MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subgdisjb Structured version   Visualization version   GIF version

Theorem subgdisjb 19214
Description: Vectors belonging to disjoint commuting subgroups are uniquely determined by their sum. Analogous to opth 5385, this theorem shows a way of representing a pair of vectors. (Contributed by NM, 5-Jul-2014.) (Revised by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
subgdisj.p + = (+g𝐺)
subgdisj.o 0 = (0g𝐺)
subgdisj.z 𝑍 = (Cntz‘𝐺)
subgdisj.t (𝜑𝑇 ∈ (SubGrp‘𝐺))
subgdisj.u (𝜑𝑈 ∈ (SubGrp‘𝐺))
subgdisj.i (𝜑 → (𝑇𝑈) = { 0 })
subgdisj.s (𝜑𝑇 ⊆ (𝑍𝑈))
subgdisj.a (𝜑𝐴𝑇)
subgdisj.c (𝜑𝐶𝑇)
subgdisj.b (𝜑𝐵𝑈)
subgdisj.d (𝜑𝐷𝑈)
Assertion
Ref Expression
subgdisjb (𝜑 → ((𝐴 + 𝐵) = (𝐶 + 𝐷) ↔ (𝐴 = 𝐶𝐵 = 𝐷)))

Proof of Theorem subgdisjb
StepHypRef Expression
1 subgdisj.p . . . . 5 + = (+g𝐺)
2 subgdisj.o . . . . 5 0 = (0g𝐺)
3 subgdisj.z . . . . 5 𝑍 = (Cntz‘𝐺)
4 subgdisj.t . . . . . 6 (𝜑𝑇 ∈ (SubGrp‘𝐺))
54adantr 480 . . . . 5 ((𝜑 ∧ (𝐴 + 𝐵) = (𝐶 + 𝐷)) → 𝑇 ∈ (SubGrp‘𝐺))
6 subgdisj.u . . . . . 6 (𝜑𝑈 ∈ (SubGrp‘𝐺))
76adantr 480 . . . . 5 ((𝜑 ∧ (𝐴 + 𝐵) = (𝐶 + 𝐷)) → 𝑈 ∈ (SubGrp‘𝐺))
8 subgdisj.i . . . . . 6 (𝜑 → (𝑇𝑈) = { 0 })
98adantr 480 . . . . 5 ((𝜑 ∧ (𝐴 + 𝐵) = (𝐶 + 𝐷)) → (𝑇𝑈) = { 0 })
10 subgdisj.s . . . . . 6 (𝜑𝑇 ⊆ (𝑍𝑈))
1110adantr 480 . . . . 5 ((𝜑 ∧ (𝐴 + 𝐵) = (𝐶 + 𝐷)) → 𝑇 ⊆ (𝑍𝑈))
12 subgdisj.a . . . . . 6 (𝜑𝐴𝑇)
1312adantr 480 . . . . 5 ((𝜑 ∧ (𝐴 + 𝐵) = (𝐶 + 𝐷)) → 𝐴𝑇)
14 subgdisj.c . . . . . 6 (𝜑𝐶𝑇)
1514adantr 480 . . . . 5 ((𝜑 ∧ (𝐴 + 𝐵) = (𝐶 + 𝐷)) → 𝐶𝑇)
16 subgdisj.b . . . . . 6 (𝜑𝐵𝑈)
1716adantr 480 . . . . 5 ((𝜑 ∧ (𝐴 + 𝐵) = (𝐶 + 𝐷)) → 𝐵𝑈)
18 subgdisj.d . . . . . 6 (𝜑𝐷𝑈)
1918adantr 480 . . . . 5 ((𝜑 ∧ (𝐴 + 𝐵) = (𝐶 + 𝐷)) → 𝐷𝑈)
20 simpr 484 . . . . 5 ((𝜑 ∧ (𝐴 + 𝐵) = (𝐶 + 𝐷)) → (𝐴 + 𝐵) = (𝐶 + 𝐷))
211, 2, 3, 5, 7, 9, 11, 13, 15, 17, 19, 20subgdisj1 19212 . . . 4 ((𝜑 ∧ (𝐴 + 𝐵) = (𝐶 + 𝐷)) → 𝐴 = 𝐶)
221, 2, 3, 5, 7, 9, 11, 13, 15, 17, 19, 20subgdisj2 19213 . . . 4 ((𝜑 ∧ (𝐴 + 𝐵) = (𝐶 + 𝐷)) → 𝐵 = 𝐷)
2321, 22jca 511 . . 3 ((𝜑 ∧ (𝐴 + 𝐵) = (𝐶 + 𝐷)) → (𝐴 = 𝐶𝐵 = 𝐷))
2423ex 412 . 2 (𝜑 → ((𝐴 + 𝐵) = (𝐶 + 𝐷) → (𝐴 = 𝐶𝐵 = 𝐷)))
25 oveq12 7264 . 2 ((𝐴 = 𝐶𝐵 = 𝐷) → (𝐴 + 𝐵) = (𝐶 + 𝐷))
2624, 25impbid1 224 1 (𝜑 → ((𝐴 + 𝐵) = (𝐶 + 𝐷) ↔ (𝐴 = 𝐶𝐵 = 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  cin 3882  wss 3883  {csn 4558  cfv 6418  (class class class)co 7255  +gcplusg 16888  0gc0g 17067  SubGrpcsubg 18664  Cntzccntz 18836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-minusg 18496  df-sbg 18497  df-subg 18667  df-cntz 18838
This theorem is referenced by:  pj1eu  19217  pj1eq  19221  lvecindp2  20316
  Copyright terms: Public domain W3C validator