MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  om2noseq0 Structured version   Visualization version   GIF version

Theorem om2noseq0 28246
Description: The mapping 𝐺 is a one-to-one mapping from ω onto a countable sequence of surreals that will be used to show the properties of seqs. This theorem shows the value of 𝐺 at ordinal zero. Compare the series of theorems starting at om2uz0i 13861. (Contributed by Scott Fenton, 18-Apr-2025.)
Hypotheses
Ref Expression
om2noseq.1 (𝜑𝐶 No )
om2noseq.2 (𝜑𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω))
Assertion
Ref Expression
om2noseq0 (𝜑 → (𝐺‘∅) = 𝐶)

Proof of Theorem om2noseq0
StepHypRef Expression
1 om2noseq.2 . . 3 (𝜑𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω))
21fveq1d 6833 . 2 (𝜑 → (𝐺‘∅) = ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω)‘∅))
3 om2noseq.1 . . 3 (𝜑𝐶 No )
4 fr0g 8364 . . 3 (𝐶 No → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω)‘∅) = 𝐶)
53, 4syl 17 . 2 (𝜑 → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω)‘∅) = 𝐶)
62, 5eqtrd 2768 1 (𝜑 → (𝐺‘∅) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  Vcvv 3437  c0 4282  cmpt 5176  cres 5623  cfv 6489  (class class class)co 7355  ωcom 7805  reccrdg 8337   No csur 27598   1s c1s 27787   +s cadds 27922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-ov 7358  df-om 7806  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338
This theorem is referenced by:  om2noseqrdg  28254
  Copyright terms: Public domain W3C validator