Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hlrelat Structured version   Visualization version   GIF version

Theorem hlrelat 38785
Description: A Hilbert lattice is relatively atomic. Remark 2 of [Kalmbach] p. 149. (chrelati 32121 analog.) (Contributed by NM, 4-Feb-2012.)
Hypotheses
Ref Expression
hlrelat5.b 𝐡 = (Baseβ€˜πΎ)
hlrelat5.l ≀ = (leβ€˜πΎ)
hlrelat5.s < = (ltβ€˜πΎ)
hlrelat5.j ∨ = (joinβ€˜πΎ)
hlrelat5.a 𝐴 = (Atomsβ€˜πΎ)
Assertion
Ref Expression
hlrelat (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ 𝑋 < π‘Œ) β†’ βˆƒπ‘ ∈ 𝐴 (𝑋 < (𝑋 ∨ 𝑝) ∧ (𝑋 ∨ 𝑝) ≀ π‘Œ))
Distinct variable groups:   𝐴,𝑝   𝐡,𝑝   𝐾,𝑝   ≀ ,𝑝   𝑋,𝑝   π‘Œ,𝑝   < ,𝑝
Allowed substitution hint:   ∨ (𝑝)

Proof of Theorem hlrelat
StepHypRef Expression
1 hlrelat5.b . . . 4 𝐡 = (Baseβ€˜πΎ)
2 hlrelat5.l . . . 4 ≀ = (leβ€˜πΎ)
3 hlrelat5.s . . . 4 < = (ltβ€˜πΎ)
4 hlrelat5.a . . . 4 𝐴 = (Atomsβ€˜πΎ)
51, 2, 3, 4hlrelat1 38783 . . 3 ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ (𝑋 < π‘Œ β†’ βˆƒπ‘ ∈ 𝐴 (Β¬ 𝑝 ≀ 𝑋 ∧ 𝑝 ≀ π‘Œ)))
65imp 406 . 2 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ 𝑋 < π‘Œ) β†’ βˆƒπ‘ ∈ 𝐴 (Β¬ 𝑝 ≀ 𝑋 ∧ 𝑝 ≀ π‘Œ))
7 simpll1 1209 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ 𝑋 < π‘Œ) ∧ 𝑝 ∈ 𝐴) β†’ 𝐾 ∈ HL)
87hllatd 38746 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ 𝑋 < π‘Œ) ∧ 𝑝 ∈ 𝐴) β†’ 𝐾 ∈ Lat)
9 simpll2 1210 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ 𝑋 < π‘Œ) ∧ 𝑝 ∈ 𝐴) β†’ 𝑋 ∈ 𝐡)
101, 4atbase 38671 . . . . . 6 (𝑝 ∈ 𝐴 β†’ 𝑝 ∈ 𝐡)
1110adantl 481 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ 𝑋 < π‘Œ) ∧ 𝑝 ∈ 𝐴) β†’ 𝑝 ∈ 𝐡)
12 hlrelat5.j . . . . . 6 ∨ = (joinβ€˜πΎ)
131, 2, 3, 12latnle 18435 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐡 ∧ 𝑝 ∈ 𝐡) β†’ (Β¬ 𝑝 ≀ 𝑋 ↔ 𝑋 < (𝑋 ∨ 𝑝)))
148, 9, 11, 13syl3anc 1368 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ 𝑋 < π‘Œ) ∧ 𝑝 ∈ 𝐴) β†’ (Β¬ 𝑝 ≀ 𝑋 ↔ 𝑋 < (𝑋 ∨ 𝑝)))
152, 3pltle 18295 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ (𝑋 < π‘Œ β†’ 𝑋 ≀ π‘Œ))
1615imp 406 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ 𝑋 < π‘Œ) β†’ 𝑋 ≀ π‘Œ)
1716adantr 480 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ 𝑋 < π‘Œ) ∧ 𝑝 ∈ 𝐴) β†’ 𝑋 ≀ π‘Œ)
1817biantrurd 532 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ 𝑋 < π‘Œ) ∧ 𝑝 ∈ 𝐴) β†’ (𝑝 ≀ π‘Œ ↔ (𝑋 ≀ π‘Œ ∧ 𝑝 ≀ π‘Œ)))
19 simpll3 1211 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ 𝑋 < π‘Œ) ∧ 𝑝 ∈ 𝐴) β†’ π‘Œ ∈ 𝐡)
201, 2, 12latjle12 18412 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐡 ∧ 𝑝 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) β†’ ((𝑋 ≀ π‘Œ ∧ 𝑝 ≀ π‘Œ) ↔ (𝑋 ∨ 𝑝) ≀ π‘Œ))
218, 9, 11, 19, 20syl13anc 1369 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ 𝑋 < π‘Œ) ∧ 𝑝 ∈ 𝐴) β†’ ((𝑋 ≀ π‘Œ ∧ 𝑝 ≀ π‘Œ) ↔ (𝑋 ∨ 𝑝) ≀ π‘Œ))
2218, 21bitrd 279 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ 𝑋 < π‘Œ) ∧ 𝑝 ∈ 𝐴) β†’ (𝑝 ≀ π‘Œ ↔ (𝑋 ∨ 𝑝) ≀ π‘Œ))
2314, 22anbi12d 630 . . 3 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ 𝑋 < π‘Œ) ∧ 𝑝 ∈ 𝐴) β†’ ((Β¬ 𝑝 ≀ 𝑋 ∧ 𝑝 ≀ π‘Œ) ↔ (𝑋 < (𝑋 ∨ 𝑝) ∧ (𝑋 ∨ 𝑝) ≀ π‘Œ)))
2423rexbidva 3170 . 2 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ 𝑋 < π‘Œ) β†’ (βˆƒπ‘ ∈ 𝐴 (Β¬ 𝑝 ≀ 𝑋 ∧ 𝑝 ≀ π‘Œ) ↔ βˆƒπ‘ ∈ 𝐴 (𝑋 < (𝑋 ∨ 𝑝) ∧ (𝑋 ∨ 𝑝) ≀ π‘Œ)))
256, 24mpbid 231 1 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ 𝑋 < π‘Œ) β†’ βˆƒπ‘ ∈ 𝐴 (𝑋 < (𝑋 ∨ 𝑝) ∧ (𝑋 ∨ 𝑝) ≀ π‘Œ))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 395   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098  βˆƒwrex 3064   class class class wbr 5141  β€˜cfv 6536  (class class class)co 7404  Basecbs 17150  lecple 17210  ltcplt 18270  joincjn 18273  Latclat 18393  Atomscatm 38645  HLchlt 38732
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7360  df-ov 7407  df-oprab 7408  df-proset 18257  df-poset 18275  df-plt 18292  df-lub 18308  df-glb 18309  df-join 18310  df-meet 18311  df-p0 18387  df-lat 18394  df-clat 18461  df-oposet 38558  df-ol 38560  df-oml 38561  df-covers 38648  df-ats 38649  df-atl 38680  df-cvlat 38704  df-hlat 38733
This theorem is referenced by:  hlrelat2  38786  atle  38819  2atlt  38822
  Copyright terms: Public domain W3C validator