MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmotri Structured version   Visualization version   GIF version

Theorem nmotri 23348
Description: Triangle inequality for the operator norm. (Contributed by Mario Carneiro, 20-Oct-2015.)
Hypotheses
Ref Expression
nmotri.1 𝑁 = (𝑆 normOp 𝑇)
nmotri.p + = (+g𝑇)
Assertion
Ref Expression
nmotri ((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) → (𝑁‘(𝐹f + 𝐺)) ≤ ((𝑁𝐹) + (𝑁𝐺)))

Proof of Theorem nmotri
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 nmotri.1 . 2 𝑁 = (𝑆 normOp 𝑇)
2 eqid 2801 . 2 (Base‘𝑆) = (Base‘𝑆)
3 eqid 2801 . 2 (norm‘𝑆) = (norm‘𝑆)
4 eqid 2801 . 2 (norm‘𝑇) = (norm‘𝑇)
5 eqid 2801 . 2 (0g𝑆) = (0g𝑆)
6 nghmrcl1 23341 . . 3 (𝐹 ∈ (𝑆 NGHom 𝑇) → 𝑆 ∈ NrmGrp)
763ad2ant2 1131 . 2 ((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) → 𝑆 ∈ NrmGrp)
8 nghmrcl2 23342 . . 3 (𝐹 ∈ (𝑆 NGHom 𝑇) → 𝑇 ∈ NrmGrp)
983ad2ant2 1131 . 2 ((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) → 𝑇 ∈ NrmGrp)
10 id 22 . . 3 (𝑇 ∈ Abel → 𝑇 ∈ Abel)
11 nghmghm 23343 . . 3 (𝐹 ∈ (𝑆 NGHom 𝑇) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
12 nghmghm 23343 . . 3 (𝐺 ∈ (𝑆 NGHom 𝑇) → 𝐺 ∈ (𝑆 GrpHom 𝑇))
13 nmotri.p . . . 4 + = (+g𝑇)
1413ghmplusg 18962 . . 3 ((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐺 ∈ (𝑆 GrpHom 𝑇)) → (𝐹f + 𝐺) ∈ (𝑆 GrpHom 𝑇))
1510, 11, 12, 14syl3an 1157 . 2 ((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) → (𝐹f + 𝐺) ∈ (𝑆 GrpHom 𝑇))
161nghmcl 23336 . . . 4 (𝐹 ∈ (𝑆 NGHom 𝑇) → (𝑁𝐹) ∈ ℝ)
17163ad2ant2 1131 . . 3 ((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) → (𝑁𝐹) ∈ ℝ)
181nghmcl 23336 . . . 4 (𝐺 ∈ (𝑆 NGHom 𝑇) → (𝑁𝐺) ∈ ℝ)
19183ad2ant3 1132 . . 3 ((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) → (𝑁𝐺) ∈ ℝ)
2017, 19readdcld 10663 . 2 ((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) → ((𝑁𝐹) + (𝑁𝐺)) ∈ ℝ)
21113ad2ant2 1131 . . . 4 ((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
221nmoge0 23330 . . . 4 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → 0 ≤ (𝑁𝐹))
237, 9, 21, 22syl3anc 1368 . . 3 ((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) → 0 ≤ (𝑁𝐹))
24123ad2ant3 1132 . . . 4 ((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) → 𝐺 ∈ (𝑆 GrpHom 𝑇))
251nmoge0 23330 . . . 4 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐺 ∈ (𝑆 GrpHom 𝑇)) → 0 ≤ (𝑁𝐺))
267, 9, 24, 25syl3anc 1368 . . 3 ((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) → 0 ≤ (𝑁𝐺))
2717, 19, 23, 26addge0d 11209 . 2 ((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) → 0 ≤ ((𝑁𝐹) + (𝑁𝐺)))
289adantr 484 . . . . 5 (((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → 𝑇 ∈ NrmGrp)
29 ngpgrp 23208 . . . . . . 7 (𝑇 ∈ NrmGrp → 𝑇 ∈ Grp)
3028, 29syl 17 . . . . . 6 (((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → 𝑇 ∈ Grp)
3121adantr 484 . . . . . . . 8 (((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
32 eqid 2801 . . . . . . . . 9 (Base‘𝑇) = (Base‘𝑇)
332, 32ghmf 18357 . . . . . . . 8 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇))
3431, 33syl 17 . . . . . . 7 (((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇))
35 simprl 770 . . . . . . 7 (((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → 𝑥 ∈ (Base‘𝑆))
3634, 35ffvelrnd 6833 . . . . . 6 (((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → (𝐹𝑥) ∈ (Base‘𝑇))
3724adantr 484 . . . . . . . 8 (((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → 𝐺 ∈ (𝑆 GrpHom 𝑇))
382, 32ghmf 18357 . . . . . . . 8 (𝐺 ∈ (𝑆 GrpHom 𝑇) → 𝐺:(Base‘𝑆)⟶(Base‘𝑇))
3937, 38syl 17 . . . . . . 7 (((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → 𝐺:(Base‘𝑆)⟶(Base‘𝑇))
4039, 35ffvelrnd 6833 . . . . . 6 (((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → (𝐺𝑥) ∈ (Base‘𝑇))
4132, 13grpcl 18106 . . . . . 6 ((𝑇 ∈ Grp ∧ (𝐹𝑥) ∈ (Base‘𝑇) ∧ (𝐺𝑥) ∈ (Base‘𝑇)) → ((𝐹𝑥) + (𝐺𝑥)) ∈ (Base‘𝑇))
4230, 36, 40, 41syl3anc 1368 . . . . 5 (((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → ((𝐹𝑥) + (𝐺𝑥)) ∈ (Base‘𝑇))
4332, 4nmcl 23225 . . . . 5 ((𝑇 ∈ NrmGrp ∧ ((𝐹𝑥) + (𝐺𝑥)) ∈ (Base‘𝑇)) → ((norm‘𝑇)‘((𝐹𝑥) + (𝐺𝑥))) ∈ ℝ)
4428, 42, 43syl2anc 587 . . . 4 (((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → ((norm‘𝑇)‘((𝐹𝑥) + (𝐺𝑥))) ∈ ℝ)
4532, 4nmcl 23225 . . . . . 6 ((𝑇 ∈ NrmGrp ∧ (𝐹𝑥) ∈ (Base‘𝑇)) → ((norm‘𝑇)‘(𝐹𝑥)) ∈ ℝ)
4628, 36, 45syl2anc 587 . . . . 5 (((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → ((norm‘𝑇)‘(𝐹𝑥)) ∈ ℝ)
4732, 4nmcl 23225 . . . . . 6 ((𝑇 ∈ NrmGrp ∧ (𝐺𝑥) ∈ (Base‘𝑇)) → ((norm‘𝑇)‘(𝐺𝑥)) ∈ ℝ)
4828, 40, 47syl2anc 587 . . . . 5 (((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → ((norm‘𝑇)‘(𝐺𝑥)) ∈ ℝ)
4946, 48readdcld 10663 . . . 4 (((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → (((norm‘𝑇)‘(𝐹𝑥)) + ((norm‘𝑇)‘(𝐺𝑥))) ∈ ℝ)
5017adantr 484 . . . . . 6 (((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → (𝑁𝐹) ∈ ℝ)
51 simpl 486 . . . . . . 7 ((𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆)) → 𝑥 ∈ (Base‘𝑆))
522, 3nmcl 23225 . . . . . . 7 ((𝑆 ∈ NrmGrp ∧ 𝑥 ∈ (Base‘𝑆)) → ((norm‘𝑆)‘𝑥) ∈ ℝ)
537, 51, 52syl2an 598 . . . . . 6 (((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → ((norm‘𝑆)‘𝑥) ∈ ℝ)
5450, 53remulcld 10664 . . . . 5 (((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → ((𝑁𝐹) · ((norm‘𝑆)‘𝑥)) ∈ ℝ)
5519adantr 484 . . . . . 6 (((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → (𝑁𝐺) ∈ ℝ)
5655, 53remulcld 10664 . . . . 5 (((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → ((𝑁𝐺) · ((norm‘𝑆)‘𝑥)) ∈ ℝ)
5754, 56readdcld 10663 . . . 4 (((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → (((𝑁𝐹) · ((norm‘𝑆)‘𝑥)) + ((𝑁𝐺) · ((norm‘𝑆)‘𝑥))) ∈ ℝ)
5832, 4, 13nmtri 23235 . . . . 5 ((𝑇 ∈ NrmGrp ∧ (𝐹𝑥) ∈ (Base‘𝑇) ∧ (𝐺𝑥) ∈ (Base‘𝑇)) → ((norm‘𝑇)‘((𝐹𝑥) + (𝐺𝑥))) ≤ (((norm‘𝑇)‘(𝐹𝑥)) + ((norm‘𝑇)‘(𝐺𝑥))))
5928, 36, 40, 58syl3anc 1368 . . . 4 (((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → ((norm‘𝑇)‘((𝐹𝑥) + (𝐺𝑥))) ≤ (((norm‘𝑇)‘(𝐹𝑥)) + ((norm‘𝑇)‘(𝐺𝑥))))
60 simpl2 1189 . . . . . 6 (((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → 𝐹 ∈ (𝑆 NGHom 𝑇))
611, 2, 3, 4nmoi 23337 . . . . . 6 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑥 ∈ (Base‘𝑆)) → ((norm‘𝑇)‘(𝐹𝑥)) ≤ ((𝑁𝐹) · ((norm‘𝑆)‘𝑥)))
6260, 35, 61syl2anc 587 . . . . 5 (((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → ((norm‘𝑇)‘(𝐹𝑥)) ≤ ((𝑁𝐹) · ((norm‘𝑆)‘𝑥)))
63 simpl3 1190 . . . . . 6 (((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → 𝐺 ∈ (𝑆 NGHom 𝑇))
641, 2, 3, 4nmoi 23337 . . . . . 6 ((𝐺 ∈ (𝑆 NGHom 𝑇) ∧ 𝑥 ∈ (Base‘𝑆)) → ((norm‘𝑇)‘(𝐺𝑥)) ≤ ((𝑁𝐺) · ((norm‘𝑆)‘𝑥)))
6563, 35, 64syl2anc 587 . . . . 5 (((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → ((norm‘𝑇)‘(𝐺𝑥)) ≤ ((𝑁𝐺) · ((norm‘𝑆)‘𝑥)))
6646, 48, 54, 56, 62, 65le2addd 11252 . . . 4 (((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → (((norm‘𝑇)‘(𝐹𝑥)) + ((norm‘𝑇)‘(𝐺𝑥))) ≤ (((𝑁𝐹) · ((norm‘𝑆)‘𝑥)) + ((𝑁𝐺) · ((norm‘𝑆)‘𝑥))))
6744, 49, 57, 59, 66letrd 10790 . . 3 (((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → ((norm‘𝑇)‘((𝐹𝑥) + (𝐺𝑥))) ≤ (((𝑁𝐹) · ((norm‘𝑆)‘𝑥)) + ((𝑁𝐺) · ((norm‘𝑆)‘𝑥))))
6834ffnd 6492 . . . . 5 (((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → 𝐹 Fn (Base‘𝑆))
6939ffnd 6492 . . . . 5 (((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → 𝐺 Fn (Base‘𝑆))
70 fvexd 6664 . . . . 5 (((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → (Base‘𝑆) ∈ V)
71 fnfvof 7407 . . . . 5 (((𝐹 Fn (Base‘𝑆) ∧ 𝐺 Fn (Base‘𝑆)) ∧ ((Base‘𝑆) ∈ V ∧ 𝑥 ∈ (Base‘𝑆))) → ((𝐹f + 𝐺)‘𝑥) = ((𝐹𝑥) + (𝐺𝑥)))
7268, 69, 70, 35, 71syl22anc 837 . . . 4 (((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → ((𝐹f + 𝐺)‘𝑥) = ((𝐹𝑥) + (𝐺𝑥)))
7372fveq2d 6653 . . 3 (((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → ((norm‘𝑇)‘((𝐹f + 𝐺)‘𝑥)) = ((norm‘𝑇)‘((𝐹𝑥) + (𝐺𝑥))))
7450recnd 10662 . . . 4 (((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → (𝑁𝐹) ∈ ℂ)
7555recnd 10662 . . . 4 (((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → (𝑁𝐺) ∈ ℂ)
7653recnd 10662 . . . 4 (((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → ((norm‘𝑆)‘𝑥) ∈ ℂ)
7774, 75, 76adddird 10659 . . 3 (((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → (((𝑁𝐹) + (𝑁𝐺)) · ((norm‘𝑆)‘𝑥)) = (((𝑁𝐹) · ((norm‘𝑆)‘𝑥)) + ((𝑁𝐺) · ((norm‘𝑆)‘𝑥))))
7867, 73, 773brtr4d 5065 . 2 (((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → ((norm‘𝑇)‘((𝐹f + 𝐺)‘𝑥)) ≤ (((𝑁𝐹) + (𝑁𝐺)) · ((norm‘𝑆)‘𝑥)))
791, 2, 3, 4, 5, 7, 9, 15, 20, 27, 78nmolb2d 23327 1 ((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) → (𝑁‘(𝐹f + 𝐺)) ≤ ((𝑁𝐹) + (𝑁𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2112  wne 2990  Vcvv 3444   class class class wbr 5033   Fn wfn 6323  wf 6324  cfv 6328  (class class class)co 7139  f cof 7391  cr 10529  0cc0 10530   + caddc 10533   · cmul 10535  cle 10669  Basecbs 16478  +gcplusg 16560  0gc0g 16708  Grpcgrp 18098   GrpHom cghm 18350  Abelcabl 18902  normcnm 23186  NrmGrpcngp 23187   normOp cnmo 23314   NGHom cnghm 23315
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-of 7393  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-map 8395  df-en 8497  df-dom 8498  df-sdom 8499  df-sup 8894  df-inf 8895  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-2 11692  df-n0 11890  df-z 11974  df-uz 12236  df-q 12341  df-rp 12382  df-xneg 12499  df-xadd 12500  df-xmul 12501  df-ico 12736  df-0g 16710  df-topgen 16712  df-mgm 17847  df-sgrp 17896  df-mnd 17907  df-grp 18101  df-minusg 18102  df-sbg 18103  df-ghm 18351  df-cmn 18903  df-abl 18904  df-psmet 20086  df-xmet 20087  df-met 20088  df-bl 20089  df-mopn 20090  df-top 21502  df-topon 21519  df-topsp 21541  df-bases 21554  df-xms 22930  df-ms 22931  df-nm 23192  df-ngp 23193  df-nmo 23317  df-nghm 23318
This theorem is referenced by:  nghmplusg  23349
  Copyright terms: Public domain W3C validator