![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sucdom | Structured version Visualization version GIF version |
Description: Strict dominance of a set over a natural number is the same as dominance over its successor. (Contributed by Mario Carneiro, 12-Jan-2013.) Avoid ax-pow 5363. (Revised by BTernaryTau, 4-Dec-2024.) (Proof shortened by BJ, 11-Jan-2025.) |
Ref | Expression |
---|---|
sucdom | ⊢ (𝐴 ∈ ω → (𝐴 ≺ 𝐵 ↔ suc 𝐴 ≼ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sucdom2 9205 | . 2 ⊢ (𝐴 ≺ 𝐵 → suc 𝐴 ≼ 𝐵) | |
2 | nnfi 9166 | . . 3 ⊢ (𝐴 ∈ ω → 𝐴 ∈ Fin) | |
3 | php4 9212 | . . 3 ⊢ (𝐴 ∈ ω → 𝐴 ≺ suc 𝐴) | |
4 | sdomdomtrfi 9203 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≺ suc 𝐴 ∧ suc 𝐴 ≼ 𝐵) → 𝐴 ≺ 𝐵) | |
5 | 4 | 3expia 1121 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≺ suc 𝐴) → (suc 𝐴 ≼ 𝐵 → 𝐴 ≺ 𝐵)) |
6 | 2, 3, 5 | syl2anc 584 | . 2 ⊢ (𝐴 ∈ ω → (suc 𝐴 ≼ 𝐵 → 𝐴 ≺ 𝐵)) |
7 | 1, 6 | impbid2 225 | 1 ⊢ (𝐴 ∈ ω → (𝐴 ≺ 𝐵 ↔ suc 𝐴 ≼ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∈ wcel 2106 class class class wbr 5148 suc csuc 6366 ωcom 7854 ≼ cdom 8936 ≺ csdm 8937 Fincfn 8938 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-om 7855 df-1o 8465 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 |
This theorem is referenced by: 0sdom1domALT 9238 1sdomOLD 9248 harsucnn 9992 isnzr2 20296 |
Copyright terms: Public domain | W3C validator |