| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sucdom | Structured version Visualization version GIF version | ||
| Description: Strict dominance of a set over a natural number is the same as dominance over its successor. (Contributed by Mario Carneiro, 12-Jan-2013.) Avoid ax-pow 5364. (Revised by BTernaryTau, 4-Dec-2024.) (Proof shortened by BJ, 11-Jan-2025.) |
| Ref | Expression |
|---|---|
| sucdom | ⊢ (𝐴 ∈ ω → (𝐴 ≺ 𝐵 ↔ suc 𝐴 ≼ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sucdom2 9244 | . 2 ⊢ (𝐴 ≺ 𝐵 → suc 𝐴 ≼ 𝐵) | |
| 2 | nnfi 9208 | . . 3 ⊢ (𝐴 ∈ ω → 𝐴 ∈ Fin) | |
| 3 | php4 9251 | . . 3 ⊢ (𝐴 ∈ ω → 𝐴 ≺ suc 𝐴) | |
| 4 | sdomdomtrfi 9242 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≺ suc 𝐴 ∧ suc 𝐴 ≼ 𝐵) → 𝐴 ≺ 𝐵) | |
| 5 | 4 | 3expia 1121 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≺ suc 𝐴) → (suc 𝐴 ≼ 𝐵 → 𝐴 ≺ 𝐵)) |
| 6 | 2, 3, 5 | syl2anc 584 | . 2 ⊢ (𝐴 ∈ ω → (suc 𝐴 ≼ 𝐵 → 𝐴 ≺ 𝐵)) |
| 7 | 1, 6 | impbid2 226 | 1 ⊢ (𝐴 ∈ ω → (𝐴 ≺ 𝐵 ↔ suc 𝐴 ≼ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2107 class class class wbr 5142 suc csuc 6385 ωcom 7888 ≼ cdom 8984 ≺ csdm 8985 Fincfn 8986 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 ax-un 7756 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-om 7889 df-1o 8507 df-en 8987 df-dom 8988 df-sdom 8989 df-fin 8990 |
| This theorem is referenced by: 0sdom1domALT 9276 1sdomOLD 9286 harsucnn 10039 isnzr2 20519 |
| Copyright terms: Public domain | W3C validator |