MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  om2noseqrdg Structured version   Visualization version   GIF version

Theorem om2noseqrdg 28328
Description: A helper lemma for the value of a recursive definition generator on a surreal sequence with characteristic function 𝐹(𝑥, 𝑦) and initial value 𝐴. (Contributed by Scott Fenton, 18-Apr-2025.)
Hypotheses
Ref Expression
om2noseq.1 (𝜑𝐶 No )
om2noseq.2 (𝜑𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω))
om2noseq.3 (𝜑𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) “ ω))
noseqrdg.1 (𝜑𝐴𝑉)
noseqrdg.2 (𝜑𝑅 = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω))
Assertion
Ref Expression
om2noseqrdg ((𝜑𝐵 ∈ ω) → (𝑅𝐵) = ⟨(𝐺𝐵), (2nd ‘(𝑅𝐵))⟩)
Distinct variable groups:   𝑥,𝐶   𝑥,𝐹,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐶(𝑦)   𝑅(𝑥,𝑦)   𝐺(𝑥,𝑦)   𝑉(𝑥,𝑦)   𝑍(𝑥,𝑦)

Proof of Theorem om2noseqrdg
Dummy variables 𝑧 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6920 . . . . 5 (𝑧 = ∅ → (𝑅𝑧) = (𝑅‘∅))
2 fveq2 6920 . . . . . 6 (𝑧 = ∅ → (𝐺𝑧) = (𝐺‘∅))
3 2fveq3 6925 . . . . . 6 (𝑧 = ∅ → (2nd ‘(𝑅𝑧)) = (2nd ‘(𝑅‘∅)))
42, 3opeq12d 4905 . . . . 5 (𝑧 = ∅ → ⟨(𝐺𝑧), (2nd ‘(𝑅𝑧))⟩ = ⟨(𝐺‘∅), (2nd ‘(𝑅‘∅))⟩)
51, 4eqeq12d 2756 . . . 4 (𝑧 = ∅ → ((𝑅𝑧) = ⟨(𝐺𝑧), (2nd ‘(𝑅𝑧))⟩ ↔ (𝑅‘∅) = ⟨(𝐺‘∅), (2nd ‘(𝑅‘∅))⟩))
65imbi2d 340 . . 3 (𝑧 = ∅ → ((𝜑 → (𝑅𝑧) = ⟨(𝐺𝑧), (2nd ‘(𝑅𝑧))⟩) ↔ (𝜑 → (𝑅‘∅) = ⟨(𝐺‘∅), (2nd ‘(𝑅‘∅))⟩)))
7 fveq2 6920 . . . . 5 (𝑧 = 𝑣 → (𝑅𝑧) = (𝑅𝑣))
8 fveq2 6920 . . . . . 6 (𝑧 = 𝑣 → (𝐺𝑧) = (𝐺𝑣))
9 2fveq3 6925 . . . . . 6 (𝑧 = 𝑣 → (2nd ‘(𝑅𝑧)) = (2nd ‘(𝑅𝑣)))
108, 9opeq12d 4905 . . . . 5 (𝑧 = 𝑣 → ⟨(𝐺𝑧), (2nd ‘(𝑅𝑧))⟩ = ⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩)
117, 10eqeq12d 2756 . . . 4 (𝑧 = 𝑣 → ((𝑅𝑧) = ⟨(𝐺𝑧), (2nd ‘(𝑅𝑧))⟩ ↔ (𝑅𝑣) = ⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩))
1211imbi2d 340 . . 3 (𝑧 = 𝑣 → ((𝜑 → (𝑅𝑧) = ⟨(𝐺𝑧), (2nd ‘(𝑅𝑧))⟩) ↔ (𝜑 → (𝑅𝑣) = ⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩)))
13 fveq2 6920 . . . . 5 (𝑧 = suc 𝑣 → (𝑅𝑧) = (𝑅‘suc 𝑣))
14 fveq2 6920 . . . . . 6 (𝑧 = suc 𝑣 → (𝐺𝑧) = (𝐺‘suc 𝑣))
15 2fveq3 6925 . . . . . 6 (𝑧 = suc 𝑣 → (2nd ‘(𝑅𝑧)) = (2nd ‘(𝑅‘suc 𝑣)))
1614, 15opeq12d 4905 . . . . 5 (𝑧 = suc 𝑣 → ⟨(𝐺𝑧), (2nd ‘(𝑅𝑧))⟩ = ⟨(𝐺‘suc 𝑣), (2nd ‘(𝑅‘suc 𝑣))⟩)
1713, 16eqeq12d 2756 . . . 4 (𝑧 = suc 𝑣 → ((𝑅𝑧) = ⟨(𝐺𝑧), (2nd ‘(𝑅𝑧))⟩ ↔ (𝑅‘suc 𝑣) = ⟨(𝐺‘suc 𝑣), (2nd ‘(𝑅‘suc 𝑣))⟩))
1817imbi2d 340 . . 3 (𝑧 = suc 𝑣 → ((𝜑 → (𝑅𝑧) = ⟨(𝐺𝑧), (2nd ‘(𝑅𝑧))⟩) ↔ (𝜑 → (𝑅‘suc 𝑣) = ⟨(𝐺‘suc 𝑣), (2nd ‘(𝑅‘suc 𝑣))⟩)))
19 fveq2 6920 . . . . 5 (𝑧 = 𝐵 → (𝑅𝑧) = (𝑅𝐵))
20 fveq2 6920 . . . . . 6 (𝑧 = 𝐵 → (𝐺𝑧) = (𝐺𝐵))
21 2fveq3 6925 . . . . . 6 (𝑧 = 𝐵 → (2nd ‘(𝑅𝑧)) = (2nd ‘(𝑅𝐵)))
2220, 21opeq12d 4905 . . . . 5 (𝑧 = 𝐵 → ⟨(𝐺𝑧), (2nd ‘(𝑅𝑧))⟩ = ⟨(𝐺𝐵), (2nd ‘(𝑅𝐵))⟩)
2319, 22eqeq12d 2756 . . . 4 (𝑧 = 𝐵 → ((𝑅𝑧) = ⟨(𝐺𝑧), (2nd ‘(𝑅𝑧))⟩ ↔ (𝑅𝐵) = ⟨(𝐺𝐵), (2nd ‘(𝑅𝐵))⟩))
2423imbi2d 340 . . 3 (𝑧 = 𝐵 → ((𝜑 → (𝑅𝑧) = ⟨(𝐺𝑧), (2nd ‘(𝑅𝑧))⟩) ↔ (𝜑 → (𝑅𝐵) = ⟨(𝐺𝐵), (2nd ‘(𝑅𝐵))⟩)))
25 noseqrdg.2 . . . . . 6 (𝜑𝑅 = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω))
2625fveq1d 6922 . . . . 5 (𝜑 → (𝑅‘∅) = ((rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω)‘∅))
27 opex 5484 . . . . . 6 𝐶, 𝐴⟩ ∈ V
28 fr0g 8492 . . . . . 6 (⟨𝐶, 𝐴⟩ ∈ V → ((rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω)‘∅) = ⟨𝐶, 𝐴⟩)
2927, 28ax-mp 5 . . . . 5 ((rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω)‘∅) = ⟨𝐶, 𝐴
3026, 29eqtrdi 2796 . . . 4 (𝜑 → (𝑅‘∅) = ⟨𝐶, 𝐴⟩)
31 om2noseq.1 . . . . . 6 (𝜑𝐶 No )
32 om2noseq.2 . . . . . 6 (𝜑𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω))
3331, 32om2noseq0 28320 . . . . 5 (𝜑 → (𝐺‘∅) = 𝐶)
3430fveq2d 6924 . . . . . 6 (𝜑 → (2nd ‘(𝑅‘∅)) = (2nd ‘⟨𝐶, 𝐴⟩))
35 noseqrdg.1 . . . . . . 7 (𝜑𝐴𝑉)
36 op2ndg 8043 . . . . . . 7 ((𝐶 No 𝐴𝑉) → (2nd ‘⟨𝐶, 𝐴⟩) = 𝐴)
3731, 35, 36syl2anc 583 . . . . . 6 (𝜑 → (2nd ‘⟨𝐶, 𝐴⟩) = 𝐴)
3834, 37eqtrd 2780 . . . . 5 (𝜑 → (2nd ‘(𝑅‘∅)) = 𝐴)
3933, 38opeq12d 4905 . . . 4 (𝜑 → ⟨(𝐺‘∅), (2nd ‘(𝑅‘∅))⟩ = ⟨𝐶, 𝐴⟩)
4030, 39eqtr4d 2783 . . 3 (𝜑 → (𝑅‘∅) = ⟨(𝐺‘∅), (2nd ‘(𝑅‘∅))⟩)
41 frsuc 8493 . . . . . . . . . . 11 (𝑣 ∈ ω → ((rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω)‘suc 𝑣) = ((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩)‘((rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω)‘𝑣)))
4241adantl 481 . . . . . . . . . 10 ((𝜑𝑣 ∈ ω) → ((rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω)‘suc 𝑣) = ((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩)‘((rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω)‘𝑣)))
4325fveq1d 6922 . . . . . . . . . . 11 (𝜑 → (𝑅‘suc 𝑣) = ((rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω)‘suc 𝑣))
4443adantr 480 . . . . . . . . . 10 ((𝜑𝑣 ∈ ω) → (𝑅‘suc 𝑣) = ((rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω)‘suc 𝑣))
4525fveq1d 6922 . . . . . . . . . . . 12 (𝜑 → (𝑅𝑣) = ((rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω)‘𝑣))
4645fveq2d 6924 . . . . . . . . . . 11 (𝜑 → ((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩)‘(𝑅𝑣)) = ((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩)‘((rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω)‘𝑣)))
4746adantr 480 . . . . . . . . . 10 ((𝜑𝑣 ∈ ω) → ((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩)‘(𝑅𝑣)) = ((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩)‘((rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω)‘𝑣)))
4842, 44, 473eqtr4d 2790 . . . . . . . . 9 ((𝜑𝑣 ∈ ω) → (𝑅‘suc 𝑣) = ((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩)‘(𝑅𝑣)))
4948adantrr 716 . . . . . . . 8 ((𝜑 ∧ (𝑣 ∈ ω ∧ (𝑅𝑣) = ⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩)) → (𝑅‘suc 𝑣) = ((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩)‘(𝑅𝑣)))
50 fveq2 6920 . . . . . . . . . 10 ((𝑅𝑣) = ⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩ → ((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩)‘(𝑅𝑣)) = ((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩)‘⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩))
51 df-ov 7451 . . . . . . . . . . 11 ((𝐺𝑣)(𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩)(2nd ‘(𝑅𝑣))) = ((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩)‘⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩)
52 fvex 6933 . . . . . . . . . . . 12 (𝐺𝑣) ∈ V
53 fvex 6933 . . . . . . . . . . . 12 (2nd ‘(𝑅𝑣)) ∈ V
54 oveq1 7455 . . . . . . . . . . . . . 14 (𝑤 = (𝐺𝑣) → (𝑤 +s 1s ) = ((𝐺𝑣) +s 1s ))
55 oveq1 7455 . . . . . . . . . . . . . 14 (𝑤 = (𝐺𝑣) → (𝑤𝐹𝑧) = ((𝐺𝑣)𝐹𝑧))
5654, 55opeq12d 4905 . . . . . . . . . . . . 13 (𝑤 = (𝐺𝑣) → ⟨(𝑤 +s 1s ), (𝑤𝐹𝑧)⟩ = ⟨((𝐺𝑣) +s 1s ), ((𝐺𝑣)𝐹𝑧)⟩)
57 oveq2 7456 . . . . . . . . . . . . . 14 (𝑧 = (2nd ‘(𝑅𝑣)) → ((𝐺𝑣)𝐹𝑧) = ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣))))
5857opeq2d 4904 . . . . . . . . . . . . 13 (𝑧 = (2nd ‘(𝑅𝑣)) → ⟨((𝐺𝑣) +s 1s ), ((𝐺𝑣)𝐹𝑧)⟩ = ⟨((𝐺𝑣) +s 1s ), ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣)))⟩)
59 oveq1 7455 . . . . . . . . . . . . . . 15 (𝑥 = 𝑤 → (𝑥 +s 1s ) = (𝑤 +s 1s ))
60 oveq1 7455 . . . . . . . . . . . . . . 15 (𝑥 = 𝑤 → (𝑥𝐹𝑦) = (𝑤𝐹𝑦))
6159, 60opeq12d 4905 . . . . . . . . . . . . . 14 (𝑥 = 𝑤 → ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩ = ⟨(𝑤 +s 1s ), (𝑤𝐹𝑦)⟩)
62 oveq2 7456 . . . . . . . . . . . . . . 15 (𝑦 = 𝑧 → (𝑤𝐹𝑦) = (𝑤𝐹𝑧))
6362opeq2d 4904 . . . . . . . . . . . . . 14 (𝑦 = 𝑧 → ⟨(𝑤 +s 1s ), (𝑤𝐹𝑦)⟩ = ⟨(𝑤 +s 1s ), (𝑤𝐹𝑧)⟩)
6461, 63cbvmpov 7545 . . . . . . . . . . . . 13 (𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩) = (𝑤 ∈ V, 𝑧 ∈ V ↦ ⟨(𝑤 +s 1s ), (𝑤𝐹𝑧)⟩)
65 opex 5484 . . . . . . . . . . . . 13 ⟨((𝐺𝑣) +s 1s ), ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣)))⟩ ∈ V
6656, 58, 64, 65ovmpo 7610 . . . . . . . . . . . 12 (((𝐺𝑣) ∈ V ∧ (2nd ‘(𝑅𝑣)) ∈ V) → ((𝐺𝑣)(𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩)(2nd ‘(𝑅𝑣))) = ⟨((𝐺𝑣) +s 1s ), ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣)))⟩)
6752, 53, 66mp2an 691 . . . . . . . . . . 11 ((𝐺𝑣)(𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩)(2nd ‘(𝑅𝑣))) = ⟨((𝐺𝑣) +s 1s ), ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣)))⟩
6851, 67eqtr3i 2770 . . . . . . . . . 10 ((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩)‘⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩) = ⟨((𝐺𝑣) +s 1s ), ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣)))⟩
6950, 68eqtrdi 2796 . . . . . . . . 9 ((𝑅𝑣) = ⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩ → ((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩)‘(𝑅𝑣)) = ⟨((𝐺𝑣) +s 1s ), ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣)))⟩)
7069ad2antll 728 . . . . . . . 8 ((𝜑 ∧ (𝑣 ∈ ω ∧ (𝑅𝑣) = ⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩)) → ((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩)‘(𝑅𝑣)) = ⟨((𝐺𝑣) +s 1s ), ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣)))⟩)
7149, 70eqtrd 2780 . . . . . . 7 ((𝜑 ∧ (𝑣 ∈ ω ∧ (𝑅𝑣) = ⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩)) → (𝑅‘suc 𝑣) = ⟨((𝐺𝑣) +s 1s ), ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣)))⟩)
7231adantr 480 . . . . . . . . . 10 ((𝜑𝑣 ∈ ω) → 𝐶 No )
7332adantr 480 . . . . . . . . . 10 ((𝜑𝑣 ∈ ω) → 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω))
74 simpr 484 . . . . . . . . . 10 ((𝜑𝑣 ∈ ω) → 𝑣 ∈ ω)
7572, 73, 74om2noseqsuc 28321 . . . . . . . . 9 ((𝜑𝑣 ∈ ω) → (𝐺‘suc 𝑣) = ((𝐺𝑣) +s 1s ))
7675adantrr 716 . . . . . . . 8 ((𝜑 ∧ (𝑣 ∈ ω ∧ (𝑅𝑣) = ⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩)) → (𝐺‘suc 𝑣) = ((𝐺𝑣) +s 1s ))
7771fveq2d 6924 . . . . . . . . 9 ((𝜑 ∧ (𝑣 ∈ ω ∧ (𝑅𝑣) = ⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩)) → (2nd ‘(𝑅‘suc 𝑣)) = (2nd ‘⟨((𝐺𝑣) +s 1s ), ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣)))⟩))
78 ovex 7481 . . . . . . . . . 10 ((𝐺𝑣) +s 1s ) ∈ V
79 ovex 7481 . . . . . . . . . 10 ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣))) ∈ V
8078, 79op2nd 8039 . . . . . . . . 9 (2nd ‘⟨((𝐺𝑣) +s 1s ), ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣)))⟩) = ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣)))
8177, 80eqtrdi 2796 . . . . . . . 8 ((𝜑 ∧ (𝑣 ∈ ω ∧ (𝑅𝑣) = ⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩)) → (2nd ‘(𝑅‘suc 𝑣)) = ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣))))
8276, 81opeq12d 4905 . . . . . . 7 ((𝜑 ∧ (𝑣 ∈ ω ∧ (𝑅𝑣) = ⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩)) → ⟨(𝐺‘suc 𝑣), (2nd ‘(𝑅‘suc 𝑣))⟩ = ⟨((𝐺𝑣) +s 1s ), ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣)))⟩)
8371, 82eqtr4d 2783 . . . . . 6 ((𝜑 ∧ (𝑣 ∈ ω ∧ (𝑅𝑣) = ⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩)) → (𝑅‘suc 𝑣) = ⟨(𝐺‘suc 𝑣), (2nd ‘(𝑅‘suc 𝑣))⟩)
8483exp32 420 . . . . 5 (𝜑 → (𝑣 ∈ ω → ((𝑅𝑣) = ⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩ → (𝑅‘suc 𝑣) = ⟨(𝐺‘suc 𝑣), (2nd ‘(𝑅‘suc 𝑣))⟩)))
8584com12 32 . . . 4 (𝑣 ∈ ω → (𝜑 → ((𝑅𝑣) = ⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩ → (𝑅‘suc 𝑣) = ⟨(𝐺‘suc 𝑣), (2nd ‘(𝑅‘suc 𝑣))⟩)))
8685a2d 29 . . 3 (𝑣 ∈ ω → ((𝜑 → (𝑅𝑣) = ⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩) → (𝜑 → (𝑅‘suc 𝑣) = ⟨(𝐺‘suc 𝑣), (2nd ‘(𝑅‘suc 𝑣))⟩)))
876, 12, 18, 24, 40, 86finds 7936 . 2 (𝐵 ∈ ω → (𝜑 → (𝑅𝐵) = ⟨(𝐺𝐵), (2nd ‘(𝑅𝐵))⟩))
8887impcom 407 1 ((𝜑𝐵 ∈ ω) → (𝑅𝐵) = ⟨(𝐺𝐵), (2nd ‘(𝑅𝐵))⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  Vcvv 3488  c0 4352  cop 4654  cmpt 5249  cres 5702  cima 5703  suc csuc 6397  cfv 6573  (class class class)co 7448  cmpo 7450  ωcom 7903  2nd c2nd 8029  reccrdg 8465   No csur 27702   1s c1s 27886   +s cadds 28010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466
This theorem is referenced by:  noseqrdglem  28329  noseqrdgfn  28330  noseqrdgsuc  28332
  Copyright terms: Public domain W3C validator