Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atmod1i2 Structured version   Visualization version   GIF version

Theorem atmod1i2 39842
Description: Version of modular law pmod1i 39831 that holds in a Hilbert lattice, when one element is an atom. (Contributed by NM, 14-May-2012.) (Revised by Mario Carneiro, 10-May-2013.)
Hypotheses
Ref Expression
atmod.b 𝐵 = (Base‘𝐾)
atmod.l = (le‘𝐾)
atmod.j = (join‘𝐾)
atmod.m = (meet‘𝐾)
atmod.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
atmod1i2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) → (𝑋 (𝑃 𝑌)) = ((𝑋 𝑃) 𝑌))

Proof of Theorem atmod1i2
StepHypRef Expression
1 simpl 482 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝐵𝑌𝐵)) → 𝐾 ∈ HL)
2 simpr2 1194 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝐵𝑌𝐵)) → 𝑋𝐵)
3 simpr1 1193 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝐵𝑌𝐵)) → 𝑃𝐴)
4 atmod.b . . . . . 6 𝐵 = (Base‘𝐾)
5 atmod.j . . . . . 6 = (join‘𝐾)
6 atmod.a . . . . . 6 𝐴 = (Atoms‘𝐾)
7 eqid 2735 . . . . . 6 (pmap‘𝐾) = (pmap‘𝐾)
8 eqid 2735 . . . . . 6 (+𝑃𝐾) = (+𝑃𝐾)
94, 5, 6, 7, 8pmapjat1 39836 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) → ((pmap‘𝐾)‘(𝑋 𝑃)) = (((pmap‘𝐾)‘𝑋)(+𝑃𝐾)((pmap‘𝐾)‘𝑃)))
101, 2, 3, 9syl3anc 1370 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝐵𝑌𝐵)) → ((pmap‘𝐾)‘(𝑋 𝑃)) = (((pmap‘𝐾)‘𝑋)(+𝑃𝐾)((pmap‘𝐾)‘𝑃)))
114, 6atbase 39271 . . . . . 6 (𝑃𝐴𝑃𝐵)
123, 11syl 17 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝐵𝑌𝐵)) → 𝑃𝐵)
13 simpr3 1195 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝐵𝑌𝐵)) → 𝑌𝐵)
14 atmod.l . . . . . 6 = (le‘𝐾)
15 atmod.m . . . . . 6 = (meet‘𝐾)
164, 14, 5, 15, 7, 8hlmod1i 39839 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐵𝑌𝐵)) → ((𝑋 𝑌 ∧ ((pmap‘𝐾)‘(𝑋 𝑃)) = (((pmap‘𝐾)‘𝑋)(+𝑃𝐾)((pmap‘𝐾)‘𝑃))) → ((𝑋 𝑃) 𝑌) = (𝑋 (𝑃 𝑌))))
171, 2, 12, 13, 16syl13anc 1371 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝐵𝑌𝐵)) → ((𝑋 𝑌 ∧ ((pmap‘𝐾)‘(𝑋 𝑃)) = (((pmap‘𝐾)‘𝑋)(+𝑃𝐾)((pmap‘𝐾)‘𝑃))) → ((𝑋 𝑃) 𝑌) = (𝑋 (𝑃 𝑌))))
1810, 17mpan2d 694 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝐵𝑌𝐵)) → (𝑋 𝑌 → ((𝑋 𝑃) 𝑌) = (𝑋 (𝑃 𝑌))))
19183impia 1116 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) → ((𝑋 𝑃) 𝑌) = (𝑋 (𝑃 𝑌)))
2019eqcomd 2741 1 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) → (𝑋 (𝑃 𝑌)) = ((𝑋 𝑃) 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106   class class class wbr 5148  cfv 6563  (class class class)co 7431  Basecbs 17245  lecple 17305  joincjn 18369  meetcmee 18370  Atomscatm 39245  HLchlt 39332  pmapcpmap 39480  +𝑃cpadd 39778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8013  df-2nd 8014  df-proset 18352  df-poset 18371  df-plt 18388  df-lub 18404  df-glb 18405  df-join 18406  df-meet 18407  df-p0 18483  df-lat 18490  df-clat 18557  df-oposet 39158  df-ol 39160  df-oml 39161  df-covers 39248  df-ats 39249  df-atl 39280  df-cvlat 39304  df-hlat 39333  df-psubsp 39486  df-pmap 39487  df-padd 39779
This theorem is referenced by:  atmod2i2  39845  atmod3i2  39848  atmod4i2  39850  lhpmod2i2  40021  dihmeetlem7N  41293  dihjatc1  41294
  Copyright terms: Public domain W3C validator