MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sucdom Structured version   Visualization version   GIF version

Theorem sucdom 9186
Description: Strict dominance of a set over a natural number is the same as dominance over its successor. (Contributed by Mario Carneiro, 12-Jan-2013.) Avoid ax-pow 5325. (Revised by BTernaryTau, 4-Dec-2024.) (Proof shortened by BJ, 11-Jan-2025.)
Assertion
Ref Expression
sucdom (𝐴 ∈ ω → (𝐴𝐵 ↔ suc 𝐴𝐵))

Proof of Theorem sucdom
StepHypRef Expression
1 sucdom2 9157 . 2 (𝐴𝐵 → suc 𝐴𝐵)
2 nnfi 9118 . . 3 (𝐴 ∈ ω → 𝐴 ∈ Fin)
3 php4 9164 . . 3 (𝐴 ∈ ω → 𝐴 ≺ suc 𝐴)
4 sdomdomtrfi 9155 . . . 4 ((𝐴 ∈ Fin ∧ 𝐴 ≺ suc 𝐴 ∧ suc 𝐴𝐵) → 𝐴𝐵)
543expia 1122 . . 3 ((𝐴 ∈ Fin ∧ 𝐴 ≺ suc 𝐴) → (suc 𝐴𝐵𝐴𝐵))
62, 3, 5syl2anc 585 . 2 (𝐴 ∈ ω → (suc 𝐴𝐵𝐴𝐵))
71, 6impbid2 225 1 (𝐴 ∈ ω → (𝐴𝐵 ↔ suc 𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wcel 2107   class class class wbr 5110  suc csuc 6324  ωcom 7807  cdom 8888  csdm 8889  Fincfn 8890
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5261  ax-nul 5268  ax-pr 5389  ax-un 7677
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-ral 3066  df-rex 3075  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-pss 3934  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-om 7808  df-1o 8417  df-en 8891  df-dom 8892  df-sdom 8893  df-fin 8894
This theorem is referenced by:  0sdom1domALT  9190  1sdomOLD  9200  harsucnn  9941  isnzr2  20749
  Copyright terms: Public domain W3C validator