Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atmod1i2 Structured version   Visualization version   GIF version

Theorem atmod1i2 36987
Description: Version of modular law pmod1i 36976 that holds in a Hilbert lattice, when one element is an atom. (Contributed by NM, 14-May-2012.) (Revised by Mario Carneiro, 10-May-2013.)
Hypotheses
Ref Expression
atmod.b 𝐵 = (Base‘𝐾)
atmod.l = (le‘𝐾)
atmod.j = (join‘𝐾)
atmod.m = (meet‘𝐾)
atmod.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
atmod1i2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) → (𝑋 (𝑃 𝑌)) = ((𝑋 𝑃) 𝑌))

Proof of Theorem atmod1i2
StepHypRef Expression
1 simpl 485 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝐵𝑌𝐵)) → 𝐾 ∈ HL)
2 simpr2 1189 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝐵𝑌𝐵)) → 𝑋𝐵)
3 simpr1 1188 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝐵𝑌𝐵)) → 𝑃𝐴)
4 atmod.b . . . . . 6 𝐵 = (Base‘𝐾)
5 atmod.j . . . . . 6 = (join‘𝐾)
6 atmod.a . . . . . 6 𝐴 = (Atoms‘𝐾)
7 eqid 2819 . . . . . 6 (pmap‘𝐾) = (pmap‘𝐾)
8 eqid 2819 . . . . . 6 (+𝑃𝐾) = (+𝑃𝐾)
94, 5, 6, 7, 8pmapjat1 36981 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) → ((pmap‘𝐾)‘(𝑋 𝑃)) = (((pmap‘𝐾)‘𝑋)(+𝑃𝐾)((pmap‘𝐾)‘𝑃)))
101, 2, 3, 9syl3anc 1365 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝐵𝑌𝐵)) → ((pmap‘𝐾)‘(𝑋 𝑃)) = (((pmap‘𝐾)‘𝑋)(+𝑃𝐾)((pmap‘𝐾)‘𝑃)))
114, 6atbase 36417 . . . . . 6 (𝑃𝐴𝑃𝐵)
123, 11syl 17 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝐵𝑌𝐵)) → 𝑃𝐵)
13 simpr3 1190 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝐵𝑌𝐵)) → 𝑌𝐵)
14 atmod.l . . . . . 6 = (le‘𝐾)
15 atmod.m . . . . . 6 = (meet‘𝐾)
164, 14, 5, 15, 7, 8hlmod1i 36984 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐵𝑌𝐵)) → ((𝑋 𝑌 ∧ ((pmap‘𝐾)‘(𝑋 𝑃)) = (((pmap‘𝐾)‘𝑋)(+𝑃𝐾)((pmap‘𝐾)‘𝑃))) → ((𝑋 𝑃) 𝑌) = (𝑋 (𝑃 𝑌))))
171, 2, 12, 13, 16syl13anc 1366 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝐵𝑌𝐵)) → ((𝑋 𝑌 ∧ ((pmap‘𝐾)‘(𝑋 𝑃)) = (((pmap‘𝐾)‘𝑋)(+𝑃𝐾)((pmap‘𝐾)‘𝑃))) → ((𝑋 𝑃) 𝑌) = (𝑋 (𝑃 𝑌))))
1810, 17mpan2d 692 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝐵𝑌𝐵)) → (𝑋 𝑌 → ((𝑋 𝑃) 𝑌) = (𝑋 (𝑃 𝑌))))
19183impia 1111 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) → ((𝑋 𝑃) 𝑌) = (𝑋 (𝑃 𝑌)))
2019eqcomd 2825 1 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) → (𝑋 (𝑃 𝑌)) = ((𝑋 𝑃) 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1081   = wceq 1530  wcel 2107   class class class wbr 5057  cfv 6348  (class class class)co 7148  Basecbs 16475  lecple 16564  joincjn 17546  meetcmee 17547  Atomscatm 36391  HLchlt 36478  pmapcpmap 36625  +𝑃cpadd 36923
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-ral 3141  df-rex 3142  df-reu 3143  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-iun 4912  df-iin 4913  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-1st 7681  df-2nd 7682  df-proset 17530  df-poset 17548  df-plt 17560  df-lub 17576  df-glb 17577  df-join 17578  df-meet 17579  df-p0 17641  df-lat 17648  df-clat 17710  df-oposet 36304  df-ol 36306  df-oml 36307  df-covers 36394  df-ats 36395  df-atl 36426  df-cvlat 36450  df-hlat 36479  df-psubsp 36631  df-pmap 36632  df-padd 36924
This theorem is referenced by:  atmod2i2  36990  atmod3i2  36993  atmod4i2  36995  lhpmod2i2  37166  dihmeetlem7N  38438  dihjatc1  38439
  Copyright terms: Public domain W3C validator