| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pj1f | Structured version Visualization version GIF version | ||
| Description: The left projection function maps a direct subspace sum onto the left factor. (Contributed by Mario Carneiro, 15-Oct-2015.) |
| Ref | Expression |
|---|---|
| pj1eu.a | ⊢ + = (+g‘𝐺) |
| pj1eu.s | ⊢ ⊕ = (LSSum‘𝐺) |
| pj1eu.o | ⊢ 0 = (0g‘𝐺) |
| pj1eu.z | ⊢ 𝑍 = (Cntz‘𝐺) |
| pj1eu.2 | ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) |
| pj1eu.3 | ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) |
| pj1eu.4 | ⊢ (𝜑 → (𝑇 ∩ 𝑈) = { 0 }) |
| pj1eu.5 | ⊢ (𝜑 → 𝑇 ⊆ (𝑍‘𝑈)) |
| pj1f.p | ⊢ 𝑃 = (proj1‘𝐺) |
| Ref | Expression |
|---|---|
| pj1f | ⊢ (𝜑 → (𝑇𝑃𝑈):(𝑇 ⊕ 𝑈)⟶𝑇) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pj1eu.2 | . . . 4 ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) | |
| 2 | subgrcl 19101 | . . . 4 ⊢ (𝑇 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) | |
| 3 | 1, 2 | syl 17 | . . 3 ⊢ (𝜑 → 𝐺 ∈ Grp) |
| 4 | eqid 2734 | . . . . 5 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 5 | 4 | subgss 19097 | . . . 4 ⊢ (𝑇 ∈ (SubGrp‘𝐺) → 𝑇 ⊆ (Base‘𝐺)) |
| 6 | 1, 5 | syl 17 | . . 3 ⊢ (𝜑 → 𝑇 ⊆ (Base‘𝐺)) |
| 7 | pj1eu.3 | . . . 4 ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) | |
| 8 | 4 | subgss 19097 | . . . 4 ⊢ (𝑈 ∈ (SubGrp‘𝐺) → 𝑈 ⊆ (Base‘𝐺)) |
| 9 | 7, 8 | syl 17 | . . 3 ⊢ (𝜑 → 𝑈 ⊆ (Base‘𝐺)) |
| 10 | pj1eu.a | . . . 4 ⊢ + = (+g‘𝐺) | |
| 11 | pj1eu.s | . . . 4 ⊢ ⊕ = (LSSum‘𝐺) | |
| 12 | pj1f.p | . . . 4 ⊢ 𝑃 = (proj1‘𝐺) | |
| 13 | 4, 10, 11, 12 | pj1fval 19662 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑇 ⊆ (Base‘𝐺) ∧ 𝑈 ⊆ (Base‘𝐺)) → (𝑇𝑃𝑈) = (𝑧 ∈ (𝑇 ⊕ 𝑈) ↦ (℩𝑥 ∈ 𝑇 ∃𝑦 ∈ 𝑈 𝑧 = (𝑥 + 𝑦)))) |
| 14 | 3, 6, 9, 13 | syl3anc 1372 | . 2 ⊢ (𝜑 → (𝑇𝑃𝑈) = (𝑧 ∈ (𝑇 ⊕ 𝑈) ↦ (℩𝑥 ∈ 𝑇 ∃𝑦 ∈ 𝑈 𝑧 = (𝑥 + 𝑦)))) |
| 15 | pj1eu.o | . . . 4 ⊢ 0 = (0g‘𝐺) | |
| 16 | pj1eu.z | . . . 4 ⊢ 𝑍 = (Cntz‘𝐺) | |
| 17 | pj1eu.4 | . . . 4 ⊢ (𝜑 → (𝑇 ∩ 𝑈) = { 0 }) | |
| 18 | pj1eu.5 | . . . 4 ⊢ (𝜑 → 𝑇 ⊆ (𝑍‘𝑈)) | |
| 19 | 10, 11, 15, 16, 1, 7, 17, 18 | pj1eu 19664 | . . 3 ⊢ ((𝜑 ∧ 𝑧 ∈ (𝑇 ⊕ 𝑈)) → ∃!𝑥 ∈ 𝑇 ∃𝑦 ∈ 𝑈 𝑧 = (𝑥 + 𝑦)) |
| 20 | riotacl 7374 | . . 3 ⊢ (∃!𝑥 ∈ 𝑇 ∃𝑦 ∈ 𝑈 𝑧 = (𝑥 + 𝑦) → (℩𝑥 ∈ 𝑇 ∃𝑦 ∈ 𝑈 𝑧 = (𝑥 + 𝑦)) ∈ 𝑇) | |
| 21 | 19, 20 | syl 17 | . 2 ⊢ ((𝜑 ∧ 𝑧 ∈ (𝑇 ⊕ 𝑈)) → (℩𝑥 ∈ 𝑇 ∃𝑦 ∈ 𝑈 𝑧 = (𝑥 + 𝑦)) ∈ 𝑇) |
| 22 | 14, 21 | fmpt3d 7103 | 1 ⊢ (𝜑 → (𝑇𝑃𝑈):(𝑇 ⊕ 𝑈)⟶𝑇) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∃wrex 3059 ∃!wreu 3355 ∩ cin 3923 ⊆ wss 3924 {csn 4599 ↦ cmpt 5199 ⟶wf 6524 ‘cfv 6528 ℩crio 7356 (class class class)co 7400 Basecbs 17215 +gcplusg 17258 0gc0g 17440 Grpcgrp 18903 SubGrpcsubg 19090 Cntzccntz 19285 LSSumclsm 19602 proj1cpj1 19603 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5247 ax-sep 5264 ax-nul 5274 ax-pow 5333 ax-pr 5400 ax-un 7724 ax-cnex 11178 ax-resscn 11179 ax-1cn 11180 ax-icn 11181 ax-addcl 11182 ax-addrcl 11183 ax-mulcl 11184 ax-mulrcl 11185 ax-mulcom 11186 ax-addass 11187 ax-mulass 11188 ax-distr 11189 ax-i2m1 11190 ax-1ne0 11191 ax-1rid 11192 ax-rnegex 11193 ax-rrecex 11194 ax-cnre 11195 ax-pre-lttri 11196 ax-pre-lttrn 11197 ax-pre-ltadd 11198 ax-pre-mulgt0 11199 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3357 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4882 df-iun 4967 df-br 5118 df-opab 5180 df-mpt 5200 df-tr 5228 df-id 5546 df-eprel 5551 df-po 5559 df-so 5560 df-fr 5604 df-we 5606 df-xp 5658 df-rel 5659 df-cnv 5660 df-co 5661 df-dm 5662 df-rn 5663 df-res 5664 df-ima 5665 df-pred 6288 df-ord 6353 df-on 6354 df-lim 6355 df-suc 6356 df-iota 6481 df-fun 6530 df-fn 6531 df-f 6532 df-f1 6533 df-fo 6534 df-f1o 6535 df-fv 6536 df-riota 7357 df-ov 7403 df-oprab 7404 df-mpo 7405 df-om 7857 df-1st 7983 df-2nd 7984 df-frecs 8275 df-wrecs 8306 df-recs 8380 df-rdg 8419 df-er 8714 df-en 8955 df-dom 8956 df-sdom 8957 df-pnf 11264 df-mnf 11265 df-xr 11266 df-ltxr 11267 df-le 11268 df-sub 11461 df-neg 11462 df-nn 12234 df-2 12296 df-sets 17170 df-slot 17188 df-ndx 17200 df-base 17216 df-ress 17239 df-plusg 17271 df-0g 17442 df-mgm 18605 df-sgrp 18684 df-mnd 18700 df-grp 18906 df-minusg 18907 df-sbg 18908 df-subg 19093 df-cntz 19287 df-lsm 19604 df-pj1 19605 |
| This theorem is referenced by: pj2f 19666 pj1id 19667 pj1eq 19668 pj1ghm 19671 pj1ghm2 19672 lsmhash 19673 dpjf 20027 pj1lmhm 21045 pj1lmhm2 21046 pjdm2 21658 pjf2 21661 |
| Copyright terms: Public domain | W3C validator |