MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  om2noseqrdg Structured version   Visualization version   GIF version

Theorem om2noseqrdg 28227
Description: A helper lemma for the value of a recursive definition generator on a surreal sequence with characteristic function 𝐹(𝑥, 𝑦) and initial value 𝐴. (Contributed by Scott Fenton, 18-Apr-2025.)
Hypotheses
Ref Expression
om2noseq.1 (𝜑𝐶 No )
om2noseq.2 (𝜑𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω))
om2noseq.3 (𝜑𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) “ ω))
noseqrdg.1 (𝜑𝐴𝑉)
noseqrdg.2 (𝜑𝑅 = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω))
Assertion
Ref Expression
om2noseqrdg ((𝜑𝐵 ∈ ω) → (𝑅𝐵) = ⟨(𝐺𝐵), (2nd ‘(𝑅𝐵))⟩)
Distinct variable groups:   𝑥,𝐶   𝑥,𝐹,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐶(𝑦)   𝑅(𝑥,𝑦)   𝐺(𝑥,𝑦)   𝑉(𝑥,𝑦)   𝑍(𝑥,𝑦)

Proof of Theorem om2noseqrdg
Dummy variables 𝑧 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6896 . . . . 5 (𝑧 = ∅ → (𝑅𝑧) = (𝑅‘∅))
2 fveq2 6896 . . . . . 6 (𝑧 = ∅ → (𝐺𝑧) = (𝐺‘∅))
3 2fveq3 6901 . . . . . 6 (𝑧 = ∅ → (2nd ‘(𝑅𝑧)) = (2nd ‘(𝑅‘∅)))
42, 3opeq12d 4883 . . . . 5 (𝑧 = ∅ → ⟨(𝐺𝑧), (2nd ‘(𝑅𝑧))⟩ = ⟨(𝐺‘∅), (2nd ‘(𝑅‘∅))⟩)
51, 4eqeq12d 2741 . . . 4 (𝑧 = ∅ → ((𝑅𝑧) = ⟨(𝐺𝑧), (2nd ‘(𝑅𝑧))⟩ ↔ (𝑅‘∅) = ⟨(𝐺‘∅), (2nd ‘(𝑅‘∅))⟩))
65imbi2d 339 . . 3 (𝑧 = ∅ → ((𝜑 → (𝑅𝑧) = ⟨(𝐺𝑧), (2nd ‘(𝑅𝑧))⟩) ↔ (𝜑 → (𝑅‘∅) = ⟨(𝐺‘∅), (2nd ‘(𝑅‘∅))⟩)))
7 fveq2 6896 . . . . 5 (𝑧 = 𝑣 → (𝑅𝑧) = (𝑅𝑣))
8 fveq2 6896 . . . . . 6 (𝑧 = 𝑣 → (𝐺𝑧) = (𝐺𝑣))
9 2fveq3 6901 . . . . . 6 (𝑧 = 𝑣 → (2nd ‘(𝑅𝑧)) = (2nd ‘(𝑅𝑣)))
108, 9opeq12d 4883 . . . . 5 (𝑧 = 𝑣 → ⟨(𝐺𝑧), (2nd ‘(𝑅𝑧))⟩ = ⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩)
117, 10eqeq12d 2741 . . . 4 (𝑧 = 𝑣 → ((𝑅𝑧) = ⟨(𝐺𝑧), (2nd ‘(𝑅𝑧))⟩ ↔ (𝑅𝑣) = ⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩))
1211imbi2d 339 . . 3 (𝑧 = 𝑣 → ((𝜑 → (𝑅𝑧) = ⟨(𝐺𝑧), (2nd ‘(𝑅𝑧))⟩) ↔ (𝜑 → (𝑅𝑣) = ⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩)))
13 fveq2 6896 . . . . 5 (𝑧 = suc 𝑣 → (𝑅𝑧) = (𝑅‘suc 𝑣))
14 fveq2 6896 . . . . . 6 (𝑧 = suc 𝑣 → (𝐺𝑧) = (𝐺‘suc 𝑣))
15 2fveq3 6901 . . . . . 6 (𝑧 = suc 𝑣 → (2nd ‘(𝑅𝑧)) = (2nd ‘(𝑅‘suc 𝑣)))
1614, 15opeq12d 4883 . . . . 5 (𝑧 = suc 𝑣 → ⟨(𝐺𝑧), (2nd ‘(𝑅𝑧))⟩ = ⟨(𝐺‘suc 𝑣), (2nd ‘(𝑅‘suc 𝑣))⟩)
1713, 16eqeq12d 2741 . . . 4 (𝑧 = suc 𝑣 → ((𝑅𝑧) = ⟨(𝐺𝑧), (2nd ‘(𝑅𝑧))⟩ ↔ (𝑅‘suc 𝑣) = ⟨(𝐺‘suc 𝑣), (2nd ‘(𝑅‘suc 𝑣))⟩))
1817imbi2d 339 . . 3 (𝑧 = suc 𝑣 → ((𝜑 → (𝑅𝑧) = ⟨(𝐺𝑧), (2nd ‘(𝑅𝑧))⟩) ↔ (𝜑 → (𝑅‘suc 𝑣) = ⟨(𝐺‘suc 𝑣), (2nd ‘(𝑅‘suc 𝑣))⟩)))
19 fveq2 6896 . . . . 5 (𝑧 = 𝐵 → (𝑅𝑧) = (𝑅𝐵))
20 fveq2 6896 . . . . . 6 (𝑧 = 𝐵 → (𝐺𝑧) = (𝐺𝐵))
21 2fveq3 6901 . . . . . 6 (𝑧 = 𝐵 → (2nd ‘(𝑅𝑧)) = (2nd ‘(𝑅𝐵)))
2220, 21opeq12d 4883 . . . . 5 (𝑧 = 𝐵 → ⟨(𝐺𝑧), (2nd ‘(𝑅𝑧))⟩ = ⟨(𝐺𝐵), (2nd ‘(𝑅𝐵))⟩)
2319, 22eqeq12d 2741 . . . 4 (𝑧 = 𝐵 → ((𝑅𝑧) = ⟨(𝐺𝑧), (2nd ‘(𝑅𝑧))⟩ ↔ (𝑅𝐵) = ⟨(𝐺𝐵), (2nd ‘(𝑅𝐵))⟩))
2423imbi2d 339 . . 3 (𝑧 = 𝐵 → ((𝜑 → (𝑅𝑧) = ⟨(𝐺𝑧), (2nd ‘(𝑅𝑧))⟩) ↔ (𝜑 → (𝑅𝐵) = ⟨(𝐺𝐵), (2nd ‘(𝑅𝐵))⟩)))
25 noseqrdg.2 . . . . . 6 (𝜑𝑅 = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω))
2625fveq1d 6898 . . . . 5 (𝜑 → (𝑅‘∅) = ((rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω)‘∅))
27 opex 5466 . . . . . 6 𝐶, 𝐴⟩ ∈ V
28 fr0g 8457 . . . . . 6 (⟨𝐶, 𝐴⟩ ∈ V → ((rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω)‘∅) = ⟨𝐶, 𝐴⟩)
2927, 28ax-mp 5 . . . . 5 ((rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω)‘∅) = ⟨𝐶, 𝐴
3026, 29eqtrdi 2781 . . . 4 (𝜑 → (𝑅‘∅) = ⟨𝐶, 𝐴⟩)
31 om2noseq.1 . . . . . 6 (𝜑𝐶 No )
32 om2noseq.2 . . . . . 6 (𝜑𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω))
3331, 32om2noseq0 28219 . . . . 5 (𝜑 → (𝐺‘∅) = 𝐶)
3430fveq2d 6900 . . . . . 6 (𝜑 → (2nd ‘(𝑅‘∅)) = (2nd ‘⟨𝐶, 𝐴⟩))
35 noseqrdg.1 . . . . . . 7 (𝜑𝐴𝑉)
36 op2ndg 8007 . . . . . . 7 ((𝐶 No 𝐴𝑉) → (2nd ‘⟨𝐶, 𝐴⟩) = 𝐴)
3731, 35, 36syl2anc 582 . . . . . 6 (𝜑 → (2nd ‘⟨𝐶, 𝐴⟩) = 𝐴)
3834, 37eqtrd 2765 . . . . 5 (𝜑 → (2nd ‘(𝑅‘∅)) = 𝐴)
3933, 38opeq12d 4883 . . . 4 (𝜑 → ⟨(𝐺‘∅), (2nd ‘(𝑅‘∅))⟩ = ⟨𝐶, 𝐴⟩)
4030, 39eqtr4d 2768 . . 3 (𝜑 → (𝑅‘∅) = ⟨(𝐺‘∅), (2nd ‘(𝑅‘∅))⟩)
41 frsuc 8458 . . . . . . . . . . 11 (𝑣 ∈ ω → ((rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω)‘suc 𝑣) = ((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩)‘((rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω)‘𝑣)))
4241adantl 480 . . . . . . . . . 10 ((𝜑𝑣 ∈ ω) → ((rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω)‘suc 𝑣) = ((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩)‘((rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω)‘𝑣)))
4325fveq1d 6898 . . . . . . . . . . 11 (𝜑 → (𝑅‘suc 𝑣) = ((rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω)‘suc 𝑣))
4443adantr 479 . . . . . . . . . 10 ((𝜑𝑣 ∈ ω) → (𝑅‘suc 𝑣) = ((rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω)‘suc 𝑣))
4525fveq1d 6898 . . . . . . . . . . . 12 (𝜑 → (𝑅𝑣) = ((rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω)‘𝑣))
4645fveq2d 6900 . . . . . . . . . . 11 (𝜑 → ((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩)‘(𝑅𝑣)) = ((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩)‘((rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω)‘𝑣)))
4746adantr 479 . . . . . . . . . 10 ((𝜑𝑣 ∈ ω) → ((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩)‘(𝑅𝑣)) = ((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩)‘((rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω)‘𝑣)))
4842, 44, 473eqtr4d 2775 . . . . . . . . 9 ((𝜑𝑣 ∈ ω) → (𝑅‘suc 𝑣) = ((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩)‘(𝑅𝑣)))
4948adantrr 715 . . . . . . . 8 ((𝜑 ∧ (𝑣 ∈ ω ∧ (𝑅𝑣) = ⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩)) → (𝑅‘suc 𝑣) = ((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩)‘(𝑅𝑣)))
50 fveq2 6896 . . . . . . . . . 10 ((𝑅𝑣) = ⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩ → ((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩)‘(𝑅𝑣)) = ((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩)‘⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩))
51 df-ov 7422 . . . . . . . . . . 11 ((𝐺𝑣)(𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩)(2nd ‘(𝑅𝑣))) = ((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩)‘⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩)
52 fvex 6909 . . . . . . . . . . . 12 (𝐺𝑣) ∈ V
53 fvex 6909 . . . . . . . . . . . 12 (2nd ‘(𝑅𝑣)) ∈ V
54 oveq1 7426 . . . . . . . . . . . . . 14 (𝑤 = (𝐺𝑣) → (𝑤 +s 1s ) = ((𝐺𝑣) +s 1s ))
55 oveq1 7426 . . . . . . . . . . . . . 14 (𝑤 = (𝐺𝑣) → (𝑤𝐹𝑧) = ((𝐺𝑣)𝐹𝑧))
5654, 55opeq12d 4883 . . . . . . . . . . . . 13 (𝑤 = (𝐺𝑣) → ⟨(𝑤 +s 1s ), (𝑤𝐹𝑧)⟩ = ⟨((𝐺𝑣) +s 1s ), ((𝐺𝑣)𝐹𝑧)⟩)
57 oveq2 7427 . . . . . . . . . . . . . 14 (𝑧 = (2nd ‘(𝑅𝑣)) → ((𝐺𝑣)𝐹𝑧) = ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣))))
5857opeq2d 4882 . . . . . . . . . . . . 13 (𝑧 = (2nd ‘(𝑅𝑣)) → ⟨((𝐺𝑣) +s 1s ), ((𝐺𝑣)𝐹𝑧)⟩ = ⟨((𝐺𝑣) +s 1s ), ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣)))⟩)
59 oveq1 7426 . . . . . . . . . . . . . . 15 (𝑥 = 𝑤 → (𝑥 +s 1s ) = (𝑤 +s 1s ))
60 oveq1 7426 . . . . . . . . . . . . . . 15 (𝑥 = 𝑤 → (𝑥𝐹𝑦) = (𝑤𝐹𝑦))
6159, 60opeq12d 4883 . . . . . . . . . . . . . 14 (𝑥 = 𝑤 → ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩ = ⟨(𝑤 +s 1s ), (𝑤𝐹𝑦)⟩)
62 oveq2 7427 . . . . . . . . . . . . . . 15 (𝑦 = 𝑧 → (𝑤𝐹𝑦) = (𝑤𝐹𝑧))
6362opeq2d 4882 . . . . . . . . . . . . . 14 (𝑦 = 𝑧 → ⟨(𝑤 +s 1s ), (𝑤𝐹𝑦)⟩ = ⟨(𝑤 +s 1s ), (𝑤𝐹𝑧)⟩)
6461, 63cbvmpov 7515 . . . . . . . . . . . . 13 (𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩) = (𝑤 ∈ V, 𝑧 ∈ V ↦ ⟨(𝑤 +s 1s ), (𝑤𝐹𝑧)⟩)
65 opex 5466 . . . . . . . . . . . . 13 ⟨((𝐺𝑣) +s 1s ), ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣)))⟩ ∈ V
6656, 58, 64, 65ovmpo 7581 . . . . . . . . . . . 12 (((𝐺𝑣) ∈ V ∧ (2nd ‘(𝑅𝑣)) ∈ V) → ((𝐺𝑣)(𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩)(2nd ‘(𝑅𝑣))) = ⟨((𝐺𝑣) +s 1s ), ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣)))⟩)
6752, 53, 66mp2an 690 . . . . . . . . . . 11 ((𝐺𝑣)(𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩)(2nd ‘(𝑅𝑣))) = ⟨((𝐺𝑣) +s 1s ), ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣)))⟩
6851, 67eqtr3i 2755 . . . . . . . . . 10 ((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩)‘⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩) = ⟨((𝐺𝑣) +s 1s ), ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣)))⟩
6950, 68eqtrdi 2781 . . . . . . . . 9 ((𝑅𝑣) = ⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩ → ((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩)‘(𝑅𝑣)) = ⟨((𝐺𝑣) +s 1s ), ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣)))⟩)
7069ad2antll 727 . . . . . . . 8 ((𝜑 ∧ (𝑣 ∈ ω ∧ (𝑅𝑣) = ⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩)) → ((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩)‘(𝑅𝑣)) = ⟨((𝐺𝑣) +s 1s ), ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣)))⟩)
7149, 70eqtrd 2765 . . . . . . 7 ((𝜑 ∧ (𝑣 ∈ ω ∧ (𝑅𝑣) = ⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩)) → (𝑅‘suc 𝑣) = ⟨((𝐺𝑣) +s 1s ), ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣)))⟩)
7231adantr 479 . . . . . . . . . 10 ((𝜑𝑣 ∈ ω) → 𝐶 No )
7332adantr 479 . . . . . . . . . 10 ((𝜑𝑣 ∈ ω) → 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω))
74 simpr 483 . . . . . . . . . 10 ((𝜑𝑣 ∈ ω) → 𝑣 ∈ ω)
7572, 73, 74om2noseqsuc 28220 . . . . . . . . 9 ((𝜑𝑣 ∈ ω) → (𝐺‘suc 𝑣) = ((𝐺𝑣) +s 1s ))
7675adantrr 715 . . . . . . . 8 ((𝜑 ∧ (𝑣 ∈ ω ∧ (𝑅𝑣) = ⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩)) → (𝐺‘suc 𝑣) = ((𝐺𝑣) +s 1s ))
7771fveq2d 6900 . . . . . . . . 9 ((𝜑 ∧ (𝑣 ∈ ω ∧ (𝑅𝑣) = ⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩)) → (2nd ‘(𝑅‘suc 𝑣)) = (2nd ‘⟨((𝐺𝑣) +s 1s ), ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣)))⟩))
78 ovex 7452 . . . . . . . . . 10 ((𝐺𝑣) +s 1s ) ∈ V
79 ovex 7452 . . . . . . . . . 10 ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣))) ∈ V
8078, 79op2nd 8003 . . . . . . . . 9 (2nd ‘⟨((𝐺𝑣) +s 1s ), ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣)))⟩) = ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣)))
8177, 80eqtrdi 2781 . . . . . . . 8 ((𝜑 ∧ (𝑣 ∈ ω ∧ (𝑅𝑣) = ⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩)) → (2nd ‘(𝑅‘suc 𝑣)) = ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣))))
8276, 81opeq12d 4883 . . . . . . 7 ((𝜑 ∧ (𝑣 ∈ ω ∧ (𝑅𝑣) = ⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩)) → ⟨(𝐺‘suc 𝑣), (2nd ‘(𝑅‘suc 𝑣))⟩ = ⟨((𝐺𝑣) +s 1s ), ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣)))⟩)
8371, 82eqtr4d 2768 . . . . . 6 ((𝜑 ∧ (𝑣 ∈ ω ∧ (𝑅𝑣) = ⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩)) → (𝑅‘suc 𝑣) = ⟨(𝐺‘suc 𝑣), (2nd ‘(𝑅‘suc 𝑣))⟩)
8483exp32 419 . . . . 5 (𝜑 → (𝑣 ∈ ω → ((𝑅𝑣) = ⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩ → (𝑅‘suc 𝑣) = ⟨(𝐺‘suc 𝑣), (2nd ‘(𝑅‘suc 𝑣))⟩)))
8584com12 32 . . . 4 (𝑣 ∈ ω → (𝜑 → ((𝑅𝑣) = ⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩ → (𝑅‘suc 𝑣) = ⟨(𝐺‘suc 𝑣), (2nd ‘(𝑅‘suc 𝑣))⟩)))
8685a2d 29 . . 3 (𝑣 ∈ ω → ((𝜑 → (𝑅𝑣) = ⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩) → (𝜑 → (𝑅‘suc 𝑣) = ⟨(𝐺‘suc 𝑣), (2nd ‘(𝑅‘suc 𝑣))⟩)))
876, 12, 18, 24, 40, 86finds 7904 . 2 (𝐵 ∈ ω → (𝜑 → (𝑅𝐵) = ⟨(𝐺𝐵), (2nd ‘(𝑅𝐵))⟩))
8887impcom 406 1 ((𝜑𝐵 ∈ ω) → (𝑅𝐵) = ⟨(𝐺𝐵), (2nd ‘(𝑅𝐵))⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  Vcvv 3461  c0 4322  cop 4636  cmpt 5232  cres 5680  cima 5681  suc csuc 6373  cfv 6549  (class class class)co 7419  cmpo 7421  ωcom 7871  2nd c2nd 7993  reccrdg 8430   No csur 27618   1s c1s 27802   +s cadds 27922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pr 5429  ax-un 7741
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431
This theorem is referenced by:  noseqrdglem  28228  noseqrdgfn  28229  noseqrdgsuc  28231
  Copyright terms: Public domain W3C validator