MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  om2noseqsuc Structured version   Visualization version   GIF version

Theorem om2noseqsuc 28167
Description: The value of 𝐺 at a successor. (Contributed by Scott Fenton, 18-Apr-2025.)
Hypotheses
Ref Expression
om2noseq.1 (𝜑𝐶 No )
om2noseq.2 (𝜑𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω))
om2noseqsuc.3 (𝜑𝐴 ∈ ω)
Assertion
Ref Expression
om2noseqsuc (𝜑 → (𝐺‘suc 𝐴) = ((𝐺𝐴) +s 1s ))
Distinct variable group:   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)   𝐺(𝑥)

Proof of Theorem om2noseqsuc
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 om2noseqsuc.3 . . 3 (𝜑𝐴 ∈ ω)
2 ovex 7402 . . 3 (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω)‘𝐴) +s 1s ) ∈ V
3 eqid 2729 . . . 4 (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω) = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω)
4 oveq1 7376 . . . 4 (𝑦 = 𝑥 → (𝑦 +s 1s ) = (𝑥 +s 1s ))
5 oveq1 7376 . . . 4 (𝑦 = ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω)‘𝐴) → (𝑦 +s 1s ) = (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω)‘𝐴) +s 1s ))
63, 4, 5frsucmpt2 8385 . . 3 ((𝐴 ∈ ω ∧ (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω)‘𝐴) +s 1s ) ∈ V) → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω)‘suc 𝐴) = (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω)‘𝐴) +s 1s ))
71, 2, 6sylancl 586 . 2 (𝜑 → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω)‘suc 𝐴) = (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω)‘𝐴) +s 1s ))
8 om2noseq.2 . . 3 (𝜑𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω))
98fveq1d 6842 . 2 (𝜑 → (𝐺‘suc 𝐴) = ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω)‘suc 𝐴))
108fveq1d 6842 . . 3 (𝜑 → (𝐺𝐴) = ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω)‘𝐴))
1110oveq1d 7384 . 2 (𝜑 → ((𝐺𝐴) +s 1s ) = (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω)‘𝐴) +s 1s ))
127, 9, 113eqtr4d 2774 1 (𝜑 → (𝐺‘suc 𝐴) = ((𝐺𝐴) +s 1s ))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3444  cmpt 5183  cres 5633  suc csuc 6322  cfv 6499  (class class class)co 7369  ωcom 7822  reccrdg 8354   No csur 27527   1s c1s 27711   +s cadds 27842
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355
This theorem is referenced by:  om2noseqlt  28169  om2noseqrdg  28174  noseqrdgsuc  28178
  Copyright terms: Public domain W3C validator