Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nvsge0 | Structured version Visualization version GIF version |
Description: The norm of a scalar product with a nonnegative real. (Contributed by NM, 1-Jan-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nvs.1 | β’ π = (BaseSetβπ) |
nvs.4 | β’ π = ( Β·π OLD βπ) |
nvs.6 | β’ π = (normCVβπ) |
Ref | Expression |
---|---|
nvsge0 | β’ ((π β NrmCVec β§ (π΄ β β β§ 0 β€ π΄) β§ π΅ β π) β (πβ(π΄ππ΅)) = (π΄ Β· (πβπ΅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | recn 11062 | . . . 4 β’ (π΄ β β β π΄ β β) | |
2 | 1 | adantr 481 | . . 3 β’ ((π΄ β β β§ 0 β€ π΄) β π΄ β β) |
3 | nvs.1 | . . . 4 β’ π = (BaseSetβπ) | |
4 | nvs.4 | . . . 4 β’ π = ( Β·π OLD βπ) | |
5 | nvs.6 | . . . 4 β’ π = (normCVβπ) | |
6 | 3, 4, 5 | nvs 29313 | . . 3 β’ ((π β NrmCVec β§ π΄ β β β§ π΅ β π) β (πβ(π΄ππ΅)) = ((absβπ΄) Β· (πβπ΅))) |
7 | 2, 6 | syl3an2 1163 | . 2 β’ ((π β NrmCVec β§ (π΄ β β β§ 0 β€ π΄) β§ π΅ β π) β (πβ(π΄ππ΅)) = ((absβπ΄) Β· (πβπ΅))) |
8 | absid 15107 | . . . 4 β’ ((π΄ β β β§ 0 β€ π΄) β (absβπ΄) = π΄) | |
9 | 8 | 3ad2ant2 1133 | . . 3 β’ ((π β NrmCVec β§ (π΄ β β β§ 0 β€ π΄) β§ π΅ β π) β (absβπ΄) = π΄) |
10 | 9 | oveq1d 7352 | . 2 β’ ((π β NrmCVec β§ (π΄ β β β§ 0 β€ π΄) β§ π΅ β π) β ((absβπ΄) Β· (πβπ΅)) = (π΄ Β· (πβπ΅))) |
11 | 7, 10 | eqtrd 2776 | 1 β’ ((π β NrmCVec β§ (π΄ β β β§ 0 β€ π΄) β§ π΅ β π) β (πβ(π΄ππ΅)) = (π΄ Β· (πβπ΅))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 β§ w3a 1086 = wceq 1540 β wcel 2105 class class class wbr 5092 βcfv 6479 (class class class)co 7337 βcc 10970 βcr 10971 0cc0 10972 Β· cmul 10977 β€ cle 11111 abscabs 15044 NrmCVeccnv 29234 BaseSetcba 29236 Β·π OLD cns 29237 normCVcnmcv 29240 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5229 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 ax-cnex 11028 ax-resscn 11029 ax-1cn 11030 ax-icn 11031 ax-addcl 11032 ax-addrcl 11033 ax-mulcl 11034 ax-mulrcl 11035 ax-mulcom 11036 ax-addass 11037 ax-mulass 11038 ax-distr 11039 ax-i2m1 11040 ax-1ne0 11041 ax-1rid 11042 ax-rnegex 11043 ax-rrecex 11044 ax-cnre 11045 ax-pre-lttri 11046 ax-pre-lttrn 11047 ax-pre-ltadd 11048 ax-pre-mulgt0 11049 ax-pre-sup 11050 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5176 df-tr 5210 df-id 5518 df-eprel 5524 df-po 5532 df-so 5533 df-fr 5575 df-we 5577 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-pred 6238 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-riota 7293 df-ov 7340 df-oprab 7341 df-mpo 7342 df-om 7781 df-1st 7899 df-2nd 7900 df-frecs 8167 df-wrecs 8198 df-recs 8272 df-rdg 8311 df-er 8569 df-en 8805 df-dom 8806 df-sdom 8807 df-sup 9299 df-pnf 11112 df-mnf 11113 df-xr 11114 df-ltxr 11115 df-le 11116 df-sub 11308 df-neg 11309 df-div 11734 df-nn 12075 df-2 12137 df-3 12138 df-n0 12335 df-z 12421 df-uz 12684 df-rp 12832 df-seq 13823 df-exp 13884 df-cj 14909 df-re 14910 df-im 14911 df-sqrt 15045 df-abs 15046 df-vc 29209 df-nv 29242 df-va 29245 df-ba 29246 df-sm 29247 df-0v 29248 df-nmcv 29250 |
This theorem is referenced by: nvz0 29318 nv1 29325 ipidsq 29360 nmblolbii 29449 blocnilem 29454 ubthlem2 29521 |
Copyright terms: Public domain | W3C validator |