Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nvmtri | Structured version Visualization version GIF version |
Description: Triangle inequality for the norm of a vector difference. (Contributed by NM, 27-Dec-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nvmtri.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
nvmtri.3 | ⊢ 𝑀 = ( −𝑣 ‘𝑈) |
nvmtri.6 | ⊢ 𝑁 = (normCV‘𝑈) |
Ref | Expression |
---|---|
nvmtri | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑁‘(𝐴𝑀𝐵)) ≤ ((𝑁‘𝐴) + (𝑁‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neg1cn 12098 | . . . . 5 ⊢ -1 ∈ ℂ | |
2 | nvmtri.1 | . . . . . 6 ⊢ 𝑋 = (BaseSet‘𝑈) | |
3 | eqid 2740 | . . . . . 6 ⊢ ( ·𝑠OLD ‘𝑈) = ( ·𝑠OLD ‘𝑈) | |
4 | 2, 3 | nvscl 28997 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ -1 ∈ ℂ ∧ 𝐵 ∈ 𝑋) → (-1( ·𝑠OLD ‘𝑈)𝐵) ∈ 𝑋) |
5 | 1, 4 | mp3an2 1448 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋) → (-1( ·𝑠OLD ‘𝑈)𝐵) ∈ 𝑋) |
6 | 5 | 3adant2 1130 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (-1( ·𝑠OLD ‘𝑈)𝐵) ∈ 𝑋) |
7 | eqid 2740 | . . . 4 ⊢ ( +𝑣 ‘𝑈) = ( +𝑣 ‘𝑈) | |
8 | nvmtri.6 | . . . 4 ⊢ 𝑁 = (normCV‘𝑈) | |
9 | 2, 7, 8 | nvtri 29041 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ (-1( ·𝑠OLD ‘𝑈)𝐵) ∈ 𝑋) → (𝑁‘(𝐴( +𝑣 ‘𝑈)(-1( ·𝑠OLD ‘𝑈)𝐵))) ≤ ((𝑁‘𝐴) + (𝑁‘(-1( ·𝑠OLD ‘𝑈)𝐵)))) |
10 | 6, 9 | syld3an3 1408 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑁‘(𝐴( +𝑣 ‘𝑈)(-1( ·𝑠OLD ‘𝑈)𝐵))) ≤ ((𝑁‘𝐴) + (𝑁‘(-1( ·𝑠OLD ‘𝑈)𝐵)))) |
11 | nvmtri.3 | . . . 4 ⊢ 𝑀 = ( −𝑣 ‘𝑈) | |
12 | 2, 7, 3, 11 | nvmval 29013 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑀𝐵) = (𝐴( +𝑣 ‘𝑈)(-1( ·𝑠OLD ‘𝑈)𝐵))) |
13 | 12 | fveq2d 6775 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑁‘(𝐴𝑀𝐵)) = (𝑁‘(𝐴( +𝑣 ‘𝑈)(-1( ·𝑠OLD ‘𝑈)𝐵)))) |
14 | 2, 3, 8 | nvs 29034 | . . . . . 6 ⊢ ((𝑈 ∈ NrmCVec ∧ -1 ∈ ℂ ∧ 𝐵 ∈ 𝑋) → (𝑁‘(-1( ·𝑠OLD ‘𝑈)𝐵)) = ((abs‘-1) · (𝑁‘𝐵))) |
15 | 1, 14 | mp3an2 1448 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋) → (𝑁‘(-1( ·𝑠OLD ‘𝑈)𝐵)) = ((abs‘-1) · (𝑁‘𝐵))) |
16 | ax-1cn 10940 | . . . . . . . . 9 ⊢ 1 ∈ ℂ | |
17 | 16 | absnegi 15123 | . . . . . . . 8 ⊢ (abs‘-1) = (abs‘1) |
18 | abs1 15020 | . . . . . . . 8 ⊢ (abs‘1) = 1 | |
19 | 17, 18 | eqtri 2768 | . . . . . . 7 ⊢ (abs‘-1) = 1 |
20 | 19 | oveq1i 7282 | . . . . . 6 ⊢ ((abs‘-1) · (𝑁‘𝐵)) = (1 · (𝑁‘𝐵)) |
21 | 2, 8 | nvcl 29032 | . . . . . . . 8 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋) → (𝑁‘𝐵) ∈ ℝ) |
22 | 21 | recnd 11014 | . . . . . . 7 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋) → (𝑁‘𝐵) ∈ ℂ) |
23 | 22 | mulid2d 11004 | . . . . . 6 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋) → (1 · (𝑁‘𝐵)) = (𝑁‘𝐵)) |
24 | 20, 23 | eqtrid 2792 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋) → ((abs‘-1) · (𝑁‘𝐵)) = (𝑁‘𝐵)) |
25 | 15, 24 | eqtr2d 2781 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋) → (𝑁‘𝐵) = (𝑁‘(-1( ·𝑠OLD ‘𝑈)𝐵))) |
26 | 25 | 3adant2 1130 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑁‘𝐵) = (𝑁‘(-1( ·𝑠OLD ‘𝑈)𝐵))) |
27 | 26 | oveq2d 7288 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝑁‘𝐴) + (𝑁‘𝐵)) = ((𝑁‘𝐴) + (𝑁‘(-1( ·𝑠OLD ‘𝑈)𝐵)))) |
28 | 10, 13, 27 | 3brtr4d 5111 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑁‘(𝐴𝑀𝐵)) ≤ ((𝑁‘𝐴) + (𝑁‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1542 ∈ wcel 2110 class class class wbr 5079 ‘cfv 6432 (class class class)co 7272 ℂcc 10880 1c1 10883 + caddc 10885 · cmul 10887 ≤ cle 11021 -cneg 11217 abscabs 14956 NrmCVeccnv 28955 +𝑣 cpv 28956 BaseSetcba 28957 ·𝑠OLD cns 28958 −𝑣 cnsb 28960 normCVcnmcv 28961 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7583 ax-cnex 10938 ax-resscn 10939 ax-1cn 10940 ax-icn 10941 ax-addcl 10942 ax-addrcl 10943 ax-mulcl 10944 ax-mulrcl 10945 ax-mulcom 10946 ax-addass 10947 ax-mulass 10948 ax-distr 10949 ax-i2m1 10950 ax-1ne0 10951 ax-1rid 10952 ax-rnegex 10953 ax-rrecex 10954 ax-cnre 10955 ax-pre-lttri 10956 ax-pre-lttrn 10957 ax-pre-ltadd 10958 ax-pre-mulgt0 10959 ax-pre-sup 10960 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6201 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-riota 7229 df-ov 7275 df-oprab 7276 df-mpo 7277 df-om 7708 df-1st 7825 df-2nd 7826 df-frecs 8089 df-wrecs 8120 df-recs 8194 df-rdg 8233 df-er 8490 df-en 8726 df-dom 8727 df-sdom 8728 df-sup 9189 df-pnf 11022 df-mnf 11023 df-xr 11024 df-ltxr 11025 df-le 11026 df-sub 11218 df-neg 11219 df-div 11644 df-nn 11985 df-2 12047 df-3 12048 df-n0 12245 df-z 12331 df-uz 12594 df-rp 12742 df-seq 13733 df-exp 13794 df-cj 14821 df-re 14822 df-im 14823 df-sqrt 14957 df-abs 14958 df-grpo 28864 df-gid 28865 df-ginv 28866 df-gdiv 28867 df-ablo 28916 df-vc 28930 df-nv 28963 df-va 28966 df-ba 28967 df-sm 28968 df-0v 28969 df-vs 28970 df-nmcv 28971 |
This theorem is referenced by: ubthlem2 29242 |
Copyright terms: Public domain | W3C validator |