![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > subgdisjb | Structured version Visualization version GIF version |
Description: Vectors belonging to disjoint commuting subgroups are uniquely determined by their sum. Analogous to opth 5490, this theorem shows a way of representing a pair of vectors. (Contributed by NM, 5-Jul-2014.) (Revised by Mario Carneiro, 19-Apr-2016.) |
Ref | Expression |
---|---|
subgdisj.p | ⊢ + = (+g‘𝐺) |
subgdisj.o | ⊢ 0 = (0g‘𝐺) |
subgdisj.z | ⊢ 𝑍 = (Cntz‘𝐺) |
subgdisj.t | ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) |
subgdisj.u | ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) |
subgdisj.i | ⊢ (𝜑 → (𝑇 ∩ 𝑈) = { 0 }) |
subgdisj.s | ⊢ (𝜑 → 𝑇 ⊆ (𝑍‘𝑈)) |
subgdisj.a | ⊢ (𝜑 → 𝐴 ∈ 𝑇) |
subgdisj.c | ⊢ (𝜑 → 𝐶 ∈ 𝑇) |
subgdisj.b | ⊢ (𝜑 → 𝐵 ∈ 𝑈) |
subgdisj.d | ⊢ (𝜑 → 𝐷 ∈ 𝑈) |
Ref | Expression |
---|---|
subgdisjb | ⊢ (𝜑 → ((𝐴 + 𝐵) = (𝐶 + 𝐷) ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subgdisj.p | . . . . 5 ⊢ + = (+g‘𝐺) | |
2 | subgdisj.o | . . . . 5 ⊢ 0 = (0g‘𝐺) | |
3 | subgdisj.z | . . . . 5 ⊢ 𝑍 = (Cntz‘𝐺) | |
4 | subgdisj.t | . . . . . 6 ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) | |
5 | 4 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝐴 + 𝐵) = (𝐶 + 𝐷)) → 𝑇 ∈ (SubGrp‘𝐺)) |
6 | subgdisj.u | . . . . . 6 ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) | |
7 | 6 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝐴 + 𝐵) = (𝐶 + 𝐷)) → 𝑈 ∈ (SubGrp‘𝐺)) |
8 | subgdisj.i | . . . . . 6 ⊢ (𝜑 → (𝑇 ∩ 𝑈) = { 0 }) | |
9 | 8 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝐴 + 𝐵) = (𝐶 + 𝐷)) → (𝑇 ∩ 𝑈) = { 0 }) |
10 | subgdisj.s | . . . . . 6 ⊢ (𝜑 → 𝑇 ⊆ (𝑍‘𝑈)) | |
11 | 10 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝐴 + 𝐵) = (𝐶 + 𝐷)) → 𝑇 ⊆ (𝑍‘𝑈)) |
12 | subgdisj.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝑇) | |
13 | 12 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝐴 + 𝐵) = (𝐶 + 𝐷)) → 𝐴 ∈ 𝑇) |
14 | subgdisj.c | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ 𝑇) | |
15 | 14 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝐴 + 𝐵) = (𝐶 + 𝐷)) → 𝐶 ∈ 𝑇) |
16 | subgdisj.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ 𝑈) | |
17 | 16 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝐴 + 𝐵) = (𝐶 + 𝐷)) → 𝐵 ∈ 𝑈) |
18 | subgdisj.d | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ 𝑈) | |
19 | 18 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝐴 + 𝐵) = (𝐶 + 𝐷)) → 𝐷 ∈ 𝑈) |
20 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ (𝐴 + 𝐵) = (𝐶 + 𝐷)) → (𝐴 + 𝐵) = (𝐶 + 𝐷)) | |
21 | 1, 2, 3, 5, 7, 9, 11, 13, 15, 17, 19, 20 | subgdisj1 19733 | . . . 4 ⊢ ((𝜑 ∧ (𝐴 + 𝐵) = (𝐶 + 𝐷)) → 𝐴 = 𝐶) |
22 | 1, 2, 3, 5, 7, 9, 11, 13, 15, 17, 19, 20 | subgdisj2 19734 | . . . 4 ⊢ ((𝜑 ∧ (𝐴 + 𝐵) = (𝐶 + 𝐷)) → 𝐵 = 𝐷) |
23 | 21, 22 | jca 511 | . . 3 ⊢ ((𝜑 ∧ (𝐴 + 𝐵) = (𝐶 + 𝐷)) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
24 | 23 | ex 412 | . 2 ⊢ (𝜑 → ((𝐴 + 𝐵) = (𝐶 + 𝐷) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |
25 | oveq12 7447 | . 2 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → (𝐴 + 𝐵) = (𝐶 + 𝐷)) | |
26 | 24, 25 | impbid1 225 | 1 ⊢ (𝜑 → ((𝐴 + 𝐵) = (𝐶 + 𝐷) ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∩ cin 3965 ⊆ wss 3966 {csn 4634 ‘cfv 6569 (class class class)co 7438 +gcplusg 17307 0gc0g 17495 SubGrpcsubg 19160 Cntzccntz 19355 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 ax-cnex 11218 ax-resscn 11219 ax-1cn 11220 ax-icn 11221 ax-addcl 11222 ax-addrcl 11223 ax-mulcl 11224 ax-mulrcl 11225 ax-mulcom 11226 ax-addass 11227 ax-mulass 11228 ax-distr 11229 ax-i2m1 11230 ax-1ne0 11231 ax-1rid 11232 ax-rnegex 11233 ax-rrecex 11234 ax-cnre 11235 ax-pre-lttri 11236 ax-pre-lttrn 11237 ax-pre-ltadd 11238 ax-pre-mulgt0 11239 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-pss 3986 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-tr 5269 df-id 5587 df-eprel 5593 df-po 5601 df-so 5602 df-fr 5645 df-we 5647 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-pred 6329 df-ord 6395 df-on 6396 df-lim 6397 df-suc 6398 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-riota 7395 df-ov 7441 df-oprab 7442 df-mpo 7443 df-om 7895 df-1st 8022 df-2nd 8023 df-frecs 8314 df-wrecs 8345 df-recs 8419 df-rdg 8458 df-er 8753 df-en 8994 df-dom 8995 df-sdom 8996 df-pnf 11304 df-mnf 11305 df-xr 11306 df-ltxr 11307 df-le 11308 df-sub 11501 df-neg 11502 df-nn 12274 df-2 12336 df-sets 17207 df-slot 17225 df-ndx 17237 df-base 17255 df-ress 17284 df-plusg 17320 df-0g 17497 df-mgm 18675 df-sgrp 18754 df-mnd 18770 df-grp 18976 df-minusg 18977 df-sbg 18978 df-subg 19163 df-cntz 19357 |
This theorem is referenced by: pj1eu 19738 pj1eq 19742 lvecindp2 21168 |
Copyright terms: Public domain | W3C validator |