![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nvz | Structured version Visualization version GIF version |
Description: The norm of a vector is zero iff the vector is zero. First part of Problem 2 of [Kreyszig] p. 64. (Contributed by NM, 24-Nov-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nvz.1 | β’ π = (BaseSetβπ) |
nvz.5 | β’ π = (0vecβπ) |
nvz.6 | β’ π = (normCVβπ) |
Ref | Expression |
---|---|
nvz | β’ ((π β NrmCVec β§ π΄ β π) β ((πβπ΄) = 0 β π΄ = π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nvz.1 | . . . . . 6 β’ π = (BaseSetβπ) | |
2 | eqid 2730 | . . . . . 6 β’ ( +π£ βπ) = ( +π£ βπ) | |
3 | eqid 2730 | . . . . . 6 β’ ( Β·π OLD βπ) = ( Β·π OLD βπ) | |
4 | nvz.5 | . . . . . 6 β’ π = (0vecβπ) | |
5 | nvz.6 | . . . . . 6 β’ π = (normCVβπ) | |
6 | 1, 2, 3, 4, 5 | nvi 30132 | . . . . 5 β’ (π β NrmCVec β (β¨( +π£ βπ), ( Β·π OLD βπ)β© β CVecOLD β§ π:πβΆβ β§ βπ₯ β π (((πβπ₯) = 0 β π₯ = π) β§ βπ¦ β β (πβ(π¦( Β·π OLD βπ)π₯)) = ((absβπ¦) Β· (πβπ₯)) β§ βπ¦ β π (πβ(π₯( +π£ βπ)π¦)) β€ ((πβπ₯) + (πβπ¦))))) |
7 | 6 | simp3d 1142 | . . . 4 β’ (π β NrmCVec β βπ₯ β π (((πβπ₯) = 0 β π₯ = π) β§ βπ¦ β β (πβ(π¦( Β·π OLD βπ)π₯)) = ((absβπ¦) Β· (πβπ₯)) β§ βπ¦ β π (πβ(π₯( +π£ βπ)π¦)) β€ ((πβπ₯) + (πβπ¦)))) |
8 | simp1 1134 | . . . . 5 β’ ((((πβπ₯) = 0 β π₯ = π) β§ βπ¦ β β (πβ(π¦( Β·π OLD βπ)π₯)) = ((absβπ¦) Β· (πβπ₯)) β§ βπ¦ β π (πβ(π₯( +π£ βπ)π¦)) β€ ((πβπ₯) + (πβπ¦))) β ((πβπ₯) = 0 β π₯ = π)) | |
9 | 8 | ralimi 3081 | . . . 4 β’ (βπ₯ β π (((πβπ₯) = 0 β π₯ = π) β§ βπ¦ β β (πβ(π¦( Β·π OLD βπ)π₯)) = ((absβπ¦) Β· (πβπ₯)) β§ βπ¦ β π (πβ(π₯( +π£ βπ)π¦)) β€ ((πβπ₯) + (πβπ¦))) β βπ₯ β π ((πβπ₯) = 0 β π₯ = π)) |
10 | fveqeq2 6901 | . . . . . 6 β’ (π₯ = π΄ β ((πβπ₯) = 0 β (πβπ΄) = 0)) | |
11 | eqeq1 2734 | . . . . . 6 β’ (π₯ = π΄ β (π₯ = π β π΄ = π)) | |
12 | 10, 11 | imbi12d 343 | . . . . 5 β’ (π₯ = π΄ β (((πβπ₯) = 0 β π₯ = π) β ((πβπ΄) = 0 β π΄ = π))) |
13 | 12 | rspccv 3610 | . . . 4 β’ (βπ₯ β π ((πβπ₯) = 0 β π₯ = π) β (π΄ β π β ((πβπ΄) = 0 β π΄ = π))) |
14 | 7, 9, 13 | 3syl 18 | . . 3 β’ (π β NrmCVec β (π΄ β π β ((πβπ΄) = 0 β π΄ = π))) |
15 | 14 | imp 405 | . 2 β’ ((π β NrmCVec β§ π΄ β π) β ((πβπ΄) = 0 β π΄ = π)) |
16 | fveq2 6892 | . . . . 5 β’ (π΄ = π β (πβπ΄) = (πβπ)) | |
17 | 4, 5 | nvz0 30186 | . . . . 5 β’ (π β NrmCVec β (πβπ) = 0) |
18 | 16, 17 | sylan9eqr 2792 | . . . 4 β’ ((π β NrmCVec β§ π΄ = π) β (πβπ΄) = 0) |
19 | 18 | ex 411 | . . 3 β’ (π β NrmCVec β (π΄ = π β (πβπ΄) = 0)) |
20 | 19 | adantr 479 | . 2 β’ ((π β NrmCVec β§ π΄ β π) β (π΄ = π β (πβπ΄) = 0)) |
21 | 15, 20 | impbid 211 | 1 β’ ((π β NrmCVec β§ π΄ β π) β ((πβπ΄) = 0 β π΄ = π)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 394 β§ w3a 1085 = wceq 1539 β wcel 2104 βwral 3059 β¨cop 4635 class class class wbr 5149 βΆwf 6540 βcfv 6544 (class class class)co 7413 βcc 11112 βcr 11113 0cc0 11114 + caddc 11117 Β· cmul 11119 β€ cle 11255 abscabs 15187 CVecOLDcvc 30076 NrmCVeccnv 30102 +π£ cpv 30103 BaseSetcba 30104 Β·π OLD cns 30105 0veccn0v 30106 normCVcnmcv 30108 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7729 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 ax-pre-sup 11192 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-er 8707 df-en 8944 df-dom 8945 df-sdom 8946 df-sup 9441 df-pnf 11256 df-mnf 11257 df-xr 11258 df-ltxr 11259 df-le 11260 df-sub 11452 df-neg 11453 df-div 11878 df-nn 12219 df-2 12281 df-3 12282 df-n0 12479 df-z 12565 df-uz 12829 df-rp 12981 df-seq 13973 df-exp 14034 df-cj 15052 df-re 15053 df-im 15054 df-sqrt 15188 df-abs 15189 df-grpo 30011 df-gid 30012 df-ginv 30013 df-ablo 30063 df-vc 30077 df-nv 30110 df-va 30113 df-ba 30114 df-sm 30115 df-0v 30116 df-nmcv 30118 |
This theorem is referenced by: nvgt0 30192 nv1 30193 imsmetlem 30208 ipz 30237 nmlno0lem 30311 nmblolbii 30317 blocnilem 30322 siii 30371 hlipgt0 30432 |
Copyright terms: Public domain | W3C validator |