Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atmod1i2 Structured version   Visualization version   GIF version

Theorem atmod1i2 37800
Description: Version of modular law pmod1i 37789 that holds in a Hilbert lattice, when one element is an atom. (Contributed by NM, 14-May-2012.) (Revised by Mario Carneiro, 10-May-2013.)
Hypotheses
Ref Expression
atmod.b 𝐵 = (Base‘𝐾)
atmod.l = (le‘𝐾)
atmod.j = (join‘𝐾)
atmod.m = (meet‘𝐾)
atmod.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
atmod1i2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) → (𝑋 (𝑃 𝑌)) = ((𝑋 𝑃) 𝑌))

Proof of Theorem atmod1i2
StepHypRef Expression
1 simpl 482 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝐵𝑌𝐵)) → 𝐾 ∈ HL)
2 simpr2 1193 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝐵𝑌𝐵)) → 𝑋𝐵)
3 simpr1 1192 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝐵𝑌𝐵)) → 𝑃𝐴)
4 atmod.b . . . . . 6 𝐵 = (Base‘𝐾)
5 atmod.j . . . . . 6 = (join‘𝐾)
6 atmod.a . . . . . 6 𝐴 = (Atoms‘𝐾)
7 eqid 2738 . . . . . 6 (pmap‘𝐾) = (pmap‘𝐾)
8 eqid 2738 . . . . . 6 (+𝑃𝐾) = (+𝑃𝐾)
94, 5, 6, 7, 8pmapjat1 37794 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) → ((pmap‘𝐾)‘(𝑋 𝑃)) = (((pmap‘𝐾)‘𝑋)(+𝑃𝐾)((pmap‘𝐾)‘𝑃)))
101, 2, 3, 9syl3anc 1369 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝐵𝑌𝐵)) → ((pmap‘𝐾)‘(𝑋 𝑃)) = (((pmap‘𝐾)‘𝑋)(+𝑃𝐾)((pmap‘𝐾)‘𝑃)))
114, 6atbase 37230 . . . . . 6 (𝑃𝐴𝑃𝐵)
123, 11syl 17 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝐵𝑌𝐵)) → 𝑃𝐵)
13 simpr3 1194 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝐵𝑌𝐵)) → 𝑌𝐵)
14 atmod.l . . . . . 6 = (le‘𝐾)
15 atmod.m . . . . . 6 = (meet‘𝐾)
164, 14, 5, 15, 7, 8hlmod1i 37797 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐵𝑌𝐵)) → ((𝑋 𝑌 ∧ ((pmap‘𝐾)‘(𝑋 𝑃)) = (((pmap‘𝐾)‘𝑋)(+𝑃𝐾)((pmap‘𝐾)‘𝑃))) → ((𝑋 𝑃) 𝑌) = (𝑋 (𝑃 𝑌))))
171, 2, 12, 13, 16syl13anc 1370 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝐵𝑌𝐵)) → ((𝑋 𝑌 ∧ ((pmap‘𝐾)‘(𝑋 𝑃)) = (((pmap‘𝐾)‘𝑋)(+𝑃𝐾)((pmap‘𝐾)‘𝑃))) → ((𝑋 𝑃) 𝑌) = (𝑋 (𝑃 𝑌))))
1810, 17mpan2d 690 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝐵𝑌𝐵)) → (𝑋 𝑌 → ((𝑋 𝑃) 𝑌) = (𝑋 (𝑃 𝑌))))
19183impia 1115 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) → ((𝑋 𝑃) 𝑌) = (𝑋 (𝑃 𝑌)))
2019eqcomd 2744 1 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) → (𝑋 (𝑃 𝑌)) = ((𝑋 𝑃) 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108   class class class wbr 5070  cfv 6418  (class class class)co 7255  Basecbs 16840  lecple 16895  joincjn 17944  meetcmee 17945  Atomscatm 37204  HLchlt 37291  pmapcpmap 37438  +𝑃cpadd 37736
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-proset 17928  df-poset 17946  df-plt 17963  df-lub 17979  df-glb 17980  df-join 17981  df-meet 17982  df-p0 18058  df-lat 18065  df-clat 18132  df-oposet 37117  df-ol 37119  df-oml 37120  df-covers 37207  df-ats 37208  df-atl 37239  df-cvlat 37263  df-hlat 37292  df-psubsp 37444  df-pmap 37445  df-padd 37737
This theorem is referenced by:  atmod2i2  37803  atmod3i2  37806  atmod4i2  37808  lhpmod2i2  37979  dihmeetlem7N  39251  dihjatc1  39252
  Copyright terms: Public domain W3C validator