MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subgdisjb Structured version   Visualization version   GIF version

Theorem subgdisjb 19623
Description: Vectors belonging to disjoint commuting subgroups are uniquely determined by their sum. Analogous to opth 5436, this theorem shows a way of representing a pair of vectors. (Contributed by NM, 5-Jul-2014.) (Revised by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
subgdisj.p + = (+g𝐺)
subgdisj.o 0 = (0g𝐺)
subgdisj.z 𝑍 = (Cntz‘𝐺)
subgdisj.t (𝜑𝑇 ∈ (SubGrp‘𝐺))
subgdisj.u (𝜑𝑈 ∈ (SubGrp‘𝐺))
subgdisj.i (𝜑 → (𝑇𝑈) = { 0 })
subgdisj.s (𝜑𝑇 ⊆ (𝑍𝑈))
subgdisj.a (𝜑𝐴𝑇)
subgdisj.c (𝜑𝐶𝑇)
subgdisj.b (𝜑𝐵𝑈)
subgdisj.d (𝜑𝐷𝑈)
Assertion
Ref Expression
subgdisjb (𝜑 → ((𝐴 + 𝐵) = (𝐶 + 𝐷) ↔ (𝐴 = 𝐶𝐵 = 𝐷)))

Proof of Theorem subgdisjb
StepHypRef Expression
1 subgdisj.p . . . . 5 + = (+g𝐺)
2 subgdisj.o . . . . 5 0 = (0g𝐺)
3 subgdisj.z . . . . 5 𝑍 = (Cntz‘𝐺)
4 subgdisj.t . . . . . 6 (𝜑𝑇 ∈ (SubGrp‘𝐺))
54adantr 480 . . . . 5 ((𝜑 ∧ (𝐴 + 𝐵) = (𝐶 + 𝐷)) → 𝑇 ∈ (SubGrp‘𝐺))
6 subgdisj.u . . . . . 6 (𝜑𝑈 ∈ (SubGrp‘𝐺))
76adantr 480 . . . . 5 ((𝜑 ∧ (𝐴 + 𝐵) = (𝐶 + 𝐷)) → 𝑈 ∈ (SubGrp‘𝐺))
8 subgdisj.i . . . . . 6 (𝜑 → (𝑇𝑈) = { 0 })
98adantr 480 . . . . 5 ((𝜑 ∧ (𝐴 + 𝐵) = (𝐶 + 𝐷)) → (𝑇𝑈) = { 0 })
10 subgdisj.s . . . . . 6 (𝜑𝑇 ⊆ (𝑍𝑈))
1110adantr 480 . . . . 5 ((𝜑 ∧ (𝐴 + 𝐵) = (𝐶 + 𝐷)) → 𝑇 ⊆ (𝑍𝑈))
12 subgdisj.a . . . . . 6 (𝜑𝐴𝑇)
1312adantr 480 . . . . 5 ((𝜑 ∧ (𝐴 + 𝐵) = (𝐶 + 𝐷)) → 𝐴𝑇)
14 subgdisj.c . . . . . 6 (𝜑𝐶𝑇)
1514adantr 480 . . . . 5 ((𝜑 ∧ (𝐴 + 𝐵) = (𝐶 + 𝐷)) → 𝐶𝑇)
16 subgdisj.b . . . . . 6 (𝜑𝐵𝑈)
1716adantr 480 . . . . 5 ((𝜑 ∧ (𝐴 + 𝐵) = (𝐶 + 𝐷)) → 𝐵𝑈)
18 subgdisj.d . . . . . 6 (𝜑𝐷𝑈)
1918adantr 480 . . . . 5 ((𝜑 ∧ (𝐴 + 𝐵) = (𝐶 + 𝐷)) → 𝐷𝑈)
20 simpr 484 . . . . 5 ((𝜑 ∧ (𝐴 + 𝐵) = (𝐶 + 𝐷)) → (𝐴 + 𝐵) = (𝐶 + 𝐷))
211, 2, 3, 5, 7, 9, 11, 13, 15, 17, 19, 20subgdisj1 19621 . . . 4 ((𝜑 ∧ (𝐴 + 𝐵) = (𝐶 + 𝐷)) → 𝐴 = 𝐶)
221, 2, 3, 5, 7, 9, 11, 13, 15, 17, 19, 20subgdisj2 19622 . . . 4 ((𝜑 ∧ (𝐴 + 𝐵) = (𝐶 + 𝐷)) → 𝐵 = 𝐷)
2321, 22jca 511 . . 3 ((𝜑 ∧ (𝐴 + 𝐵) = (𝐶 + 𝐷)) → (𝐴 = 𝐶𝐵 = 𝐷))
2423ex 412 . 2 (𝜑 → ((𝐴 + 𝐵) = (𝐶 + 𝐷) → (𝐴 = 𝐶𝐵 = 𝐷)))
25 oveq12 7396 . 2 ((𝐴 = 𝐶𝐵 = 𝐷) → (𝐴 + 𝐵) = (𝐶 + 𝐷))
2624, 25impbid1 225 1 (𝜑 → ((𝐴 + 𝐵) = (𝐶 + 𝐷) ↔ (𝐴 = 𝐶𝐵 = 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  cin 3913  wss 3914  {csn 4589  cfv 6511  (class class class)co 7387  +gcplusg 17220  0gc0g 17402  SubGrpcsubg 19052  Cntzccntz 19247
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-0g 17404  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-grp 18868  df-minusg 18869  df-sbg 18870  df-subg 19055  df-cntz 19249
This theorem is referenced by:  pj1eu  19626  pj1eq  19630  lvecindp2  21049
  Copyright terms: Public domain W3C validator