![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sucdom | Structured version Visualization version GIF version |
Description: Strict dominance of a set over a natural number is the same as dominance over its successor. (Contributed by Mario Carneiro, 12-Jan-2013.) Avoid ax-pow 5356. (Revised by BTernaryTau, 4-Dec-2024.) (Proof shortened by BJ, 11-Jan-2025.) |
Ref | Expression |
---|---|
sucdom | ⊢ (𝐴 ∈ ω → (𝐴 ≺ 𝐵 ↔ suc 𝐴 ≼ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sucdom2 9205 | . 2 ⊢ (𝐴 ≺ 𝐵 → suc 𝐴 ≼ 𝐵) | |
2 | nnfi 9166 | . . 3 ⊢ (𝐴 ∈ ω → 𝐴 ∈ Fin) | |
3 | php4 9212 | . . 3 ⊢ (𝐴 ∈ ω → 𝐴 ≺ suc 𝐴) | |
4 | sdomdomtrfi 9203 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≺ suc 𝐴 ∧ suc 𝐴 ≼ 𝐵) → 𝐴 ≺ 𝐵) | |
5 | 4 | 3expia 1118 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≺ suc 𝐴) → (suc 𝐴 ≼ 𝐵 → 𝐴 ≺ 𝐵)) |
6 | 2, 3, 5 | syl2anc 583 | . 2 ⊢ (𝐴 ∈ ω → (suc 𝐴 ≼ 𝐵 → 𝐴 ≺ 𝐵)) |
7 | 1, 6 | impbid2 225 | 1 ⊢ (𝐴 ∈ ω → (𝐴 ≺ 𝐵 ↔ suc 𝐴 ≼ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∈ wcel 2098 class class class wbr 5141 suc csuc 6359 ωcom 7851 ≼ cdom 8936 ≺ csdm 8937 Fincfn 8938 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-om 7852 df-1o 8464 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 |
This theorem is referenced by: 0sdom1domALT 9238 1sdomOLD 9248 harsucnn 9992 isnzr2 20418 |
Copyright terms: Public domain | W3C validator |