| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > atmod1i2 | Structured version Visualization version GIF version | ||
| Description: Version of modular law pmod1i 39886 that holds in a Hilbert lattice, when one element is an atom. (Contributed by NM, 14-May-2012.) (Revised by Mario Carneiro, 10-May-2013.) |
| Ref | Expression |
|---|---|
| atmod.b | ⊢ 𝐵 = (Base‘𝐾) |
| atmod.l | ⊢ ≤ = (le‘𝐾) |
| atmod.j | ⊢ ∨ = (join‘𝐾) |
| atmod.m | ⊢ ∧ = (meet‘𝐾) |
| atmod.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| Ref | Expression |
|---|---|
| atmod1i2 | ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → (𝑋 ∨ (𝑃 ∧ 𝑌)) = ((𝑋 ∨ 𝑃) ∧ 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝐾 ∈ HL) | |
| 2 | simpr2 1196 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑋 ∈ 𝐵) | |
| 3 | simpr1 1195 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑃 ∈ 𝐴) | |
| 4 | atmod.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
| 5 | atmod.j | . . . . . 6 ⊢ ∨ = (join‘𝐾) | |
| 6 | atmod.a | . . . . . 6 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 7 | eqid 2731 | . . . . . 6 ⊢ (pmap‘𝐾) = (pmap‘𝐾) | |
| 8 | eqid 2731 | . . . . . 6 ⊢ (+𝑃‘𝐾) = (+𝑃‘𝐾) | |
| 9 | 4, 5, 6, 7, 8 | pmapjat1 39891 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → ((pmap‘𝐾)‘(𝑋 ∨ 𝑃)) = (((pmap‘𝐾)‘𝑋)(+𝑃‘𝐾)((pmap‘𝐾)‘𝑃))) |
| 10 | 1, 2, 3, 9 | syl3anc 1373 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((pmap‘𝐾)‘(𝑋 ∨ 𝑃)) = (((pmap‘𝐾)‘𝑋)(+𝑃‘𝐾)((pmap‘𝐾)‘𝑃))) |
| 11 | 4, 6 | atbase 39327 | . . . . . 6 ⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ 𝐵) |
| 12 | 3, 11 | syl 17 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑃 ∈ 𝐵) |
| 13 | simpr3 1197 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑌 ∈ 𝐵) | |
| 14 | atmod.l | . . . . . 6 ⊢ ≤ = (le‘𝐾) | |
| 15 | atmod.m | . . . . . 6 ⊢ ∧ = (meet‘𝐾) | |
| 16 | 4, 14, 5, 15, 7, 8 | hlmod1i 39894 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝑋 ≤ 𝑌 ∧ ((pmap‘𝐾)‘(𝑋 ∨ 𝑃)) = (((pmap‘𝐾)‘𝑋)(+𝑃‘𝐾)((pmap‘𝐾)‘𝑃))) → ((𝑋 ∨ 𝑃) ∧ 𝑌) = (𝑋 ∨ (𝑃 ∧ 𝑌)))) |
| 17 | 1, 2, 12, 13, 16 | syl13anc 1374 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝑋 ≤ 𝑌 ∧ ((pmap‘𝐾)‘(𝑋 ∨ 𝑃)) = (((pmap‘𝐾)‘𝑋)(+𝑃‘𝐾)((pmap‘𝐾)‘𝑃))) → ((𝑋 ∨ 𝑃) ∧ 𝑌) = (𝑋 ∨ (𝑃 ∧ 𝑌)))) |
| 18 | 10, 17 | mpan2d 694 | . . 3 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋 ≤ 𝑌 → ((𝑋 ∨ 𝑃) ∧ 𝑌) = (𝑋 ∨ (𝑃 ∧ 𝑌)))) |
| 19 | 18 | 3impia 1117 | . 2 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → ((𝑋 ∨ 𝑃) ∧ 𝑌) = (𝑋 ∨ (𝑃 ∧ 𝑌))) |
| 20 | 19 | eqcomd 2737 | 1 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → (𝑋 ∨ (𝑃 ∧ 𝑌)) = ((𝑋 ∨ 𝑃) ∧ 𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 class class class wbr 5091 ‘cfv 6481 (class class class)co 7346 Basecbs 17117 lecple 17165 joincjn 18214 meetcmee 18215 Atomscatm 39301 HLchlt 39388 pmapcpmap 39535 +𝑃cpadd 39833 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-iin 4944 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-proset 18197 df-poset 18216 df-plt 18231 df-lub 18247 df-glb 18248 df-join 18249 df-meet 18250 df-p0 18326 df-lat 18335 df-clat 18402 df-oposet 39214 df-ol 39216 df-oml 39217 df-covers 39304 df-ats 39305 df-atl 39336 df-cvlat 39360 df-hlat 39389 df-psubsp 39541 df-pmap 39542 df-padd 39834 |
| This theorem is referenced by: atmod2i2 39900 atmod3i2 39903 atmod4i2 39905 lhpmod2i2 40076 dihmeetlem7N 41348 dihjatc1 41349 |
| Copyright terms: Public domain | W3C validator |