MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmotri Structured version   Visualization version   GIF version

Theorem nmotri 24660
Description: Triangle inequality for the operator norm. (Contributed by Mario Carneiro, 20-Oct-2015.)
Hypotheses
Ref Expression
nmotri.1 𝑁 = (𝑆 normOp 𝑇)
nmotri.p + = (+g𝑇)
Assertion
Ref Expression
nmotri ((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) → (𝑁‘(𝐹f + 𝐺)) ≤ ((𝑁𝐹) + (𝑁𝐺)))

Proof of Theorem nmotri
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 nmotri.1 . 2 𝑁 = (𝑆 normOp 𝑇)
2 eqid 2729 . 2 (Base‘𝑆) = (Base‘𝑆)
3 eqid 2729 . 2 (norm‘𝑆) = (norm‘𝑆)
4 eqid 2729 . 2 (norm‘𝑇) = (norm‘𝑇)
5 eqid 2729 . 2 (0g𝑆) = (0g𝑆)
6 nghmrcl1 24653 . . 3 (𝐹 ∈ (𝑆 NGHom 𝑇) → 𝑆 ∈ NrmGrp)
763ad2ant2 1134 . 2 ((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) → 𝑆 ∈ NrmGrp)
8 nghmrcl2 24654 . . 3 (𝐹 ∈ (𝑆 NGHom 𝑇) → 𝑇 ∈ NrmGrp)
983ad2ant2 1134 . 2 ((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) → 𝑇 ∈ NrmGrp)
10 id 22 . . 3 (𝑇 ∈ Abel → 𝑇 ∈ Abel)
11 nghmghm 24655 . . 3 (𝐹 ∈ (𝑆 NGHom 𝑇) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
12 nghmghm 24655 . . 3 (𝐺 ∈ (𝑆 NGHom 𝑇) → 𝐺 ∈ (𝑆 GrpHom 𝑇))
13 nmotri.p . . . 4 + = (+g𝑇)
1413ghmplusg 19760 . . 3 ((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐺 ∈ (𝑆 GrpHom 𝑇)) → (𝐹f + 𝐺) ∈ (𝑆 GrpHom 𝑇))
1510, 11, 12, 14syl3an 1160 . 2 ((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) → (𝐹f + 𝐺) ∈ (𝑆 GrpHom 𝑇))
161nghmcl 24648 . . . 4 (𝐹 ∈ (𝑆 NGHom 𝑇) → (𝑁𝐹) ∈ ℝ)
17163ad2ant2 1134 . . 3 ((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) → (𝑁𝐹) ∈ ℝ)
181nghmcl 24648 . . . 4 (𝐺 ∈ (𝑆 NGHom 𝑇) → (𝑁𝐺) ∈ ℝ)
19183ad2ant3 1135 . . 3 ((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) → (𝑁𝐺) ∈ ℝ)
2017, 19readdcld 11179 . 2 ((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) → ((𝑁𝐹) + (𝑁𝐺)) ∈ ℝ)
21113ad2ant2 1134 . . . 4 ((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
221nmoge0 24642 . . . 4 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → 0 ≤ (𝑁𝐹))
237, 9, 21, 22syl3anc 1373 . . 3 ((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) → 0 ≤ (𝑁𝐹))
24123ad2ant3 1135 . . . 4 ((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) → 𝐺 ∈ (𝑆 GrpHom 𝑇))
251nmoge0 24642 . . . 4 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐺 ∈ (𝑆 GrpHom 𝑇)) → 0 ≤ (𝑁𝐺))
267, 9, 24, 25syl3anc 1373 . . 3 ((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) → 0 ≤ (𝑁𝐺))
2717, 19, 23, 26addge0d 11730 . 2 ((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) → 0 ≤ ((𝑁𝐹) + (𝑁𝐺)))
289adantr 480 . . . . 5 (((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → 𝑇 ∈ NrmGrp)
29 ngpgrp 24520 . . . . . . 7 (𝑇 ∈ NrmGrp → 𝑇 ∈ Grp)
3028, 29syl 17 . . . . . 6 (((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → 𝑇 ∈ Grp)
3121adantr 480 . . . . . . . 8 (((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
32 eqid 2729 . . . . . . . . 9 (Base‘𝑇) = (Base‘𝑇)
332, 32ghmf 19134 . . . . . . . 8 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇))
3431, 33syl 17 . . . . . . 7 (((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇))
35 simprl 770 . . . . . . 7 (((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → 𝑥 ∈ (Base‘𝑆))
3634, 35ffvelcdmd 7039 . . . . . 6 (((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → (𝐹𝑥) ∈ (Base‘𝑇))
3724adantr 480 . . . . . . . 8 (((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → 𝐺 ∈ (𝑆 GrpHom 𝑇))
382, 32ghmf 19134 . . . . . . . 8 (𝐺 ∈ (𝑆 GrpHom 𝑇) → 𝐺:(Base‘𝑆)⟶(Base‘𝑇))
3937, 38syl 17 . . . . . . 7 (((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → 𝐺:(Base‘𝑆)⟶(Base‘𝑇))
4039, 35ffvelcdmd 7039 . . . . . 6 (((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → (𝐺𝑥) ∈ (Base‘𝑇))
4132, 13grpcl 18855 . . . . . 6 ((𝑇 ∈ Grp ∧ (𝐹𝑥) ∈ (Base‘𝑇) ∧ (𝐺𝑥) ∈ (Base‘𝑇)) → ((𝐹𝑥) + (𝐺𝑥)) ∈ (Base‘𝑇))
4230, 36, 40, 41syl3anc 1373 . . . . 5 (((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → ((𝐹𝑥) + (𝐺𝑥)) ∈ (Base‘𝑇))
4332, 4nmcl 24537 . . . . 5 ((𝑇 ∈ NrmGrp ∧ ((𝐹𝑥) + (𝐺𝑥)) ∈ (Base‘𝑇)) → ((norm‘𝑇)‘((𝐹𝑥) + (𝐺𝑥))) ∈ ℝ)
4428, 42, 43syl2anc 584 . . . 4 (((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → ((norm‘𝑇)‘((𝐹𝑥) + (𝐺𝑥))) ∈ ℝ)
4532, 4nmcl 24537 . . . . . 6 ((𝑇 ∈ NrmGrp ∧ (𝐹𝑥) ∈ (Base‘𝑇)) → ((norm‘𝑇)‘(𝐹𝑥)) ∈ ℝ)
4628, 36, 45syl2anc 584 . . . . 5 (((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → ((norm‘𝑇)‘(𝐹𝑥)) ∈ ℝ)
4732, 4nmcl 24537 . . . . . 6 ((𝑇 ∈ NrmGrp ∧ (𝐺𝑥) ∈ (Base‘𝑇)) → ((norm‘𝑇)‘(𝐺𝑥)) ∈ ℝ)
4828, 40, 47syl2anc 584 . . . . 5 (((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → ((norm‘𝑇)‘(𝐺𝑥)) ∈ ℝ)
4946, 48readdcld 11179 . . . 4 (((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → (((norm‘𝑇)‘(𝐹𝑥)) + ((norm‘𝑇)‘(𝐺𝑥))) ∈ ℝ)
5017adantr 480 . . . . . 6 (((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → (𝑁𝐹) ∈ ℝ)
51 simpl 482 . . . . . . 7 ((𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆)) → 𝑥 ∈ (Base‘𝑆))
522, 3nmcl 24537 . . . . . . 7 ((𝑆 ∈ NrmGrp ∧ 𝑥 ∈ (Base‘𝑆)) → ((norm‘𝑆)‘𝑥) ∈ ℝ)
537, 51, 52syl2an 596 . . . . . 6 (((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → ((norm‘𝑆)‘𝑥) ∈ ℝ)
5450, 53remulcld 11180 . . . . 5 (((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → ((𝑁𝐹) · ((norm‘𝑆)‘𝑥)) ∈ ℝ)
5519adantr 480 . . . . . 6 (((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → (𝑁𝐺) ∈ ℝ)
5655, 53remulcld 11180 . . . . 5 (((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → ((𝑁𝐺) · ((norm‘𝑆)‘𝑥)) ∈ ℝ)
5754, 56readdcld 11179 . . . 4 (((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → (((𝑁𝐹) · ((norm‘𝑆)‘𝑥)) + ((𝑁𝐺) · ((norm‘𝑆)‘𝑥))) ∈ ℝ)
5832, 4, 13nmtri 24547 . . . . 5 ((𝑇 ∈ NrmGrp ∧ (𝐹𝑥) ∈ (Base‘𝑇) ∧ (𝐺𝑥) ∈ (Base‘𝑇)) → ((norm‘𝑇)‘((𝐹𝑥) + (𝐺𝑥))) ≤ (((norm‘𝑇)‘(𝐹𝑥)) + ((norm‘𝑇)‘(𝐺𝑥))))
5928, 36, 40, 58syl3anc 1373 . . . 4 (((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → ((norm‘𝑇)‘((𝐹𝑥) + (𝐺𝑥))) ≤ (((norm‘𝑇)‘(𝐹𝑥)) + ((norm‘𝑇)‘(𝐺𝑥))))
60 simpl2 1193 . . . . . 6 (((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → 𝐹 ∈ (𝑆 NGHom 𝑇))
611, 2, 3, 4nmoi 24649 . . . . . 6 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑥 ∈ (Base‘𝑆)) → ((norm‘𝑇)‘(𝐹𝑥)) ≤ ((𝑁𝐹) · ((norm‘𝑆)‘𝑥)))
6260, 35, 61syl2anc 584 . . . . 5 (((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → ((norm‘𝑇)‘(𝐹𝑥)) ≤ ((𝑁𝐹) · ((norm‘𝑆)‘𝑥)))
63 simpl3 1194 . . . . . 6 (((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → 𝐺 ∈ (𝑆 NGHom 𝑇))
641, 2, 3, 4nmoi 24649 . . . . . 6 ((𝐺 ∈ (𝑆 NGHom 𝑇) ∧ 𝑥 ∈ (Base‘𝑆)) → ((norm‘𝑇)‘(𝐺𝑥)) ≤ ((𝑁𝐺) · ((norm‘𝑆)‘𝑥)))
6563, 35, 64syl2anc 584 . . . . 5 (((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → ((norm‘𝑇)‘(𝐺𝑥)) ≤ ((𝑁𝐺) · ((norm‘𝑆)‘𝑥)))
6646, 48, 54, 56, 62, 65le2addd 11773 . . . 4 (((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → (((norm‘𝑇)‘(𝐹𝑥)) + ((norm‘𝑇)‘(𝐺𝑥))) ≤ (((𝑁𝐹) · ((norm‘𝑆)‘𝑥)) + ((𝑁𝐺) · ((norm‘𝑆)‘𝑥))))
6744, 49, 57, 59, 66letrd 11307 . . 3 (((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → ((norm‘𝑇)‘((𝐹𝑥) + (𝐺𝑥))) ≤ (((𝑁𝐹) · ((norm‘𝑆)‘𝑥)) + ((𝑁𝐺) · ((norm‘𝑆)‘𝑥))))
6834ffnd 6671 . . . . 5 (((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → 𝐹 Fn (Base‘𝑆))
6939ffnd 6671 . . . . 5 (((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → 𝐺 Fn (Base‘𝑆))
70 fvexd 6855 . . . . 5 (((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → (Base‘𝑆) ∈ V)
71 fnfvof 7650 . . . . 5 (((𝐹 Fn (Base‘𝑆) ∧ 𝐺 Fn (Base‘𝑆)) ∧ ((Base‘𝑆) ∈ V ∧ 𝑥 ∈ (Base‘𝑆))) → ((𝐹f + 𝐺)‘𝑥) = ((𝐹𝑥) + (𝐺𝑥)))
7268, 69, 70, 35, 71syl22anc 838 . . . 4 (((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → ((𝐹f + 𝐺)‘𝑥) = ((𝐹𝑥) + (𝐺𝑥)))
7372fveq2d 6844 . . 3 (((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → ((norm‘𝑇)‘((𝐹f + 𝐺)‘𝑥)) = ((norm‘𝑇)‘((𝐹𝑥) + (𝐺𝑥))))
7450recnd 11178 . . . 4 (((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → (𝑁𝐹) ∈ ℂ)
7555recnd 11178 . . . 4 (((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → (𝑁𝐺) ∈ ℂ)
7653recnd 11178 . . . 4 (((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → ((norm‘𝑆)‘𝑥) ∈ ℂ)
7774, 75, 76adddird 11175 . . 3 (((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → (((𝑁𝐹) + (𝑁𝐺)) · ((norm‘𝑆)‘𝑥)) = (((𝑁𝐹) · ((norm‘𝑆)‘𝑥)) + ((𝑁𝐺) · ((norm‘𝑆)‘𝑥))))
7867, 73, 773brtr4d 5134 . 2 (((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → ((norm‘𝑇)‘((𝐹f + 𝐺)‘𝑥)) ≤ (((𝑁𝐹) + (𝑁𝐺)) · ((norm‘𝑆)‘𝑥)))
791, 2, 3, 4, 5, 7, 9, 15, 20, 27, 78nmolb2d 24639 1 ((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) → (𝑁‘(𝐹f + 𝐺)) ≤ ((𝑁𝐹) + (𝑁𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  Vcvv 3444   class class class wbr 5102   Fn wfn 6494  wf 6495  cfv 6499  (class class class)co 7369  f cof 7631  cr 11043  0cc0 11044   + caddc 11047   · cmul 11049  cle 11185  Basecbs 17155  +gcplusg 17196  0gc0g 17378  Grpcgrp 18847   GrpHom cghm 19126  Abelcabl 19695  normcnm 24497  NrmGrpcngp 24498   normOp cnmo 24626   NGHom cnghm 24627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-sup 9369  df-inf 9370  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-n0 12419  df-z 12506  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-ico 13288  df-0g 17380  df-topgen 17382  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-grp 18850  df-minusg 18851  df-sbg 18852  df-ghm 19127  df-cmn 19696  df-abl 19697  df-psmet 21288  df-xmet 21289  df-met 21290  df-bl 21291  df-mopn 21292  df-top 22814  df-topon 22831  df-topsp 22853  df-bases 22866  df-xms 24241  df-ms 24242  df-nm 24503  df-ngp 24504  df-nmo 24629  df-nghm 24630
This theorem is referenced by:  nghmplusg  24661
  Copyright terms: Public domain W3C validator