| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > subgdisjb | Structured version Visualization version GIF version | ||
| Description: Vectors belonging to disjoint commuting subgroups are uniquely determined by their sum. Analogous to opth 5461, this theorem shows a way of representing a pair of vectors. (Contributed by NM, 5-Jul-2014.) (Revised by Mario Carneiro, 19-Apr-2016.) |
| Ref | Expression |
|---|---|
| subgdisj.p | ⊢ + = (+g‘𝐺) |
| subgdisj.o | ⊢ 0 = (0g‘𝐺) |
| subgdisj.z | ⊢ 𝑍 = (Cntz‘𝐺) |
| subgdisj.t | ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) |
| subgdisj.u | ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) |
| subgdisj.i | ⊢ (𝜑 → (𝑇 ∩ 𝑈) = { 0 }) |
| subgdisj.s | ⊢ (𝜑 → 𝑇 ⊆ (𝑍‘𝑈)) |
| subgdisj.a | ⊢ (𝜑 → 𝐴 ∈ 𝑇) |
| subgdisj.c | ⊢ (𝜑 → 𝐶 ∈ 𝑇) |
| subgdisj.b | ⊢ (𝜑 → 𝐵 ∈ 𝑈) |
| subgdisj.d | ⊢ (𝜑 → 𝐷 ∈ 𝑈) |
| Ref | Expression |
|---|---|
| subgdisjb | ⊢ (𝜑 → ((𝐴 + 𝐵) = (𝐶 + 𝐷) ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subgdisj.p | . . . . 5 ⊢ + = (+g‘𝐺) | |
| 2 | subgdisj.o | . . . . 5 ⊢ 0 = (0g‘𝐺) | |
| 3 | subgdisj.z | . . . . 5 ⊢ 𝑍 = (Cntz‘𝐺) | |
| 4 | subgdisj.t | . . . . . 6 ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) | |
| 5 | 4 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝐴 + 𝐵) = (𝐶 + 𝐷)) → 𝑇 ∈ (SubGrp‘𝐺)) |
| 6 | subgdisj.u | . . . . . 6 ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) | |
| 7 | 6 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝐴 + 𝐵) = (𝐶 + 𝐷)) → 𝑈 ∈ (SubGrp‘𝐺)) |
| 8 | subgdisj.i | . . . . . 6 ⊢ (𝜑 → (𝑇 ∩ 𝑈) = { 0 }) | |
| 9 | 8 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝐴 + 𝐵) = (𝐶 + 𝐷)) → (𝑇 ∩ 𝑈) = { 0 }) |
| 10 | subgdisj.s | . . . . . 6 ⊢ (𝜑 → 𝑇 ⊆ (𝑍‘𝑈)) | |
| 11 | 10 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝐴 + 𝐵) = (𝐶 + 𝐷)) → 𝑇 ⊆ (𝑍‘𝑈)) |
| 12 | subgdisj.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝑇) | |
| 13 | 12 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝐴 + 𝐵) = (𝐶 + 𝐷)) → 𝐴 ∈ 𝑇) |
| 14 | subgdisj.c | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ 𝑇) | |
| 15 | 14 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝐴 + 𝐵) = (𝐶 + 𝐷)) → 𝐶 ∈ 𝑇) |
| 16 | subgdisj.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ 𝑈) | |
| 17 | 16 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝐴 + 𝐵) = (𝐶 + 𝐷)) → 𝐵 ∈ 𝑈) |
| 18 | subgdisj.d | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ 𝑈) | |
| 19 | 18 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝐴 + 𝐵) = (𝐶 + 𝐷)) → 𝐷 ∈ 𝑈) |
| 20 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ (𝐴 + 𝐵) = (𝐶 + 𝐷)) → (𝐴 + 𝐵) = (𝐶 + 𝐷)) | |
| 21 | 1, 2, 3, 5, 7, 9, 11, 13, 15, 17, 19, 20 | subgdisj1 19676 | . . . 4 ⊢ ((𝜑 ∧ (𝐴 + 𝐵) = (𝐶 + 𝐷)) → 𝐴 = 𝐶) |
| 22 | 1, 2, 3, 5, 7, 9, 11, 13, 15, 17, 19, 20 | subgdisj2 19677 | . . . 4 ⊢ ((𝜑 ∧ (𝐴 + 𝐵) = (𝐶 + 𝐷)) → 𝐵 = 𝐷) |
| 23 | 21, 22 | jca 511 | . . 3 ⊢ ((𝜑 ∧ (𝐴 + 𝐵) = (𝐶 + 𝐷)) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
| 24 | 23 | ex 412 | . 2 ⊢ (𝜑 → ((𝐴 + 𝐵) = (𝐶 + 𝐷) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |
| 25 | oveq12 7421 | . 2 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → (𝐴 + 𝐵) = (𝐶 + 𝐷)) | |
| 26 | 24, 25 | impbid1 225 | 1 ⊢ (𝜑 → ((𝐴 + 𝐵) = (𝐶 + 𝐷) ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∩ cin 3930 ⊆ wss 3931 {csn 4606 ‘cfv 6540 (class class class)co 7412 +gcplusg 17272 0gc0g 17454 SubGrpcsubg 19106 Cntzccntz 19301 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7736 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6493 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7369 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7869 df-1st 7995 df-2nd 7996 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-er 8726 df-en 8967 df-dom 8968 df-sdom 8969 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11475 df-neg 11476 df-nn 12248 df-2 12310 df-sets 17182 df-slot 17200 df-ndx 17212 df-base 17229 df-ress 17252 df-plusg 17285 df-0g 17456 df-mgm 18621 df-sgrp 18700 df-mnd 18716 df-grp 18922 df-minusg 18923 df-sbg 18924 df-subg 19109 df-cntz 19303 |
| This theorem is referenced by: pj1eu 19681 pj1eq 19685 lvecindp2 21108 |
| Copyright terms: Public domain | W3C validator |