))) → (𝐹‘𝑥) ∈ (Base‘𝑇)) |
| 37 | 24 | adantr 480 |
. . . . . . . 8
⊢ (((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g‘𝑆))) → 𝐺 ∈ (𝑆 GrpHom 𝑇)) |
| 38 | 2, 32 | ghmf 19238 |
. . . . . . . 8
⊢ (𝐺 ∈ (𝑆 GrpHom 𝑇) → 𝐺:(Base‘𝑆)⟶(Base‘𝑇)) |
| 39 | 37, 38 | syl 17 |
. . . . . . 7
⊢ (((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g‘𝑆))) → 𝐺:(Base‘𝑆)⟶(Base‘𝑇)) |
| 40 | 39, 35 | ffvelcdmd 7105 |
. . . . . 6
⊢ (((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g‘𝑆))) → (𝐺‘𝑥) ∈ (Base‘𝑇)) |
| 41 | 32, 13 | grpcl 18959 |
. . . . . 6
⊢ ((𝑇 ∈ Grp ∧ (𝐹‘𝑥) ∈ (Base‘𝑇) ∧ (𝐺‘𝑥) ∈ (Base‘𝑇)) → ((𝐹‘𝑥) + (𝐺‘𝑥)) ∈ (Base‘𝑇)) |
| 42 | 30, 36, 40, 41 | syl3anc 1373 |
. . . . 5
⊢ (((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g‘𝑆))) → ((𝐹‘𝑥) + (𝐺‘𝑥)) ∈ (Base‘𝑇)) |
| 43 | 32, 4 | nmcl 24629 |
. . . . 5
⊢ ((𝑇 ∈ NrmGrp ∧ ((𝐹‘𝑥) + (𝐺‘𝑥)) ∈ (Base‘𝑇)) → ((norm‘𝑇)‘((𝐹‘𝑥) + (𝐺‘𝑥))) ∈ ℝ) |
| 44 | 28, 42, 43 | syl2anc 584 |
. . . 4
⊢ (((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g‘𝑆))) → ((norm‘𝑇)‘((𝐹‘𝑥) + (𝐺‘𝑥))) ∈ ℝ) |
| 45 | 32, 4 | nmcl 24629 |
. . . . . 6
⊢ ((𝑇 ∈ NrmGrp ∧ (𝐹‘𝑥) ∈ (Base‘𝑇)) → ((norm‘𝑇)‘(𝐹‘𝑥)) ∈ ℝ) |
| 46 | 28, 36, 45 | syl2anc 584 |
. . . . 5
⊢ (((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g‘𝑆))) → ((norm‘𝑇)‘(𝐹‘𝑥)) ∈ ℝ) |
| 47 | 32, 4 | nmcl 24629 |
. . . . . 6
⊢ ((𝑇 ∈ NrmGrp ∧ (𝐺‘𝑥) ∈ (Base‘𝑇)) → ((norm‘𝑇)‘(𝐺‘𝑥)) ∈ ℝ) |
| 48 | 28, 40, 47 | syl2anc 584 |
. . . . 5
⊢ (((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g‘𝑆))) → ((norm‘𝑇)‘(𝐺‘𝑥)) ∈ ℝ) |
| 49 | 46, 48 | readdcld 11290 |
. . . 4
⊢ (((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g‘𝑆))) → (((norm‘𝑇)‘(𝐹‘𝑥)) + ((norm‘𝑇)‘(𝐺‘𝑥))) ∈ ℝ) |
| 50 | 17 | adantr 480 |
. . . . . 6
⊢ (((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g‘𝑆))) → (𝑁‘𝐹) ∈ ℝ) |
| 51 | | simpl 482 |
. . . . . . 7
⊢ ((𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g‘𝑆)) → 𝑥 ∈ (Base‘𝑆)) |
| 52 | 2, 3 | nmcl 24629 |
. . . . . . 7
⊢ ((𝑆 ∈ NrmGrp ∧ 𝑥 ∈ (Base‘𝑆)) → ((norm‘𝑆)‘𝑥) ∈ ℝ) |
| 53 | 7, 51, 52 | syl2an 596 |
. . . . . 6
⊢ (((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g‘𝑆))) → ((norm‘𝑆)‘𝑥) ∈ ℝ) |
| 54 | 50, 53 | remulcld 11291 |
. . . . 5
⊢ (((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g‘𝑆))) → ((𝑁‘𝐹) · ((norm‘𝑆)‘𝑥)) ∈ ℝ) |
| 55 | 19 | adantr 480 |
. . . . . 6
⊢ (((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g‘𝑆))) → (𝑁‘𝐺) ∈ ℝ) |
| 56 | 55, 53 | remulcld 11291 |
. . . . 5
⊢ (((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g‘𝑆))) → ((𝑁‘𝐺) · ((norm‘𝑆)‘𝑥)) ∈ ℝ) |
| 57 | 54, 56 | readdcld 11290 |
. . . 4
⊢ (((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g‘𝑆))) → (((𝑁‘𝐹) · ((norm‘𝑆)‘𝑥)) + ((𝑁‘𝐺) · ((norm‘𝑆)‘𝑥))) ∈ ℝ) |
| 58 | 32, 4, 13 | nmtri 24639 |
. . . . 5
⊢ ((𝑇 ∈ NrmGrp ∧ (𝐹‘𝑥) ∈ (Base‘𝑇) ∧ (𝐺‘𝑥) ∈ (Base‘𝑇)) → ((norm‘𝑇)‘((𝐹‘𝑥) + (𝐺‘𝑥))) ≤ (((norm‘𝑇)‘(𝐹‘𝑥)) + ((norm‘𝑇)‘(𝐺‘𝑥)))) |
| 59 | 28, 36, 40, 58 | syl3anc 1373 |
. . . 4
⊢ (((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g‘𝑆))) → ((norm‘𝑇)‘((𝐹‘𝑥) + (𝐺‘𝑥))) ≤ (((norm‘𝑇)‘(𝐹‘𝑥)) + ((norm‘𝑇)‘(𝐺‘𝑥)))) |
| 60 | | simpl2 1193 |
. . . . . 6
⊢ (((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g‘𝑆))) → 𝐹 ∈ (𝑆 NGHom 𝑇)) |
| 61 | 1, 2, 3, 4 | nmoi 24749 |
. . . . . 6
⊢ ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑥 ∈ (Base‘𝑆)) → ((norm‘𝑇)‘(𝐹‘𝑥)) ≤ ((𝑁‘𝐹) · ((norm‘𝑆)‘𝑥))) |
| 62 | 60, 35, 61 | syl2anc 584 |
. . . . 5
⊢ (((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g‘𝑆))) → ((norm‘𝑇)‘(𝐹‘𝑥)) ≤ ((𝑁‘𝐹) · ((norm‘𝑆)‘𝑥))) |
| 63 | | simpl3 1194 |
. . . . . 6
⊢ (((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g‘𝑆))) → 𝐺 ∈ (𝑆 NGHom 𝑇)) |
| 64 | 1, 2, 3, 4 | nmoi 24749 |
. . . . . 6
⊢ ((𝐺 ∈ (𝑆 NGHom 𝑇) ∧ 𝑥 ∈ (Base‘𝑆)) → ((norm‘𝑇)‘(𝐺‘𝑥)) ≤ ((𝑁‘𝐺) · ((norm‘𝑆)‘𝑥))) |
| 65 | 63, 35, 64 | syl2anc 584 |
. . . . 5
⊢ (((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g‘𝑆))) → ((norm‘𝑇)‘(𝐺‘𝑥)) ≤ ((𝑁‘𝐺) · ((norm‘𝑆)‘𝑥))) |
| 66 | 46, 48, 54, 56, 62, 65 | le2addd 11882 |
. . . 4
⊢ (((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g‘𝑆))) → (((norm‘𝑇)‘(𝐹‘𝑥)) + ((norm‘𝑇)‘(𝐺‘𝑥))) ≤ (((𝑁‘𝐹) · ((norm‘𝑆)‘𝑥)) + ((𝑁‘𝐺) · ((norm‘𝑆)‘𝑥)))) |
| 67 | 44, 49, 57, 59, 66 | letrd 11418 |
. . 3
⊢ (((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g‘𝑆))) → ((norm‘𝑇)‘((𝐹‘𝑥) + (𝐺‘𝑥))) ≤ (((𝑁‘𝐹) · ((norm‘𝑆)‘𝑥)) + ((𝑁‘𝐺) · ((norm‘𝑆)‘𝑥)))) |
| 68 | 34 | ffnd 6737 |
. . . . 5
⊢ (((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g‘𝑆))) → 𝐹 Fn (Base‘𝑆)) |
| 69 | 39 | ffnd 6737 |
. . . . 5
⊢ (((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g‘𝑆))) → 𝐺 Fn (Base‘𝑆)) |
| 70 | | fvexd 6921 |
. . . . 5
⊢ (((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g‘𝑆))) → (Base‘𝑆) ∈ V) |
| 71 | | fnfvof 7714 |
. . . . 5
⊢ (((𝐹 Fn (Base‘𝑆) ∧ 𝐺 Fn (Base‘𝑆)) ∧ ((Base‘𝑆) ∈ V ∧ 𝑥 ∈ (Base‘𝑆))) → ((𝐹 ∘f + 𝐺)‘𝑥) = ((𝐹‘𝑥) + (𝐺‘𝑥))) |
| 72 | 68, 69, 70, 35, 71 | syl22anc 839 |
. . . 4
⊢ (((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g‘𝑆))) → ((𝐹 ∘f + 𝐺)‘𝑥) = ((𝐹‘𝑥) + (𝐺‘𝑥))) |
| 73 | 72 | fveq2d 6910 |
. . 3
⊢ (((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g‘𝑆))) → ((norm‘𝑇)‘((𝐹 ∘f + 𝐺)‘𝑥)) = ((norm‘𝑇)‘((𝐹‘𝑥) + (𝐺‘𝑥)))) |
| 74 | 50 | recnd 11289 |
. . . 4
⊢ (((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g‘𝑆))) → (𝑁‘𝐹) ∈ ℂ) |
| 75 | 55 | recnd 11289 |
. . . 4
⊢ (((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g‘𝑆))) → (𝑁‘𝐺) ∈ ℂ) |
| 76 | 53 | recnd 11289 |
. . . 4
⊢ (((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g‘𝑆))) → ((norm‘𝑆)‘𝑥) ∈ ℂ) |
| 77 | 74, 75, 76 | adddird 11286 |
. . 3
⊢ (((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g‘𝑆))) → (((𝑁‘𝐹) + (𝑁‘𝐺)) · ((norm‘𝑆)‘𝑥)) = (((𝑁‘𝐹) · ((norm‘𝑆)‘𝑥)) + ((𝑁‘𝐺) · ((norm‘𝑆)‘𝑥)))) |
| 78 | 67, 73, 77 | 3brtr4d 5175 |
. 2
⊢ (((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g‘𝑆))) → ((norm‘𝑇)‘((𝐹 ∘f + 𝐺)‘𝑥)) ≤ (((𝑁‘𝐹) + (𝑁‘𝐺)) · ((norm‘𝑆)‘𝑥))) |
| 79 | 1, 2, 3, 4, 5, 7, 9, 15, 20, 27, 78 | nmolb2d 24739 |
1
⊢ ((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) → (𝑁‘(𝐹 ∘f + 𝐺)) ≤ ((𝑁‘𝐹) + (𝑁‘𝐺))) |