| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > om2noseqsuc | Structured version Visualization version GIF version | ||
| Description: The value of 𝐺 at a successor. (Contributed by Scott Fenton, 18-Apr-2025.) |
| Ref | Expression |
|---|---|
| om2noseq.1 | ⊢ (𝜑 → 𝐶 ∈ No ) |
| om2noseq.2 | ⊢ (𝜑 → 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω)) |
| om2noseqsuc.3 | ⊢ (𝜑 → 𝐴 ∈ ω) |
| Ref | Expression |
|---|---|
| om2noseqsuc | ⊢ (𝜑 → (𝐺‘suc 𝐴) = ((𝐺‘𝐴) +s 1s )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | om2noseqsuc.3 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ω) | |
| 2 | ovex 7379 | . . 3 ⊢ (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω)‘𝐴) +s 1s ) ∈ V | |
| 3 | eqid 2731 | . . . 4 ⊢ (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω) = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω) | |
| 4 | oveq1 7353 | . . . 4 ⊢ (𝑦 = 𝑥 → (𝑦 +s 1s ) = (𝑥 +s 1s )) | |
| 5 | oveq1 7353 | . . . 4 ⊢ (𝑦 = ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω)‘𝐴) → (𝑦 +s 1s ) = (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω)‘𝐴) +s 1s )) | |
| 6 | 3, 4, 5 | frsucmpt2 8359 | . . 3 ⊢ ((𝐴 ∈ ω ∧ (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω)‘𝐴) +s 1s ) ∈ V) → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω)‘suc 𝐴) = (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω)‘𝐴) +s 1s )) |
| 7 | 1, 2, 6 | sylancl 586 | . 2 ⊢ (𝜑 → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω)‘suc 𝐴) = (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω)‘𝐴) +s 1s )) |
| 8 | om2noseq.2 | . . 3 ⊢ (𝜑 → 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω)) | |
| 9 | 8 | fveq1d 6824 | . 2 ⊢ (𝜑 → (𝐺‘suc 𝐴) = ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω)‘suc 𝐴)) |
| 10 | 8 | fveq1d 6824 | . . 3 ⊢ (𝜑 → (𝐺‘𝐴) = ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω)‘𝐴)) |
| 11 | 10 | oveq1d 7361 | . 2 ⊢ (𝜑 → ((𝐺‘𝐴) +s 1s ) = (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω)‘𝐴) +s 1s )) |
| 12 | 7, 9, 11 | 3eqtr4d 2776 | 1 ⊢ (𝜑 → (𝐺‘suc 𝐴) = ((𝐺‘𝐴) +s 1s )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ↦ cmpt 5170 ↾ cres 5616 suc csuc 6308 ‘cfv 6481 (class class class)co 7346 ωcom 7796 reccrdg 8328 No csur 27578 1s c1s 27767 +s cadds 27902 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 |
| This theorem is referenced by: om2noseqlt 28229 om2noseqrdg 28234 noseqrdgsuc 28238 |
| Copyright terms: Public domain | W3C validator |