MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvz Structured version   Visualization version   GIF version

Theorem nvz 30688
Description: The norm of a vector is zero iff the vector is zero. First part of Problem 2 of [Kreyszig] p. 64. (Contributed by NM, 24-Nov-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvz.1 𝑋 = (BaseSet‘𝑈)
nvz.5 𝑍 = (0vec𝑈)
nvz.6 𝑁 = (normCV𝑈)
Assertion
Ref Expression
nvz ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((𝑁𝐴) = 0 ↔ 𝐴 = 𝑍))

Proof of Theorem nvz
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nvz.1 . . . . . 6 𝑋 = (BaseSet‘𝑈)
2 eqid 2737 . . . . . 6 ( +𝑣𝑈) = ( +𝑣𝑈)
3 eqid 2737 . . . . . 6 ( ·𝑠OLD𝑈) = ( ·𝑠OLD𝑈)
4 nvz.5 . . . . . 6 𝑍 = (0vec𝑈)
5 nvz.6 . . . . . 6 𝑁 = (normCV𝑈)
61, 2, 3, 4, 5nvi 30633 . . . . 5 (𝑈 ∈ NrmCVec → (⟨( +𝑣𝑈), ( ·𝑠OLD𝑈)⟩ ∈ CVecOLD𝑁:𝑋⟶ℝ ∧ ∀𝑥𝑋 (((𝑁𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦( ·𝑠OLD𝑈)𝑥)) = ((abs‘𝑦) · (𝑁𝑥)) ∧ ∀𝑦𝑋 (𝑁‘(𝑥( +𝑣𝑈)𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)))))
76simp3d 1145 . . . 4 (𝑈 ∈ NrmCVec → ∀𝑥𝑋 (((𝑁𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦( ·𝑠OLD𝑈)𝑥)) = ((abs‘𝑦) · (𝑁𝑥)) ∧ ∀𝑦𝑋 (𝑁‘(𝑥( +𝑣𝑈)𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))))
8 simp1 1137 . . . . 5 ((((𝑁𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦( ·𝑠OLD𝑈)𝑥)) = ((abs‘𝑦) · (𝑁𝑥)) ∧ ∀𝑦𝑋 (𝑁‘(𝑥( +𝑣𝑈)𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))) → ((𝑁𝑥) = 0 → 𝑥 = 𝑍))
98ralimi 3083 . . . 4 (∀𝑥𝑋 (((𝑁𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦( ·𝑠OLD𝑈)𝑥)) = ((abs‘𝑦) · (𝑁𝑥)) ∧ ∀𝑦𝑋 (𝑁‘(𝑥( +𝑣𝑈)𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))) → ∀𝑥𝑋 ((𝑁𝑥) = 0 → 𝑥 = 𝑍))
10 fveqeq2 6915 . . . . . 6 (𝑥 = 𝐴 → ((𝑁𝑥) = 0 ↔ (𝑁𝐴) = 0))
11 eqeq1 2741 . . . . . 6 (𝑥 = 𝐴 → (𝑥 = 𝑍𝐴 = 𝑍))
1210, 11imbi12d 344 . . . . 5 (𝑥 = 𝐴 → (((𝑁𝑥) = 0 → 𝑥 = 𝑍) ↔ ((𝑁𝐴) = 0 → 𝐴 = 𝑍)))
1312rspccv 3619 . . . 4 (∀𝑥𝑋 ((𝑁𝑥) = 0 → 𝑥 = 𝑍) → (𝐴𝑋 → ((𝑁𝐴) = 0 → 𝐴 = 𝑍)))
147, 9, 133syl 18 . . 3 (𝑈 ∈ NrmCVec → (𝐴𝑋 → ((𝑁𝐴) = 0 → 𝐴 = 𝑍)))
1514imp 406 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((𝑁𝐴) = 0 → 𝐴 = 𝑍))
16 fveq2 6906 . . . . 5 (𝐴 = 𝑍 → (𝑁𝐴) = (𝑁𝑍))
174, 5nvz0 30687 . . . . 5 (𝑈 ∈ NrmCVec → (𝑁𝑍) = 0)
1816, 17sylan9eqr 2799 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴 = 𝑍) → (𝑁𝐴) = 0)
1918ex 412 . . 3 (𝑈 ∈ NrmCVec → (𝐴 = 𝑍 → (𝑁𝐴) = 0))
2019adantr 480 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝐴 = 𝑍 → (𝑁𝐴) = 0))
2115, 20impbid 212 1 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((𝑁𝐴) = 0 ↔ 𝐴 = 𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wral 3061  cop 4632   class class class wbr 5143  wf 6557  cfv 6561  (class class class)co 7431  cc 11153  cr 11154  0cc0 11155   + caddc 11158   · cmul 11160  cle 11296  abscabs 15273  CVecOLDcvc 30577  NrmCVeccnv 30603   +𝑣 cpv 30604  BaseSetcba 30605   ·𝑠OLD cns 30606  0veccn0v 30607  normCVcnmcv 30609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-sup 9482  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-seq 14043  df-exp 14103  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-grpo 30512  df-gid 30513  df-ginv 30514  df-ablo 30564  df-vc 30578  df-nv 30611  df-va 30614  df-ba 30615  df-sm 30616  df-0v 30617  df-nmcv 30619
This theorem is referenced by:  nvgt0  30693  nv1  30694  imsmetlem  30709  ipz  30738  nmlno0lem  30812  nmblolbii  30818  blocnilem  30823  siii  30872  hlipgt0  30933
  Copyright terms: Public domain W3C validator