MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvz Structured version   Visualization version   GIF version

Theorem nvz 28604
Description: The norm of a vector is zero iff the vector is zero. First part of Problem 2 of [Kreyszig] p. 64. (Contributed by NM, 24-Nov-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvz.1 𝑋 = (BaseSet‘𝑈)
nvz.5 𝑍 = (0vec𝑈)
nvz.6 𝑁 = (normCV𝑈)
Assertion
Ref Expression
nvz ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((𝑁𝐴) = 0 ↔ 𝐴 = 𝑍))

Proof of Theorem nvz
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nvz.1 . . . . . 6 𝑋 = (BaseSet‘𝑈)
2 eqid 2738 . . . . . 6 ( +𝑣𝑈) = ( +𝑣𝑈)
3 eqid 2738 . . . . . 6 ( ·𝑠OLD𝑈) = ( ·𝑠OLD𝑈)
4 nvz.5 . . . . . 6 𝑍 = (0vec𝑈)
5 nvz.6 . . . . . 6 𝑁 = (normCV𝑈)
61, 2, 3, 4, 5nvi 28549 . . . . 5 (𝑈 ∈ NrmCVec → (⟨( +𝑣𝑈), ( ·𝑠OLD𝑈)⟩ ∈ CVecOLD𝑁:𝑋⟶ℝ ∧ ∀𝑥𝑋 (((𝑁𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦( ·𝑠OLD𝑈)𝑥)) = ((abs‘𝑦) · (𝑁𝑥)) ∧ ∀𝑦𝑋 (𝑁‘(𝑥( +𝑣𝑈)𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)))))
76simp3d 1145 . . . 4 (𝑈 ∈ NrmCVec → ∀𝑥𝑋 (((𝑁𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦( ·𝑠OLD𝑈)𝑥)) = ((abs‘𝑦) · (𝑁𝑥)) ∧ ∀𝑦𝑋 (𝑁‘(𝑥( +𝑣𝑈)𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))))
8 simp1 1137 . . . . 5 ((((𝑁𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦( ·𝑠OLD𝑈)𝑥)) = ((abs‘𝑦) · (𝑁𝑥)) ∧ ∀𝑦𝑋 (𝑁‘(𝑥( +𝑣𝑈)𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))) → ((𝑁𝑥) = 0 → 𝑥 = 𝑍))
98ralimi 3075 . . . 4 (∀𝑥𝑋 (((𝑁𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦( ·𝑠OLD𝑈)𝑥)) = ((abs‘𝑦) · (𝑁𝑥)) ∧ ∀𝑦𝑋 (𝑁‘(𝑥( +𝑣𝑈)𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))) → ∀𝑥𝑋 ((𝑁𝑥) = 0 → 𝑥 = 𝑍))
10 fveqeq2 6683 . . . . . 6 (𝑥 = 𝐴 → ((𝑁𝑥) = 0 ↔ (𝑁𝐴) = 0))
11 eqeq1 2742 . . . . . 6 (𝑥 = 𝐴 → (𝑥 = 𝑍𝐴 = 𝑍))
1210, 11imbi12d 348 . . . . 5 (𝑥 = 𝐴 → (((𝑁𝑥) = 0 → 𝑥 = 𝑍) ↔ ((𝑁𝐴) = 0 → 𝐴 = 𝑍)))
1312rspccv 3523 . . . 4 (∀𝑥𝑋 ((𝑁𝑥) = 0 → 𝑥 = 𝑍) → (𝐴𝑋 → ((𝑁𝐴) = 0 → 𝐴 = 𝑍)))
147, 9, 133syl 18 . . 3 (𝑈 ∈ NrmCVec → (𝐴𝑋 → ((𝑁𝐴) = 0 → 𝐴 = 𝑍)))
1514imp 410 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((𝑁𝐴) = 0 → 𝐴 = 𝑍))
16 fveq2 6674 . . . . 5 (𝐴 = 𝑍 → (𝑁𝐴) = (𝑁𝑍))
174, 5nvz0 28603 . . . . 5 (𝑈 ∈ NrmCVec → (𝑁𝑍) = 0)
1816, 17sylan9eqr 2795 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴 = 𝑍) → (𝑁𝐴) = 0)
1918ex 416 . . 3 (𝑈 ∈ NrmCVec → (𝐴 = 𝑍 → (𝑁𝐴) = 0))
2019adantr 484 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝐴 = 𝑍 → (𝑁𝐴) = 0))
2115, 20impbid 215 1 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((𝑁𝐴) = 0 ↔ 𝐴 = 𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1088   = wceq 1542  wcel 2114  wral 3053  cop 4522   class class class wbr 5030  wf 6335  cfv 6339  (class class class)co 7170  cc 10613  cr 10614  0cc0 10615   + caddc 10618   · cmul 10620  cle 10754  abscabs 14683  CVecOLDcvc 28493  NrmCVeccnv 28519   +𝑣 cpv 28520  BaseSetcba 28521   ·𝑠OLD cns 28522  0veccn0v 28523  normCVcnmcv 28525
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479  ax-cnex 10671  ax-resscn 10672  ax-1cn 10673  ax-icn 10674  ax-addcl 10675  ax-addrcl 10676  ax-mulcl 10677  ax-mulrcl 10678  ax-mulcom 10679  ax-addass 10680  ax-mulass 10681  ax-distr 10682  ax-i2m1 10683  ax-1ne0 10684  ax-1rid 10685  ax-rnegex 10686  ax-rrecex 10687  ax-cnre 10688  ax-pre-lttri 10689  ax-pre-lttrn 10690  ax-pre-ltadd 10691  ax-pre-mulgt0 10692  ax-pre-sup 10693
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7127  df-ov 7173  df-oprab 7174  df-mpo 7175  df-om 7600  df-1st 7714  df-2nd 7715  df-wrecs 7976  df-recs 8037  df-rdg 8075  df-er 8320  df-en 8556  df-dom 8557  df-sdom 8558  df-sup 8979  df-pnf 10755  df-mnf 10756  df-xr 10757  df-ltxr 10758  df-le 10759  df-sub 10950  df-neg 10951  df-div 11376  df-nn 11717  df-2 11779  df-3 11780  df-n0 11977  df-z 12063  df-uz 12325  df-rp 12473  df-seq 13461  df-exp 13522  df-cj 14548  df-re 14549  df-im 14550  df-sqrt 14684  df-abs 14685  df-grpo 28428  df-gid 28429  df-ginv 28430  df-ablo 28480  df-vc 28494  df-nv 28527  df-va 28530  df-ba 28531  df-sm 28532  df-0v 28533  df-nmcv 28535
This theorem is referenced by:  nvgt0  28609  nv1  28610  imsmetlem  28625  ipz  28654  nmlno0lem  28728  nmblolbii  28734  blocnilem  28739  siii  28788  hlipgt0  28849
  Copyright terms: Public domain W3C validator