![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nvmtri | Structured version Visualization version GIF version |
Description: Triangle inequality for the norm of a vector difference. (Contributed by NM, 27-Dec-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nvmtri.1 | β’ π = (BaseSetβπ) |
nvmtri.3 | β’ π = ( βπ£ βπ) |
nvmtri.6 | β’ π = (normCVβπ) |
Ref | Expression |
---|---|
nvmtri | β’ ((π β NrmCVec β§ π΄ β π β§ π΅ β π) β (πβ(π΄ππ΅)) β€ ((πβπ΄) + (πβπ΅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neg1cn 12330 | . . . . 5 β’ -1 β β | |
2 | nvmtri.1 | . . . . . 6 β’ π = (BaseSetβπ) | |
3 | eqid 2730 | . . . . . 6 β’ ( Β·π OLD βπ) = ( Β·π OLD βπ) | |
4 | 2, 3 | nvscl 30146 | . . . . 5 β’ ((π β NrmCVec β§ -1 β β β§ π΅ β π) β (-1( Β·π OLD βπ)π΅) β π) |
5 | 1, 4 | mp3an2 1447 | . . . 4 β’ ((π β NrmCVec β§ π΅ β π) β (-1( Β·π OLD βπ)π΅) β π) |
6 | 5 | 3adant2 1129 | . . 3 β’ ((π β NrmCVec β§ π΄ β π β§ π΅ β π) β (-1( Β·π OLD βπ)π΅) β π) |
7 | eqid 2730 | . . . 4 β’ ( +π£ βπ) = ( +π£ βπ) | |
8 | nvmtri.6 | . . . 4 β’ π = (normCVβπ) | |
9 | 2, 7, 8 | nvtri 30190 | . . 3 β’ ((π β NrmCVec β§ π΄ β π β§ (-1( Β·π OLD βπ)π΅) β π) β (πβ(π΄( +π£ βπ)(-1( Β·π OLD βπ)π΅))) β€ ((πβπ΄) + (πβ(-1( Β·π OLD βπ)π΅)))) |
10 | 6, 9 | syld3an3 1407 | . 2 β’ ((π β NrmCVec β§ π΄ β π β§ π΅ β π) β (πβ(π΄( +π£ βπ)(-1( Β·π OLD βπ)π΅))) β€ ((πβπ΄) + (πβ(-1( Β·π OLD βπ)π΅)))) |
11 | nvmtri.3 | . . . 4 β’ π = ( βπ£ βπ) | |
12 | 2, 7, 3, 11 | nvmval 30162 | . . 3 β’ ((π β NrmCVec β§ π΄ β π β§ π΅ β π) β (π΄ππ΅) = (π΄( +π£ βπ)(-1( Β·π OLD βπ)π΅))) |
13 | 12 | fveq2d 6894 | . 2 β’ ((π β NrmCVec β§ π΄ β π β§ π΅ β π) β (πβ(π΄ππ΅)) = (πβ(π΄( +π£ βπ)(-1( Β·π OLD βπ)π΅)))) |
14 | 2, 3, 8 | nvs 30183 | . . . . . 6 β’ ((π β NrmCVec β§ -1 β β β§ π΅ β π) β (πβ(-1( Β·π OLD βπ)π΅)) = ((absβ-1) Β· (πβπ΅))) |
15 | 1, 14 | mp3an2 1447 | . . . . 5 β’ ((π β NrmCVec β§ π΅ β π) β (πβ(-1( Β·π OLD βπ)π΅)) = ((absβ-1) Β· (πβπ΅))) |
16 | ax-1cn 11170 | . . . . . . . . 9 β’ 1 β β | |
17 | 16 | absnegi 15351 | . . . . . . . 8 β’ (absβ-1) = (absβ1) |
18 | abs1 15248 | . . . . . . . 8 β’ (absβ1) = 1 | |
19 | 17, 18 | eqtri 2758 | . . . . . . 7 β’ (absβ-1) = 1 |
20 | 19 | oveq1i 7421 | . . . . . 6 β’ ((absβ-1) Β· (πβπ΅)) = (1 Β· (πβπ΅)) |
21 | 2, 8 | nvcl 30181 | . . . . . . . 8 β’ ((π β NrmCVec β§ π΅ β π) β (πβπ΅) β β) |
22 | 21 | recnd 11246 | . . . . . . 7 β’ ((π β NrmCVec β§ π΅ β π) β (πβπ΅) β β) |
23 | 22 | mullidd 11236 | . . . . . 6 β’ ((π β NrmCVec β§ π΅ β π) β (1 Β· (πβπ΅)) = (πβπ΅)) |
24 | 20, 23 | eqtrid 2782 | . . . . 5 β’ ((π β NrmCVec β§ π΅ β π) β ((absβ-1) Β· (πβπ΅)) = (πβπ΅)) |
25 | 15, 24 | eqtr2d 2771 | . . . 4 β’ ((π β NrmCVec β§ π΅ β π) β (πβπ΅) = (πβ(-1( Β·π OLD βπ)π΅))) |
26 | 25 | 3adant2 1129 | . . 3 β’ ((π β NrmCVec β§ π΄ β π β§ π΅ β π) β (πβπ΅) = (πβ(-1( Β·π OLD βπ)π΅))) |
27 | 26 | oveq2d 7427 | . 2 β’ ((π β NrmCVec β§ π΄ β π β§ π΅ β π) β ((πβπ΄) + (πβπ΅)) = ((πβπ΄) + (πβ(-1( Β·π OLD βπ)π΅)))) |
28 | 10, 13, 27 | 3brtr4d 5179 | 1 β’ ((π β NrmCVec β§ π΄ β π β§ π΅ β π) β (πβ(π΄ππ΅)) β€ ((πβπ΄) + (πβπ΅))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 β§ w3a 1085 = wceq 1539 β wcel 2104 class class class wbr 5147 βcfv 6542 (class class class)co 7411 βcc 11110 1c1 11113 + caddc 11115 Β· cmul 11117 β€ cle 11253 -cneg 11449 abscabs 15185 NrmCVeccnv 30104 +π£ cpv 30105 BaseSetcba 30106 Β·π OLD cns 30107 βπ£ cnsb 30109 normCVcnmcv 30110 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-pre-sup 11190 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-1st 7977 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-sup 9439 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-div 11876 df-nn 12217 df-2 12279 df-3 12280 df-n0 12477 df-z 12563 df-uz 12827 df-rp 12979 df-seq 13971 df-exp 14032 df-cj 15050 df-re 15051 df-im 15052 df-sqrt 15186 df-abs 15187 df-grpo 30013 df-gid 30014 df-ginv 30015 df-gdiv 30016 df-ablo 30065 df-vc 30079 df-nv 30112 df-va 30115 df-ba 30116 df-sm 30117 df-0v 30118 df-vs 30119 df-nmcv 30120 |
This theorem is referenced by: ubthlem2 30391 |
Copyright terms: Public domain | W3C validator |