MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pj1f Structured version   Visualization version   GIF version

Theorem pj1f 19610
Description: The left projection function maps a direct subspace sum onto the left factor. (Contributed by Mario Carneiro, 15-Oct-2015.)
Hypotheses
Ref Expression
pj1eu.a + = (+g𝐺)
pj1eu.s = (LSSum‘𝐺)
pj1eu.o 0 = (0g𝐺)
pj1eu.z 𝑍 = (Cntz‘𝐺)
pj1eu.2 (𝜑𝑇 ∈ (SubGrp‘𝐺))
pj1eu.3 (𝜑𝑈 ∈ (SubGrp‘𝐺))
pj1eu.4 (𝜑 → (𝑇𝑈) = { 0 })
pj1eu.5 (𝜑𝑇 ⊆ (𝑍𝑈))
pj1f.p 𝑃 = (proj1𝐺)
Assertion
Ref Expression
pj1f (𝜑 → (𝑇𝑃𝑈):(𝑇 𝑈)⟶𝑇)

Proof of Theorem pj1f
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pj1eu.2 . . . 4 (𝜑𝑇 ∈ (SubGrp‘𝐺))
2 subgrcl 19044 . . . 4 (𝑇 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
31, 2syl 17 . . 3 (𝜑𝐺 ∈ Grp)
4 eqid 2731 . . . . 5 (Base‘𝐺) = (Base‘𝐺)
54subgss 19040 . . . 4 (𝑇 ∈ (SubGrp‘𝐺) → 𝑇 ⊆ (Base‘𝐺))
61, 5syl 17 . . 3 (𝜑𝑇 ⊆ (Base‘𝐺))
7 pj1eu.3 . . . 4 (𝜑𝑈 ∈ (SubGrp‘𝐺))
84subgss 19040 . . . 4 (𝑈 ∈ (SubGrp‘𝐺) → 𝑈 ⊆ (Base‘𝐺))
97, 8syl 17 . . 3 (𝜑𝑈 ⊆ (Base‘𝐺))
10 pj1eu.a . . . 4 + = (+g𝐺)
11 pj1eu.s . . . 4 = (LSSum‘𝐺)
12 pj1f.p . . . 4 𝑃 = (proj1𝐺)
134, 10, 11, 12pj1fval 19607 . . 3 ((𝐺 ∈ Grp ∧ 𝑇 ⊆ (Base‘𝐺) ∧ 𝑈 ⊆ (Base‘𝐺)) → (𝑇𝑃𝑈) = (𝑧 ∈ (𝑇 𝑈) ↦ (𝑥𝑇𝑦𝑈 𝑧 = (𝑥 + 𝑦))))
143, 6, 9, 13syl3anc 1373 . 2 (𝜑 → (𝑇𝑃𝑈) = (𝑧 ∈ (𝑇 𝑈) ↦ (𝑥𝑇𝑦𝑈 𝑧 = (𝑥 + 𝑦))))
15 pj1eu.o . . . 4 0 = (0g𝐺)
16 pj1eu.z . . . 4 𝑍 = (Cntz‘𝐺)
17 pj1eu.4 . . . 4 (𝜑 → (𝑇𝑈) = { 0 })
18 pj1eu.5 . . . 4 (𝜑𝑇 ⊆ (𝑍𝑈))
1910, 11, 15, 16, 1, 7, 17, 18pj1eu 19609 . . 3 ((𝜑𝑧 ∈ (𝑇 𝑈)) → ∃!𝑥𝑇𝑦𝑈 𝑧 = (𝑥 + 𝑦))
20 riotacl 7320 . . 3 (∃!𝑥𝑇𝑦𝑈 𝑧 = (𝑥 + 𝑦) → (𝑥𝑇𝑦𝑈 𝑧 = (𝑥 + 𝑦)) ∈ 𝑇)
2119, 20syl 17 . 2 ((𝜑𝑧 ∈ (𝑇 𝑈)) → (𝑥𝑇𝑦𝑈 𝑧 = (𝑥 + 𝑦)) ∈ 𝑇)
2214, 21fmpt3d 7049 1 (𝜑 → (𝑇𝑃𝑈):(𝑇 𝑈)⟶𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wrex 3056  ∃!wreu 3344  cin 3901  wss 3902  {csn 4576  cmpt 5172  wf 6477  cfv 6481  crio 7302  (class class class)co 7346  Basecbs 17120  +gcplusg 17161  0gc0g 17343  Grpcgrp 18846  SubGrpcsubg 19033  Cntzccntz 19228  LSSumclsm 19547  proj1cpj1 19548
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-0g 17345  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-grp 18849  df-minusg 18850  df-sbg 18851  df-subg 19036  df-cntz 19230  df-lsm 19549  df-pj1 19550
This theorem is referenced by:  pj2f  19611  pj1id  19612  pj1eq  19613  pj1ghm  19616  pj1ghm2  19617  lsmhash  19618  dpjf  19972  pj1lmhm  21035  pj1lmhm2  21036  pjdm2  21649  pjf2  21652
  Copyright terms: Public domain W3C validator