MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pj1f Structured version   Visualization version   GIF version

Theorem pj1f 19633
Description: The left projection function maps a direct subspace sum onto the left factor. (Contributed by Mario Carneiro, 15-Oct-2015.)
Hypotheses
Ref Expression
pj1eu.a + = (+g𝐺)
pj1eu.s = (LSSum‘𝐺)
pj1eu.o 0 = (0g𝐺)
pj1eu.z 𝑍 = (Cntz‘𝐺)
pj1eu.2 (𝜑𝑇 ∈ (SubGrp‘𝐺))
pj1eu.3 (𝜑𝑈 ∈ (SubGrp‘𝐺))
pj1eu.4 (𝜑 → (𝑇𝑈) = { 0 })
pj1eu.5 (𝜑𝑇 ⊆ (𝑍𝑈))
pj1f.p 𝑃 = (proj1𝐺)
Assertion
Ref Expression
pj1f (𝜑 → (𝑇𝑃𝑈):(𝑇 𝑈)⟶𝑇)

Proof of Theorem pj1f
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pj1eu.2 . . . 4 (𝜑𝑇 ∈ (SubGrp‘𝐺))
2 subgrcl 19069 . . . 4 (𝑇 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
31, 2syl 17 . . 3 (𝜑𝐺 ∈ Grp)
4 eqid 2730 . . . . 5 (Base‘𝐺) = (Base‘𝐺)
54subgss 19065 . . . 4 (𝑇 ∈ (SubGrp‘𝐺) → 𝑇 ⊆ (Base‘𝐺))
61, 5syl 17 . . 3 (𝜑𝑇 ⊆ (Base‘𝐺))
7 pj1eu.3 . . . 4 (𝜑𝑈 ∈ (SubGrp‘𝐺))
84subgss 19065 . . . 4 (𝑈 ∈ (SubGrp‘𝐺) → 𝑈 ⊆ (Base‘𝐺))
97, 8syl 17 . . 3 (𝜑𝑈 ⊆ (Base‘𝐺))
10 pj1eu.a . . . 4 + = (+g𝐺)
11 pj1eu.s . . . 4 = (LSSum‘𝐺)
12 pj1f.p . . . 4 𝑃 = (proj1𝐺)
134, 10, 11, 12pj1fval 19630 . . 3 ((𝐺 ∈ Grp ∧ 𝑇 ⊆ (Base‘𝐺) ∧ 𝑈 ⊆ (Base‘𝐺)) → (𝑇𝑃𝑈) = (𝑧 ∈ (𝑇 𝑈) ↦ (𝑥𝑇𝑦𝑈 𝑧 = (𝑥 + 𝑦))))
143, 6, 9, 13syl3anc 1373 . 2 (𝜑 → (𝑇𝑃𝑈) = (𝑧 ∈ (𝑇 𝑈) ↦ (𝑥𝑇𝑦𝑈 𝑧 = (𝑥 + 𝑦))))
15 pj1eu.o . . . 4 0 = (0g𝐺)
16 pj1eu.z . . . 4 𝑍 = (Cntz‘𝐺)
17 pj1eu.4 . . . 4 (𝜑 → (𝑇𝑈) = { 0 })
18 pj1eu.5 . . . 4 (𝜑𝑇 ⊆ (𝑍𝑈))
1910, 11, 15, 16, 1, 7, 17, 18pj1eu 19632 . . 3 ((𝜑𝑧 ∈ (𝑇 𝑈)) → ∃!𝑥𝑇𝑦𝑈 𝑧 = (𝑥 + 𝑦))
20 riotacl 7368 . . 3 (∃!𝑥𝑇𝑦𝑈 𝑧 = (𝑥 + 𝑦) → (𝑥𝑇𝑦𝑈 𝑧 = (𝑥 + 𝑦)) ∈ 𝑇)
2119, 20syl 17 . 2 ((𝜑𝑧 ∈ (𝑇 𝑈)) → (𝑥𝑇𝑦𝑈 𝑧 = (𝑥 + 𝑦)) ∈ 𝑇)
2214, 21fmpt3d 7095 1 (𝜑 → (𝑇𝑃𝑈):(𝑇 𝑈)⟶𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wrex 3055  ∃!wreu 3355  cin 3921  wss 3922  {csn 4597  cmpt 5196  wf 6515  cfv 6519  crio 7350  (class class class)co 7394  Basecbs 17185  +gcplusg 17226  0gc0g 17408  Grpcgrp 18871  SubGrpcsubg 19058  Cntzccntz 19253  LSSumclsm 19570  proj1cpj1 19571
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5242  ax-sep 5259  ax-nul 5269  ax-pow 5328  ax-pr 5395  ax-un 7718  ax-cnex 11142  ax-resscn 11143  ax-1cn 11144  ax-icn 11145  ax-addcl 11146  ax-addrcl 11147  ax-mulcl 11148  ax-mulrcl 11149  ax-mulcom 11150  ax-addass 11151  ax-mulass 11152  ax-distr 11153  ax-i2m1 11154  ax-1ne0 11155  ax-1rid 11156  ax-rnegex 11157  ax-rrecex 11158  ax-cnre 11159  ax-pre-lttri 11160  ax-pre-lttrn 11161  ax-pre-ltadd 11162  ax-pre-mulgt0 11163
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-nel 3032  df-ral 3047  df-rex 3056  df-rmo 3357  df-reu 3358  df-rab 3412  df-v 3457  df-sbc 3762  df-csb 3871  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-pss 3942  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-iun 4965  df-br 5116  df-opab 5178  df-mpt 5197  df-tr 5223  df-id 5541  df-eprel 5546  df-po 5554  df-so 5555  df-fr 5599  df-we 5601  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-pred 6282  df-ord 6343  df-on 6344  df-lim 6345  df-suc 6346  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-f1 6524  df-fo 6525  df-f1o 6526  df-fv 6527  df-riota 7351  df-ov 7397  df-oprab 7398  df-mpo 7399  df-om 7851  df-1st 7977  df-2nd 7978  df-frecs 8269  df-wrecs 8300  df-recs 8349  df-rdg 8387  df-er 8682  df-en 8923  df-dom 8924  df-sdom 8925  df-pnf 11228  df-mnf 11229  df-xr 11230  df-ltxr 11231  df-le 11232  df-sub 11425  df-neg 11426  df-nn 12198  df-2 12260  df-sets 17140  df-slot 17158  df-ndx 17170  df-base 17186  df-ress 17207  df-plusg 17239  df-0g 17410  df-mgm 18573  df-sgrp 18652  df-mnd 18668  df-grp 18874  df-minusg 18875  df-sbg 18876  df-subg 19061  df-cntz 19255  df-lsm 19572  df-pj1 19573
This theorem is referenced by:  pj2f  19634  pj1id  19635  pj1eq  19636  pj1ghm  19639  pj1ghm2  19640  lsmhash  19641  dpjf  19995  pj1lmhm  21013  pj1lmhm2  21014  pjdm2  21626  pjf2  21629
  Copyright terms: Public domain W3C validator