| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nvz | Structured version Visualization version GIF version | ||
| Description: The norm of a vector is zero iff the vector is zero. First part of Problem 2 of [Kreyszig] p. 64. (Contributed by NM, 24-Nov-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nvz.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
| nvz.5 | ⊢ 𝑍 = (0vec‘𝑈) |
| nvz.6 | ⊢ 𝑁 = (normCV‘𝑈) |
| Ref | Expression |
|---|---|
| nvz | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → ((𝑁‘𝐴) = 0 ↔ 𝐴 = 𝑍)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nvz.1 | . . . . . 6 ⊢ 𝑋 = (BaseSet‘𝑈) | |
| 2 | eqid 2737 | . . . . . 6 ⊢ ( +𝑣 ‘𝑈) = ( +𝑣 ‘𝑈) | |
| 3 | eqid 2737 | . . . . . 6 ⊢ ( ·𝑠OLD ‘𝑈) = ( ·𝑠OLD ‘𝑈) | |
| 4 | nvz.5 | . . . . . 6 ⊢ 𝑍 = (0vec‘𝑈) | |
| 5 | nvz.6 | . . . . . 6 ⊢ 𝑁 = (normCV‘𝑈) | |
| 6 | 1, 2, 3, 4, 5 | nvi 30633 | . . . . 5 ⊢ (𝑈 ∈ NrmCVec → (〈( +𝑣 ‘𝑈), ( ·𝑠OLD ‘𝑈)〉 ∈ CVecOLD ∧ 𝑁:𝑋⟶ℝ ∧ ∀𝑥 ∈ 𝑋 (((𝑁‘𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦( ·𝑠OLD ‘𝑈)𝑥)) = ((abs‘𝑦) · (𝑁‘𝑥)) ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥( +𝑣 ‘𝑈)𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))))) |
| 7 | 6 | simp3d 1145 | . . . 4 ⊢ (𝑈 ∈ NrmCVec → ∀𝑥 ∈ 𝑋 (((𝑁‘𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦( ·𝑠OLD ‘𝑈)𝑥)) = ((abs‘𝑦) · (𝑁‘𝑥)) ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥( +𝑣 ‘𝑈)𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦)))) |
| 8 | simp1 1137 | . . . . 5 ⊢ ((((𝑁‘𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦( ·𝑠OLD ‘𝑈)𝑥)) = ((abs‘𝑦) · (𝑁‘𝑥)) ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥( +𝑣 ‘𝑈)𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))) → ((𝑁‘𝑥) = 0 → 𝑥 = 𝑍)) | |
| 9 | 8 | ralimi 3083 | . . . 4 ⊢ (∀𝑥 ∈ 𝑋 (((𝑁‘𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦( ·𝑠OLD ‘𝑈)𝑥)) = ((abs‘𝑦) · (𝑁‘𝑥)) ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥( +𝑣 ‘𝑈)𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))) → ∀𝑥 ∈ 𝑋 ((𝑁‘𝑥) = 0 → 𝑥 = 𝑍)) |
| 10 | fveqeq2 6915 | . . . . . 6 ⊢ (𝑥 = 𝐴 → ((𝑁‘𝑥) = 0 ↔ (𝑁‘𝐴) = 0)) | |
| 11 | eqeq1 2741 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝑥 = 𝑍 ↔ 𝐴 = 𝑍)) | |
| 12 | 10, 11 | imbi12d 344 | . . . . 5 ⊢ (𝑥 = 𝐴 → (((𝑁‘𝑥) = 0 → 𝑥 = 𝑍) ↔ ((𝑁‘𝐴) = 0 → 𝐴 = 𝑍))) |
| 13 | 12 | rspccv 3619 | . . . 4 ⊢ (∀𝑥 ∈ 𝑋 ((𝑁‘𝑥) = 0 → 𝑥 = 𝑍) → (𝐴 ∈ 𝑋 → ((𝑁‘𝐴) = 0 → 𝐴 = 𝑍))) |
| 14 | 7, 9, 13 | 3syl 18 | . . 3 ⊢ (𝑈 ∈ NrmCVec → (𝐴 ∈ 𝑋 → ((𝑁‘𝐴) = 0 → 𝐴 = 𝑍))) |
| 15 | 14 | imp 406 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → ((𝑁‘𝐴) = 0 → 𝐴 = 𝑍)) |
| 16 | fveq2 6906 | . . . . 5 ⊢ (𝐴 = 𝑍 → (𝑁‘𝐴) = (𝑁‘𝑍)) | |
| 17 | 4, 5 | nvz0 30687 | . . . . 5 ⊢ (𝑈 ∈ NrmCVec → (𝑁‘𝑍) = 0) |
| 18 | 16, 17 | sylan9eqr 2799 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 = 𝑍) → (𝑁‘𝐴) = 0) |
| 19 | 18 | ex 412 | . . 3 ⊢ (𝑈 ∈ NrmCVec → (𝐴 = 𝑍 → (𝑁‘𝐴) = 0)) |
| 20 | 19 | adantr 480 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝐴 = 𝑍 → (𝑁‘𝐴) = 0)) |
| 21 | 15, 20 | impbid 212 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → ((𝑁‘𝐴) = 0 ↔ 𝐴 = 𝑍)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 ∀wral 3061 〈cop 4632 class class class wbr 5143 ⟶wf 6557 ‘cfv 6561 (class class class)co 7431 ℂcc 11153 ℝcr 11154 0cc0 11155 + caddc 11158 · cmul 11160 ≤ cle 11296 abscabs 15273 CVecOLDcvc 30577 NrmCVeccnv 30603 +𝑣 cpv 30604 BaseSetcba 30605 ·𝑠OLD cns 30606 0veccn0v 30607 normCVcnmcv 30609 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-sup 9482 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-2 12329 df-3 12330 df-n0 12527 df-z 12614 df-uz 12879 df-rp 13035 df-seq 14043 df-exp 14103 df-cj 15138 df-re 15139 df-im 15140 df-sqrt 15274 df-abs 15275 df-grpo 30512 df-gid 30513 df-ginv 30514 df-ablo 30564 df-vc 30578 df-nv 30611 df-va 30614 df-ba 30615 df-sm 30616 df-0v 30617 df-nmcv 30619 |
| This theorem is referenced by: nvgt0 30693 nv1 30694 imsmetlem 30709 ipz 30738 nmlno0lem 30812 nmblolbii 30818 blocnilem 30823 siii 30872 hlipgt0 30933 |
| Copyright terms: Public domain | W3C validator |