MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omensuc Structured version   Visualization version   GIF version

Theorem omensuc 9153
Description: The set of natural numbers is equinumerous to its successor. (Contributed by NM, 30-Oct-2003.)
Assertion
Ref Expression
omensuc ω ≈ suc ω

Proof of Theorem omensuc
StepHypRef Expression
1 omex 9140 . 2 ω ∈ V
2 limom 7595 . . 3 Lim ω
32limensuci 8716 . 2 (ω ∈ V → ω ≈ suc ω)
41, 3ax-mp 5 1 ω ≈ suc ω
Colors of variables: wff setvar class
Syntax hints:  wcel 2112  Vcvv 3410   class class class wbr 5033  suc csuc 6172  ωcom 7580  cen 8525
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-sep 5170  ax-nul 5177  ax-pow 5235  ax-pr 5299  ax-un 7460  ax-inf2 9138
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-ral 3076  df-rex 3077  df-rab 3080  df-v 3412  df-sbc 3698  df-csb 3807  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-pss 3878  df-nul 4227  df-if 4422  df-pw 4497  df-sn 4524  df-pr 4526  df-tp 4528  df-op 4530  df-uni 4800  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5431  df-eprel 5436  df-po 5444  df-so 5445  df-fr 5484  df-we 5486  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-ord 6173  df-on 6174  df-lim 6175  df-suc 6176  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-om 7581  df-er 8300  df-en 8529  df-dom 8530
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator