![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > om2noseqsuc | Structured version Visualization version GIF version |
Description: The value of 𝐺 at a successor. (Contributed by Scott Fenton, 18-Apr-2025.) |
Ref | Expression |
---|---|
om2noseq.1 | ⊢ (𝜑 → 𝐶 ∈ No ) |
om2noseq.2 | ⊢ (𝜑 → 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω)) |
om2noseqsuc.3 | ⊢ (𝜑 → 𝐴 ∈ ω) |
Ref | Expression |
---|---|
om2noseqsuc | ⊢ (𝜑 → (𝐺‘suc 𝐴) = ((𝐺‘𝐴) +s 1s )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | om2noseqsuc.3 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ω) | |
2 | ovex 7448 | . . 3 ⊢ (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω)‘𝐴) +s 1s ) ∈ V | |
3 | eqid 2728 | . . . 4 ⊢ (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω) = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω) | |
4 | oveq1 7422 | . . . 4 ⊢ (𝑦 = 𝑥 → (𝑦 +s 1s ) = (𝑥 +s 1s )) | |
5 | oveq1 7422 | . . . 4 ⊢ (𝑦 = ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω)‘𝐴) → (𝑦 +s 1s ) = (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω)‘𝐴) +s 1s )) | |
6 | 3, 4, 5 | frsucmpt2 8455 | . . 3 ⊢ ((𝐴 ∈ ω ∧ (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω)‘𝐴) +s 1s ) ∈ V) → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω)‘suc 𝐴) = (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω)‘𝐴) +s 1s )) |
7 | 1, 2, 6 | sylancl 585 | . 2 ⊢ (𝜑 → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω)‘suc 𝐴) = (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω)‘𝐴) +s 1s )) |
8 | om2noseq.2 | . . 3 ⊢ (𝜑 → 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω)) | |
9 | 8 | fveq1d 6894 | . 2 ⊢ (𝜑 → (𝐺‘suc 𝐴) = ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω)‘suc 𝐴)) |
10 | 8 | fveq1d 6894 | . . 3 ⊢ (𝜑 → (𝐺‘𝐴) = ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω)‘𝐴)) |
11 | 10 | oveq1d 7430 | . 2 ⊢ (𝜑 → ((𝐺‘𝐴) +s 1s ) = (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω)‘𝐴) +s 1s )) |
12 | 7, 9, 11 | 3eqtr4d 2778 | 1 ⊢ (𝜑 → (𝐺‘suc 𝐴) = ((𝐺‘𝐴) +s 1s )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 Vcvv 3470 ↦ cmpt 5226 ↾ cres 5675 suc csuc 6366 ‘cfv 6543 (class class class)co 7415 ωcom 7865 reccrdg 8424 No csur 27567 1s c1s 27750 +s cadds 27870 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5294 ax-nul 5301 ax-pr 5424 ax-un 7735 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-ral 3058 df-rex 3067 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-iun 4994 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7418 df-om 7866 df-2nd 7989 df-frecs 8281 df-wrecs 8312 df-recs 8386 df-rdg 8425 |
This theorem is referenced by: om2noseqlt 28166 om2noseqrdg 28171 noseqrdgsuc 28175 |
Copyright terms: Public domain | W3C validator |