![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nvz | Structured version Visualization version GIF version |
Description: The norm of a vector is zero iff the vector is zero. First part of Problem 2 of [Kreyszig] p. 64. (Contributed by NM, 24-Nov-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nvz.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
nvz.5 | ⊢ 𝑍 = (0vec‘𝑈) |
nvz.6 | ⊢ 𝑁 = (normCV‘𝑈) |
Ref | Expression |
---|---|
nvz | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → ((𝑁‘𝐴) = 0 ↔ 𝐴 = 𝑍)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nvz.1 | . . . . . 6 ⊢ 𝑋 = (BaseSet‘𝑈) | |
2 | eqid 2735 | . . . . . 6 ⊢ ( +𝑣 ‘𝑈) = ( +𝑣 ‘𝑈) | |
3 | eqid 2735 | . . . . . 6 ⊢ ( ·𝑠OLD ‘𝑈) = ( ·𝑠OLD ‘𝑈) | |
4 | nvz.5 | . . . . . 6 ⊢ 𝑍 = (0vec‘𝑈) | |
5 | nvz.6 | . . . . . 6 ⊢ 𝑁 = (normCV‘𝑈) | |
6 | 1, 2, 3, 4, 5 | nvi 30643 | . . . . 5 ⊢ (𝑈 ∈ NrmCVec → (〈( +𝑣 ‘𝑈), ( ·𝑠OLD ‘𝑈)〉 ∈ CVecOLD ∧ 𝑁:𝑋⟶ℝ ∧ ∀𝑥 ∈ 𝑋 (((𝑁‘𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦( ·𝑠OLD ‘𝑈)𝑥)) = ((abs‘𝑦) · (𝑁‘𝑥)) ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥( +𝑣 ‘𝑈)𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))))) |
7 | 6 | simp3d 1143 | . . . 4 ⊢ (𝑈 ∈ NrmCVec → ∀𝑥 ∈ 𝑋 (((𝑁‘𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦( ·𝑠OLD ‘𝑈)𝑥)) = ((abs‘𝑦) · (𝑁‘𝑥)) ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥( +𝑣 ‘𝑈)𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦)))) |
8 | simp1 1135 | . . . . 5 ⊢ ((((𝑁‘𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦( ·𝑠OLD ‘𝑈)𝑥)) = ((abs‘𝑦) · (𝑁‘𝑥)) ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥( +𝑣 ‘𝑈)𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))) → ((𝑁‘𝑥) = 0 → 𝑥 = 𝑍)) | |
9 | 8 | ralimi 3081 | . . . 4 ⊢ (∀𝑥 ∈ 𝑋 (((𝑁‘𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦( ·𝑠OLD ‘𝑈)𝑥)) = ((abs‘𝑦) · (𝑁‘𝑥)) ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥( +𝑣 ‘𝑈)𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))) → ∀𝑥 ∈ 𝑋 ((𝑁‘𝑥) = 0 → 𝑥 = 𝑍)) |
10 | fveqeq2 6916 | . . . . . 6 ⊢ (𝑥 = 𝐴 → ((𝑁‘𝑥) = 0 ↔ (𝑁‘𝐴) = 0)) | |
11 | eqeq1 2739 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝑥 = 𝑍 ↔ 𝐴 = 𝑍)) | |
12 | 10, 11 | imbi12d 344 | . . . . 5 ⊢ (𝑥 = 𝐴 → (((𝑁‘𝑥) = 0 → 𝑥 = 𝑍) ↔ ((𝑁‘𝐴) = 0 → 𝐴 = 𝑍))) |
13 | 12 | rspccv 3619 | . . . 4 ⊢ (∀𝑥 ∈ 𝑋 ((𝑁‘𝑥) = 0 → 𝑥 = 𝑍) → (𝐴 ∈ 𝑋 → ((𝑁‘𝐴) = 0 → 𝐴 = 𝑍))) |
14 | 7, 9, 13 | 3syl 18 | . . 3 ⊢ (𝑈 ∈ NrmCVec → (𝐴 ∈ 𝑋 → ((𝑁‘𝐴) = 0 → 𝐴 = 𝑍))) |
15 | 14 | imp 406 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → ((𝑁‘𝐴) = 0 → 𝐴 = 𝑍)) |
16 | fveq2 6907 | . . . . 5 ⊢ (𝐴 = 𝑍 → (𝑁‘𝐴) = (𝑁‘𝑍)) | |
17 | 4, 5 | nvz0 30697 | . . . . 5 ⊢ (𝑈 ∈ NrmCVec → (𝑁‘𝑍) = 0) |
18 | 16, 17 | sylan9eqr 2797 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 = 𝑍) → (𝑁‘𝐴) = 0) |
19 | 18 | ex 412 | . . 3 ⊢ (𝑈 ∈ NrmCVec → (𝐴 = 𝑍 → (𝑁‘𝐴) = 0)) |
20 | 19 | adantr 480 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝐴 = 𝑍 → (𝑁‘𝐴) = 0)) |
21 | 15, 20 | impbid 212 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → ((𝑁‘𝐴) = 0 ↔ 𝐴 = 𝑍)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ∀wral 3059 〈cop 4637 class class class wbr 5148 ⟶wf 6559 ‘cfv 6563 (class class class)co 7431 ℂcc 11151 ℝcr 11152 0cc0 11153 + caddc 11156 · cmul 11158 ≤ cle 11294 abscabs 15270 CVecOLDcvc 30587 NrmCVeccnv 30613 +𝑣 cpv 30614 BaseSetcba 30615 ·𝑠OLD cns 30616 0veccn0v 30617 normCVcnmcv 30619 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-sup 9480 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-n0 12525 df-z 12612 df-uz 12877 df-rp 13033 df-seq 14040 df-exp 14100 df-cj 15135 df-re 15136 df-im 15137 df-sqrt 15271 df-abs 15272 df-grpo 30522 df-gid 30523 df-ginv 30524 df-ablo 30574 df-vc 30588 df-nv 30621 df-va 30624 df-ba 30625 df-sm 30626 df-0v 30627 df-nmcv 30629 |
This theorem is referenced by: nvgt0 30703 nv1 30704 imsmetlem 30719 ipz 30748 nmlno0lem 30822 nmblolbii 30828 blocnilem 30833 siii 30882 hlipgt0 30943 |
Copyright terms: Public domain | W3C validator |