MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  om2noseqrdg Structured version   Visualization version   GIF version

Theorem om2noseqrdg 28174
Description: A helper lemma for the value of a recursive definition generator on a surreal sequence with characteristic function 𝐹(𝑥, 𝑦) and initial value 𝐴. (Contributed by Scott Fenton, 18-Apr-2025.)
Hypotheses
Ref Expression
om2noseq.1 (𝜑𝐶 No )
om2noseq.2 (𝜑𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω))
om2noseq.3 (𝜑𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) “ ω))
noseqrdg.1 (𝜑𝐴𝑉)
noseqrdg.2 (𝜑𝑅 = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω))
Assertion
Ref Expression
om2noseqrdg ((𝜑𝐵 ∈ ω) → (𝑅𝐵) = ⟨(𝐺𝐵), (2nd ‘(𝑅𝐵))⟩)
Distinct variable groups:   𝑥,𝐶   𝑥,𝐹,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐶(𝑦)   𝑅(𝑥,𝑦)   𝐺(𝑥,𝑦)   𝑉(𝑥,𝑦)   𝑍(𝑥,𝑦)

Proof of Theorem om2noseqrdg
Dummy variables 𝑧 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6840 . . . . 5 (𝑧 = ∅ → (𝑅𝑧) = (𝑅‘∅))
2 fveq2 6840 . . . . . 6 (𝑧 = ∅ → (𝐺𝑧) = (𝐺‘∅))
3 2fveq3 6845 . . . . . 6 (𝑧 = ∅ → (2nd ‘(𝑅𝑧)) = (2nd ‘(𝑅‘∅)))
42, 3opeq12d 4841 . . . . 5 (𝑧 = ∅ → ⟨(𝐺𝑧), (2nd ‘(𝑅𝑧))⟩ = ⟨(𝐺‘∅), (2nd ‘(𝑅‘∅))⟩)
51, 4eqeq12d 2745 . . . 4 (𝑧 = ∅ → ((𝑅𝑧) = ⟨(𝐺𝑧), (2nd ‘(𝑅𝑧))⟩ ↔ (𝑅‘∅) = ⟨(𝐺‘∅), (2nd ‘(𝑅‘∅))⟩))
65imbi2d 340 . . 3 (𝑧 = ∅ → ((𝜑 → (𝑅𝑧) = ⟨(𝐺𝑧), (2nd ‘(𝑅𝑧))⟩) ↔ (𝜑 → (𝑅‘∅) = ⟨(𝐺‘∅), (2nd ‘(𝑅‘∅))⟩)))
7 fveq2 6840 . . . . 5 (𝑧 = 𝑣 → (𝑅𝑧) = (𝑅𝑣))
8 fveq2 6840 . . . . . 6 (𝑧 = 𝑣 → (𝐺𝑧) = (𝐺𝑣))
9 2fveq3 6845 . . . . . 6 (𝑧 = 𝑣 → (2nd ‘(𝑅𝑧)) = (2nd ‘(𝑅𝑣)))
108, 9opeq12d 4841 . . . . 5 (𝑧 = 𝑣 → ⟨(𝐺𝑧), (2nd ‘(𝑅𝑧))⟩ = ⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩)
117, 10eqeq12d 2745 . . . 4 (𝑧 = 𝑣 → ((𝑅𝑧) = ⟨(𝐺𝑧), (2nd ‘(𝑅𝑧))⟩ ↔ (𝑅𝑣) = ⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩))
1211imbi2d 340 . . 3 (𝑧 = 𝑣 → ((𝜑 → (𝑅𝑧) = ⟨(𝐺𝑧), (2nd ‘(𝑅𝑧))⟩) ↔ (𝜑 → (𝑅𝑣) = ⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩)))
13 fveq2 6840 . . . . 5 (𝑧 = suc 𝑣 → (𝑅𝑧) = (𝑅‘suc 𝑣))
14 fveq2 6840 . . . . . 6 (𝑧 = suc 𝑣 → (𝐺𝑧) = (𝐺‘suc 𝑣))
15 2fveq3 6845 . . . . . 6 (𝑧 = suc 𝑣 → (2nd ‘(𝑅𝑧)) = (2nd ‘(𝑅‘suc 𝑣)))
1614, 15opeq12d 4841 . . . . 5 (𝑧 = suc 𝑣 → ⟨(𝐺𝑧), (2nd ‘(𝑅𝑧))⟩ = ⟨(𝐺‘suc 𝑣), (2nd ‘(𝑅‘suc 𝑣))⟩)
1713, 16eqeq12d 2745 . . . 4 (𝑧 = suc 𝑣 → ((𝑅𝑧) = ⟨(𝐺𝑧), (2nd ‘(𝑅𝑧))⟩ ↔ (𝑅‘suc 𝑣) = ⟨(𝐺‘suc 𝑣), (2nd ‘(𝑅‘suc 𝑣))⟩))
1817imbi2d 340 . . 3 (𝑧 = suc 𝑣 → ((𝜑 → (𝑅𝑧) = ⟨(𝐺𝑧), (2nd ‘(𝑅𝑧))⟩) ↔ (𝜑 → (𝑅‘suc 𝑣) = ⟨(𝐺‘suc 𝑣), (2nd ‘(𝑅‘suc 𝑣))⟩)))
19 fveq2 6840 . . . . 5 (𝑧 = 𝐵 → (𝑅𝑧) = (𝑅𝐵))
20 fveq2 6840 . . . . . 6 (𝑧 = 𝐵 → (𝐺𝑧) = (𝐺𝐵))
21 2fveq3 6845 . . . . . 6 (𝑧 = 𝐵 → (2nd ‘(𝑅𝑧)) = (2nd ‘(𝑅𝐵)))
2220, 21opeq12d 4841 . . . . 5 (𝑧 = 𝐵 → ⟨(𝐺𝑧), (2nd ‘(𝑅𝑧))⟩ = ⟨(𝐺𝐵), (2nd ‘(𝑅𝐵))⟩)
2319, 22eqeq12d 2745 . . . 4 (𝑧 = 𝐵 → ((𝑅𝑧) = ⟨(𝐺𝑧), (2nd ‘(𝑅𝑧))⟩ ↔ (𝑅𝐵) = ⟨(𝐺𝐵), (2nd ‘(𝑅𝐵))⟩))
2423imbi2d 340 . . 3 (𝑧 = 𝐵 → ((𝜑 → (𝑅𝑧) = ⟨(𝐺𝑧), (2nd ‘(𝑅𝑧))⟩) ↔ (𝜑 → (𝑅𝐵) = ⟨(𝐺𝐵), (2nd ‘(𝑅𝐵))⟩)))
25 noseqrdg.2 . . . . . 6 (𝜑𝑅 = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω))
2625fveq1d 6842 . . . . 5 (𝜑 → (𝑅‘∅) = ((rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω)‘∅))
27 opex 5419 . . . . . 6 𝐶, 𝐴⟩ ∈ V
28 fr0g 8381 . . . . . 6 (⟨𝐶, 𝐴⟩ ∈ V → ((rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω)‘∅) = ⟨𝐶, 𝐴⟩)
2927, 28ax-mp 5 . . . . 5 ((rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω)‘∅) = ⟨𝐶, 𝐴
3026, 29eqtrdi 2780 . . . 4 (𝜑 → (𝑅‘∅) = ⟨𝐶, 𝐴⟩)
31 om2noseq.1 . . . . . 6 (𝜑𝐶 No )
32 om2noseq.2 . . . . . 6 (𝜑𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω))
3331, 32om2noseq0 28166 . . . . 5 (𝜑 → (𝐺‘∅) = 𝐶)
3430fveq2d 6844 . . . . . 6 (𝜑 → (2nd ‘(𝑅‘∅)) = (2nd ‘⟨𝐶, 𝐴⟩))
35 noseqrdg.1 . . . . . . 7 (𝜑𝐴𝑉)
36 op2ndg 7960 . . . . . . 7 ((𝐶 No 𝐴𝑉) → (2nd ‘⟨𝐶, 𝐴⟩) = 𝐴)
3731, 35, 36syl2anc 584 . . . . . 6 (𝜑 → (2nd ‘⟨𝐶, 𝐴⟩) = 𝐴)
3834, 37eqtrd 2764 . . . . 5 (𝜑 → (2nd ‘(𝑅‘∅)) = 𝐴)
3933, 38opeq12d 4841 . . . 4 (𝜑 → ⟨(𝐺‘∅), (2nd ‘(𝑅‘∅))⟩ = ⟨𝐶, 𝐴⟩)
4030, 39eqtr4d 2767 . . 3 (𝜑 → (𝑅‘∅) = ⟨(𝐺‘∅), (2nd ‘(𝑅‘∅))⟩)
41 frsuc 8382 . . . . . . . . . . 11 (𝑣 ∈ ω → ((rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω)‘suc 𝑣) = ((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩)‘((rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω)‘𝑣)))
4241adantl 481 . . . . . . . . . 10 ((𝜑𝑣 ∈ ω) → ((rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω)‘suc 𝑣) = ((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩)‘((rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω)‘𝑣)))
4325fveq1d 6842 . . . . . . . . . . 11 (𝜑 → (𝑅‘suc 𝑣) = ((rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω)‘suc 𝑣))
4443adantr 480 . . . . . . . . . 10 ((𝜑𝑣 ∈ ω) → (𝑅‘suc 𝑣) = ((rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω)‘suc 𝑣))
4525fveq1d 6842 . . . . . . . . . . . 12 (𝜑 → (𝑅𝑣) = ((rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω)‘𝑣))
4645fveq2d 6844 . . . . . . . . . . 11 (𝜑 → ((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩)‘(𝑅𝑣)) = ((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩)‘((rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω)‘𝑣)))
4746adantr 480 . . . . . . . . . 10 ((𝜑𝑣 ∈ ω) → ((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩)‘(𝑅𝑣)) = ((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩)‘((rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω)‘𝑣)))
4842, 44, 473eqtr4d 2774 . . . . . . . . 9 ((𝜑𝑣 ∈ ω) → (𝑅‘suc 𝑣) = ((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩)‘(𝑅𝑣)))
4948adantrr 717 . . . . . . . 8 ((𝜑 ∧ (𝑣 ∈ ω ∧ (𝑅𝑣) = ⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩)) → (𝑅‘suc 𝑣) = ((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩)‘(𝑅𝑣)))
50 fveq2 6840 . . . . . . . . . 10 ((𝑅𝑣) = ⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩ → ((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩)‘(𝑅𝑣)) = ((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩)‘⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩))
51 df-ov 7372 . . . . . . . . . . 11 ((𝐺𝑣)(𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩)(2nd ‘(𝑅𝑣))) = ((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩)‘⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩)
52 fvex 6853 . . . . . . . . . . . 12 (𝐺𝑣) ∈ V
53 fvex 6853 . . . . . . . . . . . 12 (2nd ‘(𝑅𝑣)) ∈ V
54 oveq1 7376 . . . . . . . . . . . . . 14 (𝑤 = (𝐺𝑣) → (𝑤 +s 1s ) = ((𝐺𝑣) +s 1s ))
55 oveq1 7376 . . . . . . . . . . . . . 14 (𝑤 = (𝐺𝑣) → (𝑤𝐹𝑧) = ((𝐺𝑣)𝐹𝑧))
5654, 55opeq12d 4841 . . . . . . . . . . . . 13 (𝑤 = (𝐺𝑣) → ⟨(𝑤 +s 1s ), (𝑤𝐹𝑧)⟩ = ⟨((𝐺𝑣) +s 1s ), ((𝐺𝑣)𝐹𝑧)⟩)
57 oveq2 7377 . . . . . . . . . . . . . 14 (𝑧 = (2nd ‘(𝑅𝑣)) → ((𝐺𝑣)𝐹𝑧) = ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣))))
5857opeq2d 4840 . . . . . . . . . . . . 13 (𝑧 = (2nd ‘(𝑅𝑣)) → ⟨((𝐺𝑣) +s 1s ), ((𝐺𝑣)𝐹𝑧)⟩ = ⟨((𝐺𝑣) +s 1s ), ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣)))⟩)
59 oveq1 7376 . . . . . . . . . . . . . . 15 (𝑥 = 𝑤 → (𝑥 +s 1s ) = (𝑤 +s 1s ))
60 oveq1 7376 . . . . . . . . . . . . . . 15 (𝑥 = 𝑤 → (𝑥𝐹𝑦) = (𝑤𝐹𝑦))
6159, 60opeq12d 4841 . . . . . . . . . . . . . 14 (𝑥 = 𝑤 → ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩ = ⟨(𝑤 +s 1s ), (𝑤𝐹𝑦)⟩)
62 oveq2 7377 . . . . . . . . . . . . . . 15 (𝑦 = 𝑧 → (𝑤𝐹𝑦) = (𝑤𝐹𝑧))
6362opeq2d 4840 . . . . . . . . . . . . . 14 (𝑦 = 𝑧 → ⟨(𝑤 +s 1s ), (𝑤𝐹𝑦)⟩ = ⟨(𝑤 +s 1s ), (𝑤𝐹𝑧)⟩)
6461, 63cbvmpov 7464 . . . . . . . . . . . . 13 (𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩) = (𝑤 ∈ V, 𝑧 ∈ V ↦ ⟨(𝑤 +s 1s ), (𝑤𝐹𝑧)⟩)
65 opex 5419 . . . . . . . . . . . . 13 ⟨((𝐺𝑣) +s 1s ), ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣)))⟩ ∈ V
6656, 58, 64, 65ovmpo 7529 . . . . . . . . . . . 12 (((𝐺𝑣) ∈ V ∧ (2nd ‘(𝑅𝑣)) ∈ V) → ((𝐺𝑣)(𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩)(2nd ‘(𝑅𝑣))) = ⟨((𝐺𝑣) +s 1s ), ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣)))⟩)
6752, 53, 66mp2an 692 . . . . . . . . . . 11 ((𝐺𝑣)(𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩)(2nd ‘(𝑅𝑣))) = ⟨((𝐺𝑣) +s 1s ), ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣)))⟩
6851, 67eqtr3i 2754 . . . . . . . . . 10 ((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩)‘⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩) = ⟨((𝐺𝑣) +s 1s ), ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣)))⟩
6950, 68eqtrdi 2780 . . . . . . . . 9 ((𝑅𝑣) = ⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩ → ((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩)‘(𝑅𝑣)) = ⟨((𝐺𝑣) +s 1s ), ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣)))⟩)
7069ad2antll 729 . . . . . . . 8 ((𝜑 ∧ (𝑣 ∈ ω ∧ (𝑅𝑣) = ⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩)) → ((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩)‘(𝑅𝑣)) = ⟨((𝐺𝑣) +s 1s ), ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣)))⟩)
7149, 70eqtrd 2764 . . . . . . 7 ((𝜑 ∧ (𝑣 ∈ ω ∧ (𝑅𝑣) = ⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩)) → (𝑅‘suc 𝑣) = ⟨((𝐺𝑣) +s 1s ), ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣)))⟩)
7231adantr 480 . . . . . . . . . 10 ((𝜑𝑣 ∈ ω) → 𝐶 No )
7332adantr 480 . . . . . . . . . 10 ((𝜑𝑣 ∈ ω) → 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω))
74 simpr 484 . . . . . . . . . 10 ((𝜑𝑣 ∈ ω) → 𝑣 ∈ ω)
7572, 73, 74om2noseqsuc 28167 . . . . . . . . 9 ((𝜑𝑣 ∈ ω) → (𝐺‘suc 𝑣) = ((𝐺𝑣) +s 1s ))
7675adantrr 717 . . . . . . . 8 ((𝜑 ∧ (𝑣 ∈ ω ∧ (𝑅𝑣) = ⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩)) → (𝐺‘suc 𝑣) = ((𝐺𝑣) +s 1s ))
7771fveq2d 6844 . . . . . . . . 9 ((𝜑 ∧ (𝑣 ∈ ω ∧ (𝑅𝑣) = ⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩)) → (2nd ‘(𝑅‘suc 𝑣)) = (2nd ‘⟨((𝐺𝑣) +s 1s ), ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣)))⟩))
78 ovex 7402 . . . . . . . . . 10 ((𝐺𝑣) +s 1s ) ∈ V
79 ovex 7402 . . . . . . . . . 10 ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣))) ∈ V
8078, 79op2nd 7956 . . . . . . . . 9 (2nd ‘⟨((𝐺𝑣) +s 1s ), ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣)))⟩) = ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣)))
8177, 80eqtrdi 2780 . . . . . . . 8 ((𝜑 ∧ (𝑣 ∈ ω ∧ (𝑅𝑣) = ⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩)) → (2nd ‘(𝑅‘suc 𝑣)) = ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣))))
8276, 81opeq12d 4841 . . . . . . 7 ((𝜑 ∧ (𝑣 ∈ ω ∧ (𝑅𝑣) = ⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩)) → ⟨(𝐺‘suc 𝑣), (2nd ‘(𝑅‘suc 𝑣))⟩ = ⟨((𝐺𝑣) +s 1s ), ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣)))⟩)
8371, 82eqtr4d 2767 . . . . . 6 ((𝜑 ∧ (𝑣 ∈ ω ∧ (𝑅𝑣) = ⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩)) → (𝑅‘suc 𝑣) = ⟨(𝐺‘suc 𝑣), (2nd ‘(𝑅‘suc 𝑣))⟩)
8483exp32 420 . . . . 5 (𝜑 → (𝑣 ∈ ω → ((𝑅𝑣) = ⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩ → (𝑅‘suc 𝑣) = ⟨(𝐺‘suc 𝑣), (2nd ‘(𝑅‘suc 𝑣))⟩)))
8584com12 32 . . . 4 (𝑣 ∈ ω → (𝜑 → ((𝑅𝑣) = ⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩ → (𝑅‘suc 𝑣) = ⟨(𝐺‘suc 𝑣), (2nd ‘(𝑅‘suc 𝑣))⟩)))
8685a2d 29 . . 3 (𝑣 ∈ ω → ((𝜑 → (𝑅𝑣) = ⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩) → (𝜑 → (𝑅‘suc 𝑣) = ⟨(𝐺‘suc 𝑣), (2nd ‘(𝑅‘suc 𝑣))⟩)))
876, 12, 18, 24, 40, 86finds 7852 . 2 (𝐵 ∈ ω → (𝜑 → (𝑅𝐵) = ⟨(𝐺𝐵), (2nd ‘(𝑅𝐵))⟩))
8887impcom 407 1 ((𝜑𝐵 ∈ ω) → (𝑅𝐵) = ⟨(𝐺𝐵), (2nd ‘(𝑅𝐵))⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3444  c0 4292  cop 4591  cmpt 5183  cres 5633  cima 5634  suc csuc 6322  cfv 6499  (class class class)co 7369  cmpo 7371  ωcom 7822  2nd c2nd 7946  reccrdg 8354   No csur 27527   1s c1s 27711   +s cadds 27842
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355
This theorem is referenced by:  noseqrdglem  28175  noseqrdgfn  28176  noseqrdgsuc  28178
  Copyright terms: Public domain W3C validator