| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nvmtri | Structured version Visualization version GIF version | ||
| Description: Triangle inequality for the norm of a vector difference. (Contributed by NM, 27-Dec-2007.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nvmtri.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
| nvmtri.3 | ⊢ 𝑀 = ( −𝑣 ‘𝑈) |
| nvmtri.6 | ⊢ 𝑁 = (normCV‘𝑈) |
| Ref | Expression |
|---|---|
| nvmtri | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑁‘(𝐴𝑀𝐵)) ≤ ((𝑁‘𝐴) + (𝑁‘𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neg1cn 12171 | . . . . 5 ⊢ -1 ∈ ℂ | |
| 2 | nvmtri.1 | . . . . . 6 ⊢ 𝑋 = (BaseSet‘𝑈) | |
| 3 | eqid 2729 | . . . . . 6 ⊢ ( ·𝑠OLD ‘𝑈) = ( ·𝑠OLD ‘𝑈) | |
| 4 | 2, 3 | nvscl 30555 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ -1 ∈ ℂ ∧ 𝐵 ∈ 𝑋) → (-1( ·𝑠OLD ‘𝑈)𝐵) ∈ 𝑋) |
| 5 | 1, 4 | mp3an2 1451 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋) → (-1( ·𝑠OLD ‘𝑈)𝐵) ∈ 𝑋) |
| 6 | 5 | 3adant2 1131 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (-1( ·𝑠OLD ‘𝑈)𝐵) ∈ 𝑋) |
| 7 | eqid 2729 | . . . 4 ⊢ ( +𝑣 ‘𝑈) = ( +𝑣 ‘𝑈) | |
| 8 | nvmtri.6 | . . . 4 ⊢ 𝑁 = (normCV‘𝑈) | |
| 9 | 2, 7, 8 | nvtri 30599 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ (-1( ·𝑠OLD ‘𝑈)𝐵) ∈ 𝑋) → (𝑁‘(𝐴( +𝑣 ‘𝑈)(-1( ·𝑠OLD ‘𝑈)𝐵))) ≤ ((𝑁‘𝐴) + (𝑁‘(-1( ·𝑠OLD ‘𝑈)𝐵)))) |
| 10 | 6, 9 | syld3an3 1411 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑁‘(𝐴( +𝑣 ‘𝑈)(-1( ·𝑠OLD ‘𝑈)𝐵))) ≤ ((𝑁‘𝐴) + (𝑁‘(-1( ·𝑠OLD ‘𝑈)𝐵)))) |
| 11 | nvmtri.3 | . . . 4 ⊢ 𝑀 = ( −𝑣 ‘𝑈) | |
| 12 | 2, 7, 3, 11 | nvmval 30571 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑀𝐵) = (𝐴( +𝑣 ‘𝑈)(-1( ·𝑠OLD ‘𝑈)𝐵))) |
| 13 | 12 | fveq2d 6862 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑁‘(𝐴𝑀𝐵)) = (𝑁‘(𝐴( +𝑣 ‘𝑈)(-1( ·𝑠OLD ‘𝑈)𝐵)))) |
| 14 | 2, 3, 8 | nvs 30592 | . . . . . 6 ⊢ ((𝑈 ∈ NrmCVec ∧ -1 ∈ ℂ ∧ 𝐵 ∈ 𝑋) → (𝑁‘(-1( ·𝑠OLD ‘𝑈)𝐵)) = ((abs‘-1) · (𝑁‘𝐵))) |
| 15 | 1, 14 | mp3an2 1451 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋) → (𝑁‘(-1( ·𝑠OLD ‘𝑈)𝐵)) = ((abs‘-1) · (𝑁‘𝐵))) |
| 16 | ax-1cn 11126 | . . . . . . . . 9 ⊢ 1 ∈ ℂ | |
| 17 | 16 | absnegi 15367 | . . . . . . . 8 ⊢ (abs‘-1) = (abs‘1) |
| 18 | abs1 15263 | . . . . . . . 8 ⊢ (abs‘1) = 1 | |
| 19 | 17, 18 | eqtri 2752 | . . . . . . 7 ⊢ (abs‘-1) = 1 |
| 20 | 19 | oveq1i 7397 | . . . . . 6 ⊢ ((abs‘-1) · (𝑁‘𝐵)) = (1 · (𝑁‘𝐵)) |
| 21 | 2, 8 | nvcl 30590 | . . . . . . . 8 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋) → (𝑁‘𝐵) ∈ ℝ) |
| 22 | 21 | recnd 11202 | . . . . . . 7 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋) → (𝑁‘𝐵) ∈ ℂ) |
| 23 | 22 | mullidd 11192 | . . . . . 6 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋) → (1 · (𝑁‘𝐵)) = (𝑁‘𝐵)) |
| 24 | 20, 23 | eqtrid 2776 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋) → ((abs‘-1) · (𝑁‘𝐵)) = (𝑁‘𝐵)) |
| 25 | 15, 24 | eqtr2d 2765 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋) → (𝑁‘𝐵) = (𝑁‘(-1( ·𝑠OLD ‘𝑈)𝐵))) |
| 26 | 25 | 3adant2 1131 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑁‘𝐵) = (𝑁‘(-1( ·𝑠OLD ‘𝑈)𝐵))) |
| 27 | 26 | oveq2d 7403 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝑁‘𝐴) + (𝑁‘𝐵)) = ((𝑁‘𝐴) + (𝑁‘(-1( ·𝑠OLD ‘𝑈)𝐵)))) |
| 28 | 10, 13, 27 | 3brtr4d 5139 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑁‘(𝐴𝑀𝐵)) ≤ ((𝑁‘𝐴) + (𝑁‘𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 class class class wbr 5107 ‘cfv 6511 (class class class)co 7387 ℂcc 11066 1c1 11069 + caddc 11071 · cmul 11073 ≤ cle 11209 -cneg 11406 abscabs 15200 NrmCVeccnv 30513 +𝑣 cpv 30514 BaseSetcba 30515 ·𝑠OLD cns 30516 −𝑣 cnsb 30518 normCVcnmcv 30519 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-sup 9393 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-n0 12443 df-z 12530 df-uz 12794 df-rp 12952 df-seq 13967 df-exp 14027 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-grpo 30422 df-gid 30423 df-ginv 30424 df-gdiv 30425 df-ablo 30474 df-vc 30488 df-nv 30521 df-va 30524 df-ba 30525 df-sm 30526 df-0v 30527 df-vs 30528 df-nmcv 30529 |
| This theorem is referenced by: ubthlem2 30800 |
| Copyright terms: Public domain | W3C validator |