MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sucdom Structured version   Visualization version   GIF version

Theorem sucdom 8712
Description: Strict dominance of a set over a natural number is the same as dominance over its successor. (Contributed by Mario Carneiro, 12-Jan-2013.)
Assertion
Ref Expression
sucdom (𝐴 ∈ ω → (𝐴𝐵 ↔ suc 𝐴𝐵))

Proof of Theorem sucdom
StepHypRef Expression
1 sucdom2 8711 . 2 (𝐴𝐵 → suc 𝐴𝐵)
2 php4 8701 . . 3 (𝐴 ∈ ω → 𝐴 ≺ suc 𝐴)
3 sdomdomtr 8647 . . . 4 ((𝐴 ≺ suc 𝐴 ∧ suc 𝐴𝐵) → 𝐴𝐵)
43ex 415 . . 3 (𝐴 ≺ suc 𝐴 → (suc 𝐴𝐵𝐴𝐵))
52, 4syl 17 . 2 (𝐴 ∈ ω → (suc 𝐴𝐵𝐴𝐵))
61, 5impbid2 228 1 (𝐴 ∈ ω → (𝐴𝐵 ↔ suc 𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wcel 2113   class class class wbr 5063  suc csuc 6190  ωcom 7577  cdom 8504  csdm 8505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5327  ax-un 7458
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-ral 3142  df-rex 3143  df-rab 3146  df-v 3495  df-sbc 3771  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4465  df-pw 4538  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4836  df-br 5064  df-opab 5126  df-tr 5170  df-id 5457  df-eprel 5462  df-po 5471  df-so 5472  df-fr 5511  df-we 5513  df-xp 5558  df-rel 5559  df-cnv 5560  df-co 5561  df-dm 5562  df-rn 5563  df-res 5564  df-ima 5565  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-om 7578  df-1o 8099  df-er 8286  df-en 8507  df-dom 8508  df-sdom 8509
This theorem is referenced by:  0sdom1dom  8713  1sdom  8718  isnzr2  20032  harsucnn  39977
  Copyright terms: Public domain W3C validator