MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvz Structured version   Visualization version   GIF version

Theorem nvz 27864
Description: The norm of a vector is zero iff the vector is zero. First part of Problem 2 of [Kreyszig] p. 64. (Contributed by NM, 24-Nov-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvz.1 𝑋 = (BaseSet‘𝑈)
nvz.5 𝑍 = (0vec𝑈)
nvz.6 𝑁 = (normCV𝑈)
Assertion
Ref Expression
nvz ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((𝑁𝐴) = 0 ↔ 𝐴 = 𝑍))

Proof of Theorem nvz
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nvz.1 . . . . . 6 𝑋 = (BaseSet‘𝑈)
2 eqid 2771 . . . . . 6 ( +𝑣𝑈) = ( +𝑣𝑈)
3 eqid 2771 . . . . . 6 ( ·𝑠OLD𝑈) = ( ·𝑠OLD𝑈)
4 nvz.5 . . . . . 6 𝑍 = (0vec𝑈)
5 nvz.6 . . . . . 6 𝑁 = (normCV𝑈)
61, 2, 3, 4, 5nvi 27809 . . . . 5 (𝑈 ∈ NrmCVec → (⟨( +𝑣𝑈), ( ·𝑠OLD𝑈)⟩ ∈ CVecOLD𝑁:𝑋⟶ℝ ∧ ∀𝑥𝑋 (((𝑁𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦( ·𝑠OLD𝑈)𝑥)) = ((abs‘𝑦) · (𝑁𝑥)) ∧ ∀𝑦𝑋 (𝑁‘(𝑥( +𝑣𝑈)𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)))))
76simp3d 1138 . . . 4 (𝑈 ∈ NrmCVec → ∀𝑥𝑋 (((𝑁𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦( ·𝑠OLD𝑈)𝑥)) = ((abs‘𝑦) · (𝑁𝑥)) ∧ ∀𝑦𝑋 (𝑁‘(𝑥( +𝑣𝑈)𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))))
8 simp1 1130 . . . . 5 ((((𝑁𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦( ·𝑠OLD𝑈)𝑥)) = ((abs‘𝑦) · (𝑁𝑥)) ∧ ∀𝑦𝑋 (𝑁‘(𝑥( +𝑣𝑈)𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))) → ((𝑁𝑥) = 0 → 𝑥 = 𝑍))
98ralimi 3101 . . . 4 (∀𝑥𝑋 (((𝑁𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦( ·𝑠OLD𝑈)𝑥)) = ((abs‘𝑦) · (𝑁𝑥)) ∧ ∀𝑦𝑋 (𝑁‘(𝑥( +𝑣𝑈)𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))) → ∀𝑥𝑋 ((𝑁𝑥) = 0 → 𝑥 = 𝑍))
10 fveq2 6333 . . . . . . 7 (𝑥 = 𝐴 → (𝑁𝑥) = (𝑁𝐴))
1110eqeq1d 2773 . . . . . 6 (𝑥 = 𝐴 → ((𝑁𝑥) = 0 ↔ (𝑁𝐴) = 0))
12 eqeq1 2775 . . . . . 6 (𝑥 = 𝐴 → (𝑥 = 𝑍𝐴 = 𝑍))
1311, 12imbi12d 333 . . . . 5 (𝑥 = 𝐴 → (((𝑁𝑥) = 0 → 𝑥 = 𝑍) ↔ ((𝑁𝐴) = 0 → 𝐴 = 𝑍)))
1413rspccv 3457 . . . 4 (∀𝑥𝑋 ((𝑁𝑥) = 0 → 𝑥 = 𝑍) → (𝐴𝑋 → ((𝑁𝐴) = 0 → 𝐴 = 𝑍)))
157, 9, 143syl 18 . . 3 (𝑈 ∈ NrmCVec → (𝐴𝑋 → ((𝑁𝐴) = 0 → 𝐴 = 𝑍)))
1615imp 393 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((𝑁𝐴) = 0 → 𝐴 = 𝑍))
17 fveq2 6333 . . . . 5 (𝐴 = 𝑍 → (𝑁𝐴) = (𝑁𝑍))
184, 5nvz0 27863 . . . . 5 (𝑈 ∈ NrmCVec → (𝑁𝑍) = 0)
1917, 18sylan9eqr 2827 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴 = 𝑍) → (𝑁𝐴) = 0)
2019ex 397 . . 3 (𝑈 ∈ NrmCVec → (𝐴 = 𝑍 → (𝑁𝐴) = 0))
2120adantr 466 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝐴 = 𝑍 → (𝑁𝐴) = 0))
2216, 21impbid 202 1 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((𝑁𝐴) = 0 ↔ 𝐴 = 𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  w3a 1071   = wceq 1631  wcel 2145  wral 3061  cop 4323   class class class wbr 4787  wf 6026  cfv 6030  (class class class)co 6796  cc 10140  cr 10141  0cc0 10142   + caddc 10145   · cmul 10147  cle 10281  abscabs 14182  CVecOLDcvc 27753  NrmCVeccnv 27779   +𝑣 cpv 27780  BaseSetcba 27781   ·𝑠OLD cns 27782  0veccn0v 27783  normCVcnmcv 27785
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-cnex 10198  ax-resscn 10199  ax-1cn 10200  ax-icn 10201  ax-addcl 10202  ax-addrcl 10203  ax-mulcl 10204  ax-mulrcl 10205  ax-mulcom 10206  ax-addass 10207  ax-mulass 10208  ax-distr 10209  ax-i2m1 10210  ax-1ne0 10211  ax-1rid 10212  ax-rnegex 10213  ax-rrecex 10214  ax-cnre 10215  ax-pre-lttri 10216  ax-pre-lttrn 10217  ax-pre-ltadd 10218  ax-pre-mulgt0 10219  ax-pre-sup 10220
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-riota 6757  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-om 7217  df-1st 7319  df-2nd 7320  df-wrecs 7563  df-recs 7625  df-rdg 7663  df-er 7900  df-en 8114  df-dom 8115  df-sdom 8116  df-sup 8508  df-pnf 10282  df-mnf 10283  df-xr 10284  df-ltxr 10285  df-le 10286  df-sub 10474  df-neg 10475  df-div 10891  df-nn 11227  df-2 11285  df-3 11286  df-n0 11500  df-z 11585  df-uz 11894  df-rp 12036  df-seq 13009  df-exp 13068  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-abs 14184  df-grpo 27687  df-gid 27688  df-ginv 27689  df-ablo 27739  df-vc 27754  df-nv 27787  df-va 27790  df-ba 27791  df-sm 27792  df-0v 27793  df-nmcv 27795
This theorem is referenced by:  nvgt0  27869  nv1  27870  imsmetlem  27885  ipz  27914  nmlno0lem  27988  nmblolbii  27994  blocnilem  27999  siii  28048  hlipgt0  28110
  Copyright terms: Public domain W3C validator