MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvmtri Structured version   Visualization version   GIF version

Theorem nvmtri 28240
Description: Triangle inequality for the norm of a vector difference. (Contributed by NM, 27-Dec-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvmtri.1 𝑋 = (BaseSet‘𝑈)
nvmtri.3 𝑀 = ( −𝑣𝑈)
nvmtri.6 𝑁 = (normCV𝑈)
Assertion
Ref Expression
nvmtri ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴𝑀𝐵)) ≤ ((𝑁𝐴) + (𝑁𝐵)))

Proof of Theorem nvmtri
StepHypRef Expression
1 neg1cn 11567 . . . . 5 -1 ∈ ℂ
2 nvmtri.1 . . . . . 6 𝑋 = (BaseSet‘𝑈)
3 eqid 2780 . . . . . 6 ( ·𝑠OLD𝑈) = ( ·𝑠OLD𝑈)
42, 3nvscl 28195 . . . . 5 ((𝑈 ∈ NrmCVec ∧ -1 ∈ ℂ ∧ 𝐵𝑋) → (-1( ·𝑠OLD𝑈)𝐵) ∈ 𝑋)
51, 4mp3an2 1429 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋) → (-1( ·𝑠OLD𝑈)𝐵) ∈ 𝑋)
653adant2 1112 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (-1( ·𝑠OLD𝑈)𝐵) ∈ 𝑋)
7 eqid 2780 . . . 4 ( +𝑣𝑈) = ( +𝑣𝑈)
8 nvmtri.6 . . . 4 𝑁 = (normCV𝑈)
92, 7, 8nvtri 28239 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋 ∧ (-1( ·𝑠OLD𝑈)𝐵) ∈ 𝑋) → (𝑁‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵))) ≤ ((𝑁𝐴) + (𝑁‘(-1( ·𝑠OLD𝑈)𝐵))))
106, 9syld3an3 1390 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵))) ≤ ((𝑁𝐴) + (𝑁‘(-1( ·𝑠OLD𝑈)𝐵))))
11 nvmtri.3 . . . 4 𝑀 = ( −𝑣𝑈)
122, 7, 3, 11nvmval 28211 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝑀𝐵) = (𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))
1312fveq2d 6508 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴𝑀𝐵)) = (𝑁‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵))))
142, 3, 8nvs 28232 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ -1 ∈ ℂ ∧ 𝐵𝑋) → (𝑁‘(-1( ·𝑠OLD𝑈)𝐵)) = ((abs‘-1) · (𝑁𝐵)))
151, 14mp3an2 1429 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋) → (𝑁‘(-1( ·𝑠OLD𝑈)𝐵)) = ((abs‘-1) · (𝑁𝐵)))
16 ax-1cn 10399 . . . . . . . . 9 1 ∈ ℂ
1716absnegi 14627 . . . . . . . 8 (abs‘-1) = (abs‘1)
18 abs1 14524 . . . . . . . 8 (abs‘1) = 1
1917, 18eqtri 2804 . . . . . . 7 (abs‘-1) = 1
2019oveq1i 6992 . . . . . 6 ((abs‘-1) · (𝑁𝐵)) = (1 · (𝑁𝐵))
212, 8nvcl 28230 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋) → (𝑁𝐵) ∈ ℝ)
2221recnd 10474 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋) → (𝑁𝐵) ∈ ℂ)
2322mulid2d 10464 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋) → (1 · (𝑁𝐵)) = (𝑁𝐵))
2420, 23syl5eq 2828 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋) → ((abs‘-1) · (𝑁𝐵)) = (𝑁𝐵))
2515, 24eqtr2d 2817 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋) → (𝑁𝐵) = (𝑁‘(-1( ·𝑠OLD𝑈)𝐵)))
26253adant2 1112 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁𝐵) = (𝑁‘(-1( ·𝑠OLD𝑈)𝐵)))
2726oveq2d 6998 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((𝑁𝐴) + (𝑁𝐵)) = ((𝑁𝐴) + (𝑁‘(-1( ·𝑠OLD𝑈)𝐵))))
2810, 13, 273brtr4d 4966 1 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴𝑀𝐵)) ≤ ((𝑁𝐴) + (𝑁𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387  w3a 1069   = wceq 1508  wcel 2051   class class class wbr 4934  cfv 6193  (class class class)co 6982  cc 10339  1c1 10342   + caddc 10344   · cmul 10346  cle 10481  -cneg 10677  abscabs 14460  NrmCVeccnv 28153   +𝑣 cpv 28154  BaseSetcba 28155   ·𝑠OLD cns 28156  𝑣 cnsb 28158  normCVcnmcv 28159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2752  ax-rep 5053  ax-sep 5064  ax-nul 5071  ax-pow 5123  ax-pr 5190  ax-un 7285  ax-cnex 10397  ax-resscn 10398  ax-1cn 10399  ax-icn 10400  ax-addcl 10401  ax-addrcl 10402  ax-mulcl 10403  ax-mulrcl 10404  ax-mulcom 10405  ax-addass 10406  ax-mulass 10407  ax-distr 10408  ax-i2m1 10409  ax-1ne0 10410  ax-1rid 10411  ax-rnegex 10412  ax-rrecex 10413  ax-cnre 10414  ax-pre-lttri 10415  ax-pre-lttrn 10416  ax-pre-ltadd 10417  ax-pre-mulgt0 10418  ax-pre-sup 10419
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3or 1070  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2551  df-eu 2589  df-clab 2761  df-cleq 2773  df-clel 2848  df-nfc 2920  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3419  df-sbc 3684  df-csb 3789  df-dif 3834  df-un 3836  df-in 3838  df-ss 3845  df-pss 3847  df-nul 4182  df-if 4354  df-pw 4427  df-sn 4445  df-pr 4447  df-tp 4449  df-op 4451  df-uni 4718  df-iun 4799  df-br 4935  df-opab 4997  df-mpt 5014  df-tr 5036  df-id 5316  df-eprel 5321  df-po 5330  df-so 5331  df-fr 5370  df-we 5372  df-xp 5417  df-rel 5418  df-cnv 5419  df-co 5420  df-dm 5421  df-rn 5422  df-res 5423  df-ima 5424  df-pred 5991  df-ord 6037  df-on 6038  df-lim 6039  df-suc 6040  df-iota 6157  df-fun 6195  df-fn 6196  df-f 6197  df-f1 6198  df-fo 6199  df-f1o 6200  df-fv 6201  df-riota 6943  df-ov 6985  df-oprab 6986  df-mpo 6987  df-om 7403  df-1st 7507  df-2nd 7508  df-wrecs 7756  df-recs 7818  df-rdg 7856  df-er 8095  df-en 8313  df-dom 8314  df-sdom 8315  df-sup 8707  df-pnf 10482  df-mnf 10483  df-xr 10484  df-ltxr 10485  df-le 10486  df-sub 10678  df-neg 10679  df-div 11105  df-nn 11446  df-2 11509  df-3 11510  df-n0 11714  df-z 11800  df-uz 12065  df-rp 12211  df-seq 13191  df-exp 13251  df-cj 14325  df-re 14326  df-im 14327  df-sqrt 14461  df-abs 14462  df-grpo 28062  df-gid 28063  df-ginv 28064  df-gdiv 28065  df-ablo 28114  df-vc 28128  df-nv 28161  df-va 28164  df-ba 28165  df-sm 28166  df-0v 28167  df-vs 28168  df-nmcv 28169
This theorem is referenced by:  ubthlem2  28441
  Copyright terms: Public domain W3C validator