Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > subgdisjb | Structured version Visualization version GIF version |
Description: Vectors belonging to disjoint commuting subgroups are uniquely determined by their sum. Analogous to opth 5395, this theorem shows a way of representing a pair of vectors. (Contributed by NM, 5-Jul-2014.) (Revised by Mario Carneiro, 19-Apr-2016.) |
Ref | Expression |
---|---|
subgdisj.p | ⊢ + = (+g‘𝐺) |
subgdisj.o | ⊢ 0 = (0g‘𝐺) |
subgdisj.z | ⊢ 𝑍 = (Cntz‘𝐺) |
subgdisj.t | ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) |
subgdisj.u | ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) |
subgdisj.i | ⊢ (𝜑 → (𝑇 ∩ 𝑈) = { 0 }) |
subgdisj.s | ⊢ (𝜑 → 𝑇 ⊆ (𝑍‘𝑈)) |
subgdisj.a | ⊢ (𝜑 → 𝐴 ∈ 𝑇) |
subgdisj.c | ⊢ (𝜑 → 𝐶 ∈ 𝑇) |
subgdisj.b | ⊢ (𝜑 → 𝐵 ∈ 𝑈) |
subgdisj.d | ⊢ (𝜑 → 𝐷 ∈ 𝑈) |
Ref | Expression |
---|---|
subgdisjb | ⊢ (𝜑 → ((𝐴 + 𝐵) = (𝐶 + 𝐷) ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subgdisj.p | . . . . 5 ⊢ + = (+g‘𝐺) | |
2 | subgdisj.o | . . . . 5 ⊢ 0 = (0g‘𝐺) | |
3 | subgdisj.z | . . . . 5 ⊢ 𝑍 = (Cntz‘𝐺) | |
4 | subgdisj.t | . . . . . 6 ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) | |
5 | 4 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ (𝐴 + 𝐵) = (𝐶 + 𝐷)) → 𝑇 ∈ (SubGrp‘𝐺)) |
6 | subgdisj.u | . . . . . 6 ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) | |
7 | 6 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ (𝐴 + 𝐵) = (𝐶 + 𝐷)) → 𝑈 ∈ (SubGrp‘𝐺)) |
8 | subgdisj.i | . . . . . 6 ⊢ (𝜑 → (𝑇 ∩ 𝑈) = { 0 }) | |
9 | 8 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ (𝐴 + 𝐵) = (𝐶 + 𝐷)) → (𝑇 ∩ 𝑈) = { 0 }) |
10 | subgdisj.s | . . . . . 6 ⊢ (𝜑 → 𝑇 ⊆ (𝑍‘𝑈)) | |
11 | 10 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ (𝐴 + 𝐵) = (𝐶 + 𝐷)) → 𝑇 ⊆ (𝑍‘𝑈)) |
12 | subgdisj.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝑇) | |
13 | 12 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ (𝐴 + 𝐵) = (𝐶 + 𝐷)) → 𝐴 ∈ 𝑇) |
14 | subgdisj.c | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ 𝑇) | |
15 | 14 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ (𝐴 + 𝐵) = (𝐶 + 𝐷)) → 𝐶 ∈ 𝑇) |
16 | subgdisj.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ 𝑈) | |
17 | 16 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ (𝐴 + 𝐵) = (𝐶 + 𝐷)) → 𝐵 ∈ 𝑈) |
18 | subgdisj.d | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ 𝑈) | |
19 | 18 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ (𝐴 + 𝐵) = (𝐶 + 𝐷)) → 𝐷 ∈ 𝑈) |
20 | simpr 485 | . . . . 5 ⊢ ((𝜑 ∧ (𝐴 + 𝐵) = (𝐶 + 𝐷)) → (𝐴 + 𝐵) = (𝐶 + 𝐷)) | |
21 | 1, 2, 3, 5, 7, 9, 11, 13, 15, 17, 19, 20 | subgdisj1 19295 | . . . 4 ⊢ ((𝜑 ∧ (𝐴 + 𝐵) = (𝐶 + 𝐷)) → 𝐴 = 𝐶) |
22 | 1, 2, 3, 5, 7, 9, 11, 13, 15, 17, 19, 20 | subgdisj2 19296 | . . . 4 ⊢ ((𝜑 ∧ (𝐴 + 𝐵) = (𝐶 + 𝐷)) → 𝐵 = 𝐷) |
23 | 21, 22 | jca 512 | . . 3 ⊢ ((𝜑 ∧ (𝐴 + 𝐵) = (𝐶 + 𝐷)) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
24 | 23 | ex 413 | . 2 ⊢ (𝜑 → ((𝐴 + 𝐵) = (𝐶 + 𝐷) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |
25 | oveq12 7280 | . 2 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → (𝐴 + 𝐵) = (𝐶 + 𝐷)) | |
26 | 24, 25 | impbid1 224 | 1 ⊢ (𝜑 → ((𝐴 + 𝐵) = (𝐶 + 𝐷) ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1542 ∈ wcel 2110 ∩ cin 3891 ⊆ wss 3892 {csn 4567 ‘cfv 6432 (class class class)co 7271 +gcplusg 16960 0gc0g 17148 SubGrpcsubg 18747 Cntzccntz 18919 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 ax-cnex 10928 ax-resscn 10929 ax-1cn 10930 ax-icn 10931 ax-addcl 10932 ax-addrcl 10933 ax-mulcl 10934 ax-mulrcl 10935 ax-mulcom 10936 ax-addass 10937 ax-mulass 10938 ax-distr 10939 ax-i2m1 10940 ax-1ne0 10941 ax-1rid 10942 ax-rnegex 10943 ax-rrecex 10944 ax-cnre 10945 ax-pre-lttri 10946 ax-pre-lttrn 10947 ax-pre-ltadd 10948 ax-pre-mulgt0 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6201 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-riota 7228 df-ov 7274 df-oprab 7275 df-mpo 7276 df-om 7707 df-1st 7824 df-2nd 7825 df-frecs 8088 df-wrecs 8119 df-recs 8193 df-rdg 8232 df-er 8481 df-en 8717 df-dom 8718 df-sdom 8719 df-pnf 11012 df-mnf 11013 df-xr 11014 df-ltxr 11015 df-le 11016 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-sets 16863 df-slot 16881 df-ndx 16893 df-base 16911 df-ress 16940 df-plusg 16973 df-0g 17150 df-mgm 18324 df-sgrp 18373 df-mnd 18384 df-grp 18578 df-minusg 18579 df-sbg 18580 df-subg 18750 df-cntz 18921 |
This theorem is referenced by: pj1eu 19300 pj1eq 19304 lvecindp2 20399 |
Copyright terms: Public domain | W3C validator |