![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nvz | Structured version Visualization version GIF version |
Description: The norm of a vector is zero iff the vector is zero. First part of Problem 2 of [Kreyszig] p. 64. (Contributed by NM, 24-Nov-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nvz.1 | β’ π = (BaseSetβπ) |
nvz.5 | β’ π = (0vecβπ) |
nvz.6 | β’ π = (normCVβπ) |
Ref | Expression |
---|---|
nvz | β’ ((π β NrmCVec β§ π΄ β π) β ((πβπ΄) = 0 β π΄ = π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nvz.1 | . . . . . 6 β’ π = (BaseSetβπ) | |
2 | eqid 2731 | . . . . . 6 β’ ( +π£ βπ) = ( +π£ βπ) | |
3 | eqid 2731 | . . . . . 6 β’ ( Β·π OLD βπ) = ( Β·π OLD βπ) | |
4 | nvz.5 | . . . . . 6 β’ π = (0vecβπ) | |
5 | nvz.6 | . . . . . 6 β’ π = (normCVβπ) | |
6 | 1, 2, 3, 4, 5 | nvi 29653 | . . . . 5 β’ (π β NrmCVec β (β¨( +π£ βπ), ( Β·π OLD βπ)β© β CVecOLD β§ π:πβΆβ β§ βπ₯ β π (((πβπ₯) = 0 β π₯ = π) β§ βπ¦ β β (πβ(π¦( Β·π OLD βπ)π₯)) = ((absβπ¦) Β· (πβπ₯)) β§ βπ¦ β π (πβ(π₯( +π£ βπ)π¦)) β€ ((πβπ₯) + (πβπ¦))))) |
7 | 6 | simp3d 1144 | . . . 4 β’ (π β NrmCVec β βπ₯ β π (((πβπ₯) = 0 β π₯ = π) β§ βπ¦ β β (πβ(π¦( Β·π OLD βπ)π₯)) = ((absβπ¦) Β· (πβπ₯)) β§ βπ¦ β π (πβ(π₯( +π£ βπ)π¦)) β€ ((πβπ₯) + (πβπ¦)))) |
8 | simp1 1136 | . . . . 5 β’ ((((πβπ₯) = 0 β π₯ = π) β§ βπ¦ β β (πβ(π¦( Β·π OLD βπ)π₯)) = ((absβπ¦) Β· (πβπ₯)) β§ βπ¦ β π (πβ(π₯( +π£ βπ)π¦)) β€ ((πβπ₯) + (πβπ¦))) β ((πβπ₯) = 0 β π₯ = π)) | |
9 | 8 | ralimi 3082 | . . . 4 β’ (βπ₯ β π (((πβπ₯) = 0 β π₯ = π) β§ βπ¦ β β (πβ(π¦( Β·π OLD βπ)π₯)) = ((absβπ¦) Β· (πβπ₯)) β§ βπ¦ β π (πβ(π₯( +π£ βπ)π¦)) β€ ((πβπ₯) + (πβπ¦))) β βπ₯ β π ((πβπ₯) = 0 β π₯ = π)) |
10 | fveqeq2 6871 | . . . . . 6 β’ (π₯ = π΄ β ((πβπ₯) = 0 β (πβπ΄) = 0)) | |
11 | eqeq1 2735 | . . . . . 6 β’ (π₯ = π΄ β (π₯ = π β π΄ = π)) | |
12 | 10, 11 | imbi12d 344 | . . . . 5 β’ (π₯ = π΄ β (((πβπ₯) = 0 β π₯ = π) β ((πβπ΄) = 0 β π΄ = π))) |
13 | 12 | rspccv 3592 | . . . 4 β’ (βπ₯ β π ((πβπ₯) = 0 β π₯ = π) β (π΄ β π β ((πβπ΄) = 0 β π΄ = π))) |
14 | 7, 9, 13 | 3syl 18 | . . 3 β’ (π β NrmCVec β (π΄ β π β ((πβπ΄) = 0 β π΄ = π))) |
15 | 14 | imp 407 | . 2 β’ ((π β NrmCVec β§ π΄ β π) β ((πβπ΄) = 0 β π΄ = π)) |
16 | fveq2 6862 | . . . . 5 β’ (π΄ = π β (πβπ΄) = (πβπ)) | |
17 | 4, 5 | nvz0 29707 | . . . . 5 β’ (π β NrmCVec β (πβπ) = 0) |
18 | 16, 17 | sylan9eqr 2793 | . . . 4 β’ ((π β NrmCVec β§ π΄ = π) β (πβπ΄) = 0) |
19 | 18 | ex 413 | . . 3 β’ (π β NrmCVec β (π΄ = π β (πβπ΄) = 0)) |
20 | 19 | adantr 481 | . 2 β’ ((π β NrmCVec β§ π΄ β π) β (π΄ = π β (πβπ΄) = 0)) |
21 | 15, 20 | impbid 211 | 1 β’ ((π β NrmCVec β§ π΄ β π) β ((πβπ΄) = 0 β π΄ = π)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 396 β§ w3a 1087 = wceq 1541 β wcel 2106 βwral 3060 β¨cop 4612 class class class wbr 5125 βΆwf 6512 βcfv 6516 (class class class)co 7377 βcc 11073 βcr 11074 0cc0 11075 + caddc 11078 Β· cmul 11080 β€ cle 11214 abscabs 15146 CVecOLDcvc 29597 NrmCVeccnv 29623 +π£ cpv 29624 BaseSetcba 29625 Β·π OLD cns 29626 0veccn0v 29627 normCVcnmcv 29629 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 ax-rep 5262 ax-sep 5276 ax-nul 5283 ax-pow 5340 ax-pr 5404 ax-un 7692 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3364 df-reu 3365 df-rab 3419 df-v 3461 df-sbc 3758 df-csb 3874 df-dif 3931 df-un 3933 df-in 3935 df-ss 3945 df-pss 3947 df-nul 4303 df-if 4507 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4886 df-iun 4976 df-br 5126 df-opab 5188 df-mpt 5209 df-tr 5243 df-id 5551 df-eprel 5557 df-po 5565 df-so 5566 df-fr 5608 df-we 5610 df-xp 5659 df-rel 5660 df-cnv 5661 df-co 5662 df-dm 5663 df-rn 5664 df-res 5665 df-ima 5666 df-pred 6273 df-ord 6340 df-on 6341 df-lim 6342 df-suc 6343 df-iota 6468 df-fun 6518 df-fn 6519 df-f 6520 df-f1 6521 df-fo 6522 df-f1o 6523 df-fv 6524 df-riota 7333 df-ov 7380 df-oprab 7381 df-mpo 7382 df-om 7823 df-1st 7941 df-2nd 7942 df-frecs 8232 df-wrecs 8263 df-recs 8337 df-rdg 8376 df-er 8670 df-en 8906 df-dom 8907 df-sdom 8908 df-sup 9402 df-pnf 11215 df-mnf 11216 df-xr 11217 df-ltxr 11218 df-le 11219 df-sub 11411 df-neg 11412 df-div 11837 df-nn 12178 df-2 12240 df-3 12241 df-n0 12438 df-z 12524 df-uz 12788 df-rp 12940 df-seq 13932 df-exp 13993 df-cj 15011 df-re 15012 df-im 15013 df-sqrt 15147 df-abs 15148 df-grpo 29532 df-gid 29533 df-ginv 29534 df-ablo 29584 df-vc 29598 df-nv 29631 df-va 29634 df-ba 29635 df-sm 29636 df-0v 29637 df-nmcv 29639 |
This theorem is referenced by: nvgt0 29713 nv1 29714 imsmetlem 29729 ipz 29758 nmlno0lem 29832 nmblolbii 29838 blocnilem 29843 siii 29892 hlipgt0 29953 |
Copyright terms: Public domain | W3C validator |