![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sucdom | Structured version Visualization version GIF version |
Description: Strict dominance of a set over a natural number is the same as dominance over its successor. (Contributed by Mario Carneiro, 12-Jan-2013.) |
Ref | Expression |
---|---|
sucdom | ⊢ (𝐴 ∈ ω → (𝐴 ≺ 𝐵 ↔ suc 𝐴 ≼ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sucdom2 8398 | . 2 ⊢ (𝐴 ≺ 𝐵 → suc 𝐴 ≼ 𝐵) | |
2 | php4 8389 | . . 3 ⊢ (𝐴 ∈ ω → 𝐴 ≺ suc 𝐴) | |
3 | sdomdomtr 8335 | . . . 4 ⊢ ((𝐴 ≺ suc 𝐴 ∧ suc 𝐴 ≼ 𝐵) → 𝐴 ≺ 𝐵) | |
4 | 3 | ex 402 | . . 3 ⊢ (𝐴 ≺ suc 𝐴 → (suc 𝐴 ≼ 𝐵 → 𝐴 ≺ 𝐵)) |
5 | 2, 4 | syl 17 | . 2 ⊢ (𝐴 ∈ ω → (suc 𝐴 ≼ 𝐵 → 𝐴 ≺ 𝐵)) |
6 | 1, 5 | impbid2 218 | 1 ⊢ (𝐴 ∈ ω → (𝐴 ≺ 𝐵 ↔ suc 𝐴 ≼ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∈ wcel 2157 class class class wbr 4843 suc csuc 5943 ωcom 7299 ≼ cdom 8193 ≺ csdm 8194 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3387 df-sbc 3634 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-pss 3785 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-tp 4373 df-op 4375 df-uni 4629 df-br 4844 df-opab 4906 df-tr 4946 df-id 5220 df-eprel 5225 df-po 5233 df-so 5234 df-fr 5271 df-we 5273 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-ord 5944 df-on 5945 df-lim 5946 df-suc 5947 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-om 7300 df-1o 7799 df-er 7982 df-en 8196 df-dom 8197 df-sdom 8198 |
This theorem is referenced by: 0sdom1dom 8400 1sdom 8405 isnzr2 19586 |
Copyright terms: Public domain | W3C validator |