Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nvz | Structured version Visualization version GIF version |
Description: The norm of a vector is zero iff the vector is zero. First part of Problem 2 of [Kreyszig] p. 64. (Contributed by NM, 24-Nov-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nvz.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
nvz.5 | ⊢ 𝑍 = (0vec‘𝑈) |
nvz.6 | ⊢ 𝑁 = (normCV‘𝑈) |
Ref | Expression |
---|---|
nvz | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → ((𝑁‘𝐴) = 0 ↔ 𝐴 = 𝑍)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nvz.1 | . . . . . 6 ⊢ 𝑋 = (BaseSet‘𝑈) | |
2 | eqid 2738 | . . . . . 6 ⊢ ( +𝑣 ‘𝑈) = ( +𝑣 ‘𝑈) | |
3 | eqid 2738 | . . . . . 6 ⊢ ( ·𝑠OLD ‘𝑈) = ( ·𝑠OLD ‘𝑈) | |
4 | nvz.5 | . . . . . 6 ⊢ 𝑍 = (0vec‘𝑈) | |
5 | nvz.6 | . . . . . 6 ⊢ 𝑁 = (normCV‘𝑈) | |
6 | 1, 2, 3, 4, 5 | nvi 28549 | . . . . 5 ⊢ (𝑈 ∈ NrmCVec → (〈( +𝑣 ‘𝑈), ( ·𝑠OLD ‘𝑈)〉 ∈ CVecOLD ∧ 𝑁:𝑋⟶ℝ ∧ ∀𝑥 ∈ 𝑋 (((𝑁‘𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦( ·𝑠OLD ‘𝑈)𝑥)) = ((abs‘𝑦) · (𝑁‘𝑥)) ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥( +𝑣 ‘𝑈)𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))))) |
7 | 6 | simp3d 1145 | . . . 4 ⊢ (𝑈 ∈ NrmCVec → ∀𝑥 ∈ 𝑋 (((𝑁‘𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦( ·𝑠OLD ‘𝑈)𝑥)) = ((abs‘𝑦) · (𝑁‘𝑥)) ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥( +𝑣 ‘𝑈)𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦)))) |
8 | simp1 1137 | . . . . 5 ⊢ ((((𝑁‘𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦( ·𝑠OLD ‘𝑈)𝑥)) = ((abs‘𝑦) · (𝑁‘𝑥)) ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥( +𝑣 ‘𝑈)𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))) → ((𝑁‘𝑥) = 0 → 𝑥 = 𝑍)) | |
9 | 8 | ralimi 3075 | . . . 4 ⊢ (∀𝑥 ∈ 𝑋 (((𝑁‘𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦( ·𝑠OLD ‘𝑈)𝑥)) = ((abs‘𝑦) · (𝑁‘𝑥)) ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥( +𝑣 ‘𝑈)𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))) → ∀𝑥 ∈ 𝑋 ((𝑁‘𝑥) = 0 → 𝑥 = 𝑍)) |
10 | fveqeq2 6683 | . . . . . 6 ⊢ (𝑥 = 𝐴 → ((𝑁‘𝑥) = 0 ↔ (𝑁‘𝐴) = 0)) | |
11 | eqeq1 2742 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝑥 = 𝑍 ↔ 𝐴 = 𝑍)) | |
12 | 10, 11 | imbi12d 348 | . . . . 5 ⊢ (𝑥 = 𝐴 → (((𝑁‘𝑥) = 0 → 𝑥 = 𝑍) ↔ ((𝑁‘𝐴) = 0 → 𝐴 = 𝑍))) |
13 | 12 | rspccv 3523 | . . . 4 ⊢ (∀𝑥 ∈ 𝑋 ((𝑁‘𝑥) = 0 → 𝑥 = 𝑍) → (𝐴 ∈ 𝑋 → ((𝑁‘𝐴) = 0 → 𝐴 = 𝑍))) |
14 | 7, 9, 13 | 3syl 18 | . . 3 ⊢ (𝑈 ∈ NrmCVec → (𝐴 ∈ 𝑋 → ((𝑁‘𝐴) = 0 → 𝐴 = 𝑍))) |
15 | 14 | imp 410 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → ((𝑁‘𝐴) = 0 → 𝐴 = 𝑍)) |
16 | fveq2 6674 | . . . . 5 ⊢ (𝐴 = 𝑍 → (𝑁‘𝐴) = (𝑁‘𝑍)) | |
17 | 4, 5 | nvz0 28603 | . . . . 5 ⊢ (𝑈 ∈ NrmCVec → (𝑁‘𝑍) = 0) |
18 | 16, 17 | sylan9eqr 2795 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 = 𝑍) → (𝑁‘𝐴) = 0) |
19 | 18 | ex 416 | . . 3 ⊢ (𝑈 ∈ NrmCVec → (𝐴 = 𝑍 → (𝑁‘𝐴) = 0)) |
20 | 19 | adantr 484 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝐴 = 𝑍 → (𝑁‘𝐴) = 0)) |
21 | 15, 20 | impbid 215 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → ((𝑁‘𝐴) = 0 ↔ 𝐴 = 𝑍)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∧ w3a 1088 = wceq 1542 ∈ wcel 2114 ∀wral 3053 〈cop 4522 class class class wbr 5030 ⟶wf 6335 ‘cfv 6339 (class class class)co 7170 ℂcc 10613 ℝcr 10614 0cc0 10615 + caddc 10618 · cmul 10620 ≤ cle 10754 abscabs 14683 CVecOLDcvc 28493 NrmCVeccnv 28519 +𝑣 cpv 28520 BaseSetcba 28521 ·𝑠OLD cns 28522 0veccn0v 28523 normCVcnmcv 28525 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-rep 5154 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7479 ax-cnex 10671 ax-resscn 10672 ax-1cn 10673 ax-icn 10674 ax-addcl 10675 ax-addrcl 10676 ax-mulcl 10677 ax-mulrcl 10678 ax-mulcom 10679 ax-addass 10680 ax-mulass 10681 ax-distr 10682 ax-i2m1 10683 ax-1ne0 10684 ax-1rid 10685 ax-rnegex 10686 ax-rrecex 10687 ax-cnre 10688 ax-pre-lttri 10689 ax-pre-lttrn 10690 ax-pre-ltadd 10691 ax-pre-mulgt0 10692 ax-pre-sup 10693 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rmo 3061 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-pss 3862 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-tp 4521 df-op 4523 df-uni 4797 df-iun 4883 df-br 5031 df-opab 5093 df-mpt 5111 df-tr 5137 df-id 5429 df-eprel 5434 df-po 5442 df-so 5443 df-fr 5483 df-we 5485 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6129 df-ord 6175 df-on 6176 df-lim 6177 df-suc 6178 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-riota 7127 df-ov 7173 df-oprab 7174 df-mpo 7175 df-om 7600 df-1st 7714 df-2nd 7715 df-wrecs 7976 df-recs 8037 df-rdg 8075 df-er 8320 df-en 8556 df-dom 8557 df-sdom 8558 df-sup 8979 df-pnf 10755 df-mnf 10756 df-xr 10757 df-ltxr 10758 df-le 10759 df-sub 10950 df-neg 10951 df-div 11376 df-nn 11717 df-2 11779 df-3 11780 df-n0 11977 df-z 12063 df-uz 12325 df-rp 12473 df-seq 13461 df-exp 13522 df-cj 14548 df-re 14549 df-im 14550 df-sqrt 14684 df-abs 14685 df-grpo 28428 df-gid 28429 df-ginv 28430 df-ablo 28480 df-vc 28494 df-nv 28527 df-va 28530 df-ba 28531 df-sm 28532 df-0v 28533 df-nmcv 28535 |
This theorem is referenced by: nvgt0 28609 nv1 28610 imsmetlem 28625 ipz 28654 nmlno0lem 28728 nmblolbii 28734 blocnilem 28739 siii 28788 hlipgt0 28849 |
Copyright terms: Public domain | W3C validator |