![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nvmtri | Structured version Visualization version GIF version |
Description: Triangle inequality for the norm of a vector difference. (Contributed by NM, 27-Dec-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nvmtri.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
nvmtri.3 | ⊢ 𝑀 = ( −𝑣 ‘𝑈) |
nvmtri.6 | ⊢ 𝑁 = (normCV‘𝑈) |
Ref | Expression |
---|---|
nvmtri | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑁‘(𝐴𝑀𝐵)) ≤ ((𝑁‘𝐴) + (𝑁‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neg1cn 11567 | . . . . 5 ⊢ -1 ∈ ℂ | |
2 | nvmtri.1 | . . . . . 6 ⊢ 𝑋 = (BaseSet‘𝑈) | |
3 | eqid 2780 | . . . . . 6 ⊢ ( ·𝑠OLD ‘𝑈) = ( ·𝑠OLD ‘𝑈) | |
4 | 2, 3 | nvscl 28195 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ -1 ∈ ℂ ∧ 𝐵 ∈ 𝑋) → (-1( ·𝑠OLD ‘𝑈)𝐵) ∈ 𝑋) |
5 | 1, 4 | mp3an2 1429 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋) → (-1( ·𝑠OLD ‘𝑈)𝐵) ∈ 𝑋) |
6 | 5 | 3adant2 1112 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (-1( ·𝑠OLD ‘𝑈)𝐵) ∈ 𝑋) |
7 | eqid 2780 | . . . 4 ⊢ ( +𝑣 ‘𝑈) = ( +𝑣 ‘𝑈) | |
8 | nvmtri.6 | . . . 4 ⊢ 𝑁 = (normCV‘𝑈) | |
9 | 2, 7, 8 | nvtri 28239 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ (-1( ·𝑠OLD ‘𝑈)𝐵) ∈ 𝑋) → (𝑁‘(𝐴( +𝑣 ‘𝑈)(-1( ·𝑠OLD ‘𝑈)𝐵))) ≤ ((𝑁‘𝐴) + (𝑁‘(-1( ·𝑠OLD ‘𝑈)𝐵)))) |
10 | 6, 9 | syld3an3 1390 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑁‘(𝐴( +𝑣 ‘𝑈)(-1( ·𝑠OLD ‘𝑈)𝐵))) ≤ ((𝑁‘𝐴) + (𝑁‘(-1( ·𝑠OLD ‘𝑈)𝐵)))) |
11 | nvmtri.3 | . . . 4 ⊢ 𝑀 = ( −𝑣 ‘𝑈) | |
12 | 2, 7, 3, 11 | nvmval 28211 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑀𝐵) = (𝐴( +𝑣 ‘𝑈)(-1( ·𝑠OLD ‘𝑈)𝐵))) |
13 | 12 | fveq2d 6508 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑁‘(𝐴𝑀𝐵)) = (𝑁‘(𝐴( +𝑣 ‘𝑈)(-1( ·𝑠OLD ‘𝑈)𝐵)))) |
14 | 2, 3, 8 | nvs 28232 | . . . . . 6 ⊢ ((𝑈 ∈ NrmCVec ∧ -1 ∈ ℂ ∧ 𝐵 ∈ 𝑋) → (𝑁‘(-1( ·𝑠OLD ‘𝑈)𝐵)) = ((abs‘-1) · (𝑁‘𝐵))) |
15 | 1, 14 | mp3an2 1429 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋) → (𝑁‘(-1( ·𝑠OLD ‘𝑈)𝐵)) = ((abs‘-1) · (𝑁‘𝐵))) |
16 | ax-1cn 10399 | . . . . . . . . 9 ⊢ 1 ∈ ℂ | |
17 | 16 | absnegi 14627 | . . . . . . . 8 ⊢ (abs‘-1) = (abs‘1) |
18 | abs1 14524 | . . . . . . . 8 ⊢ (abs‘1) = 1 | |
19 | 17, 18 | eqtri 2804 | . . . . . . 7 ⊢ (abs‘-1) = 1 |
20 | 19 | oveq1i 6992 | . . . . . 6 ⊢ ((abs‘-1) · (𝑁‘𝐵)) = (1 · (𝑁‘𝐵)) |
21 | 2, 8 | nvcl 28230 | . . . . . . . 8 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋) → (𝑁‘𝐵) ∈ ℝ) |
22 | 21 | recnd 10474 | . . . . . . 7 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋) → (𝑁‘𝐵) ∈ ℂ) |
23 | 22 | mulid2d 10464 | . . . . . 6 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋) → (1 · (𝑁‘𝐵)) = (𝑁‘𝐵)) |
24 | 20, 23 | syl5eq 2828 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋) → ((abs‘-1) · (𝑁‘𝐵)) = (𝑁‘𝐵)) |
25 | 15, 24 | eqtr2d 2817 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋) → (𝑁‘𝐵) = (𝑁‘(-1( ·𝑠OLD ‘𝑈)𝐵))) |
26 | 25 | 3adant2 1112 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑁‘𝐵) = (𝑁‘(-1( ·𝑠OLD ‘𝑈)𝐵))) |
27 | 26 | oveq2d 6998 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝑁‘𝐴) + (𝑁‘𝐵)) = ((𝑁‘𝐴) + (𝑁‘(-1( ·𝑠OLD ‘𝑈)𝐵)))) |
28 | 10, 13, 27 | 3brtr4d 4966 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑁‘(𝐴𝑀𝐵)) ≤ ((𝑁‘𝐴) + (𝑁‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 ∧ w3a 1069 = wceq 1508 ∈ wcel 2051 class class class wbr 4934 ‘cfv 6193 (class class class)co 6982 ℂcc 10339 1c1 10342 + caddc 10344 · cmul 10346 ≤ cle 10481 -cneg 10677 abscabs 14460 NrmCVeccnv 28153 +𝑣 cpv 28154 BaseSetcba 28155 ·𝑠OLD cns 28156 −𝑣 cnsb 28158 normCVcnmcv 28159 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2752 ax-rep 5053 ax-sep 5064 ax-nul 5071 ax-pow 5123 ax-pr 5190 ax-un 7285 ax-cnex 10397 ax-resscn 10398 ax-1cn 10399 ax-icn 10400 ax-addcl 10401 ax-addrcl 10402 ax-mulcl 10403 ax-mulrcl 10404 ax-mulcom 10405 ax-addass 10406 ax-mulass 10407 ax-distr 10408 ax-i2m1 10409 ax-1ne0 10410 ax-1rid 10411 ax-rnegex 10412 ax-rrecex 10413 ax-cnre 10414 ax-pre-lttri 10415 ax-pre-lttrn 10416 ax-pre-ltadd 10417 ax-pre-mulgt0 10418 ax-pre-sup 10419 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3or 1070 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2551 df-eu 2589 df-clab 2761 df-cleq 2773 df-clel 2848 df-nfc 2920 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3419 df-sbc 3684 df-csb 3789 df-dif 3834 df-un 3836 df-in 3838 df-ss 3845 df-pss 3847 df-nul 4182 df-if 4354 df-pw 4427 df-sn 4445 df-pr 4447 df-tp 4449 df-op 4451 df-uni 4718 df-iun 4799 df-br 4935 df-opab 4997 df-mpt 5014 df-tr 5036 df-id 5316 df-eprel 5321 df-po 5330 df-so 5331 df-fr 5370 df-we 5372 df-xp 5417 df-rel 5418 df-cnv 5419 df-co 5420 df-dm 5421 df-rn 5422 df-res 5423 df-ima 5424 df-pred 5991 df-ord 6037 df-on 6038 df-lim 6039 df-suc 6040 df-iota 6157 df-fun 6195 df-fn 6196 df-f 6197 df-f1 6198 df-fo 6199 df-f1o 6200 df-fv 6201 df-riota 6943 df-ov 6985 df-oprab 6986 df-mpo 6987 df-om 7403 df-1st 7507 df-2nd 7508 df-wrecs 7756 df-recs 7818 df-rdg 7856 df-er 8095 df-en 8313 df-dom 8314 df-sdom 8315 df-sup 8707 df-pnf 10482 df-mnf 10483 df-xr 10484 df-ltxr 10485 df-le 10486 df-sub 10678 df-neg 10679 df-div 11105 df-nn 11446 df-2 11509 df-3 11510 df-n0 11714 df-z 11800 df-uz 12065 df-rp 12211 df-seq 13191 df-exp 13251 df-cj 14325 df-re 14326 df-im 14327 df-sqrt 14461 df-abs 14462 df-grpo 28062 df-gid 28063 df-ginv 28064 df-gdiv 28065 df-ablo 28114 df-vc 28128 df-nv 28161 df-va 28164 df-ba 28165 df-sm 28166 df-0v 28167 df-vs 28168 df-nmcv 28169 |
This theorem is referenced by: ubthlem2 28441 |
Copyright terms: Public domain | W3C validator |