MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sucdom Structured version   Visualization version   GIF version

Theorem sucdom 8693
Description: Strict dominance of a set over a natural number is the same as dominance over its successor. (Contributed by Mario Carneiro, 12-Jan-2013.)
Assertion
Ref Expression
sucdom (𝐴 ∈ ω → (𝐴𝐵 ↔ suc 𝐴𝐵))

Proof of Theorem sucdom
StepHypRef Expression
1 sucdom2 8692 . 2 (𝐴𝐵 → suc 𝐴𝐵)
2 php4 8682 . . 3 (𝐴 ∈ ω → 𝐴 ≺ suc 𝐴)
3 sdomdomtr 8628 . . . 4 ((𝐴 ≺ suc 𝐴 ∧ suc 𝐴𝐵) → 𝐴𝐵)
43ex 415 . . 3 (𝐴 ≺ suc 𝐴 → (suc 𝐴𝐵𝐴𝐵))
52, 4syl 17 . 2 (𝐴 ∈ ω → (suc 𝐴𝐵𝐴𝐵))
61, 5impbid2 228 1 (𝐴 ∈ ω → (𝐴𝐵 ↔ suc 𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wcel 2114   class class class wbr 5042  suc csuc 6169  ωcom 7558  cdom 8485  csdm 8486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-sep 5179  ax-nul 5186  ax-pow 5242  ax-pr 5306  ax-un 7439
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3007  df-ral 3130  df-rex 3131  df-rab 3134  df-v 3475  df-sbc 3753  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-pss 3932  df-nul 4270  df-if 4444  df-pw 4517  df-sn 4544  df-pr 4546  df-tp 4548  df-op 4550  df-uni 4815  df-br 5043  df-opab 5105  df-tr 5149  df-id 5436  df-eprel 5441  df-po 5450  df-so 5451  df-fr 5490  df-we 5492  df-xp 5537  df-rel 5538  df-cnv 5539  df-co 5540  df-dm 5541  df-rn 5542  df-res 5543  df-ima 5544  df-ord 6170  df-on 6171  df-lim 6172  df-suc 6173  df-iota 6290  df-fun 6333  df-fn 6334  df-f 6335  df-f1 6336  df-fo 6337  df-f1o 6338  df-fv 6339  df-om 7559  df-1o 8080  df-er 8267  df-en 8488  df-dom 8489  df-sdom 8490
This theorem is referenced by:  0sdom1dom  8694  1sdom  8699  isnzr2  20012  harsucnn  40038
  Copyright terms: Public domain W3C validator