| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > atmod1i2 | Structured version Visualization version GIF version | ||
| Description: Version of modular law pmod1i 39967 that holds in a Hilbert lattice, when one element is an atom. (Contributed by NM, 14-May-2012.) (Revised by Mario Carneiro, 10-May-2013.) |
| Ref | Expression |
|---|---|
| atmod.b | ⊢ 𝐵 = (Base‘𝐾) |
| atmod.l | ⊢ ≤ = (le‘𝐾) |
| atmod.j | ⊢ ∨ = (join‘𝐾) |
| atmod.m | ⊢ ∧ = (meet‘𝐾) |
| atmod.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| Ref | Expression |
|---|---|
| atmod1i2 | ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → (𝑋 ∨ (𝑃 ∧ 𝑌)) = ((𝑋 ∨ 𝑃) ∧ 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝐾 ∈ HL) | |
| 2 | simpr2 1196 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑋 ∈ 𝐵) | |
| 3 | simpr1 1195 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑃 ∈ 𝐴) | |
| 4 | atmod.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
| 5 | atmod.j | . . . . . 6 ⊢ ∨ = (join‘𝐾) | |
| 6 | atmod.a | . . . . . 6 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 7 | eqid 2733 | . . . . . 6 ⊢ (pmap‘𝐾) = (pmap‘𝐾) | |
| 8 | eqid 2733 | . . . . . 6 ⊢ (+𝑃‘𝐾) = (+𝑃‘𝐾) | |
| 9 | 4, 5, 6, 7, 8 | pmapjat1 39972 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → ((pmap‘𝐾)‘(𝑋 ∨ 𝑃)) = (((pmap‘𝐾)‘𝑋)(+𝑃‘𝐾)((pmap‘𝐾)‘𝑃))) |
| 10 | 1, 2, 3, 9 | syl3anc 1373 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((pmap‘𝐾)‘(𝑋 ∨ 𝑃)) = (((pmap‘𝐾)‘𝑋)(+𝑃‘𝐾)((pmap‘𝐾)‘𝑃))) |
| 11 | 4, 6 | atbase 39408 | . . . . . 6 ⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ 𝐵) |
| 12 | 3, 11 | syl 17 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑃 ∈ 𝐵) |
| 13 | simpr3 1197 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑌 ∈ 𝐵) | |
| 14 | atmod.l | . . . . . 6 ⊢ ≤ = (le‘𝐾) | |
| 15 | atmod.m | . . . . . 6 ⊢ ∧ = (meet‘𝐾) | |
| 16 | 4, 14, 5, 15, 7, 8 | hlmod1i 39975 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝑋 ≤ 𝑌 ∧ ((pmap‘𝐾)‘(𝑋 ∨ 𝑃)) = (((pmap‘𝐾)‘𝑋)(+𝑃‘𝐾)((pmap‘𝐾)‘𝑃))) → ((𝑋 ∨ 𝑃) ∧ 𝑌) = (𝑋 ∨ (𝑃 ∧ 𝑌)))) |
| 17 | 1, 2, 12, 13, 16 | syl13anc 1374 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝑋 ≤ 𝑌 ∧ ((pmap‘𝐾)‘(𝑋 ∨ 𝑃)) = (((pmap‘𝐾)‘𝑋)(+𝑃‘𝐾)((pmap‘𝐾)‘𝑃))) → ((𝑋 ∨ 𝑃) ∧ 𝑌) = (𝑋 ∨ (𝑃 ∧ 𝑌)))) |
| 18 | 10, 17 | mpan2d 694 | . . 3 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋 ≤ 𝑌 → ((𝑋 ∨ 𝑃) ∧ 𝑌) = (𝑋 ∨ (𝑃 ∧ 𝑌)))) |
| 19 | 18 | 3impia 1117 | . 2 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → ((𝑋 ∨ 𝑃) ∧ 𝑌) = (𝑋 ∨ (𝑃 ∧ 𝑌))) |
| 20 | 19 | eqcomd 2739 | 1 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → (𝑋 ∨ (𝑃 ∧ 𝑌)) = ((𝑋 ∨ 𝑃) ∧ 𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 class class class wbr 5093 ‘cfv 6486 (class class class)co 7352 Basecbs 17122 lecple 17170 joincjn 18219 meetcmee 18220 Atomscatm 39382 HLchlt 39469 pmapcpmap 39616 +𝑃cpadd 39914 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-iin 4944 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-1st 7927 df-2nd 7928 df-proset 18202 df-poset 18221 df-plt 18236 df-lub 18252 df-glb 18253 df-join 18254 df-meet 18255 df-p0 18331 df-lat 18340 df-clat 18407 df-oposet 39295 df-ol 39297 df-oml 39298 df-covers 39385 df-ats 39386 df-atl 39417 df-cvlat 39441 df-hlat 39470 df-psubsp 39622 df-pmap 39623 df-padd 39915 |
| This theorem is referenced by: atmod2i2 39981 atmod3i2 39984 atmod4i2 39986 lhpmod2i2 40157 dihmeetlem7N 41429 dihjatc1 41430 |
| Copyright terms: Public domain | W3C validator |