MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspprat Structured version   Visualization version   GIF version

Theorem lspprat 19615
Description: A proper subspace of the span of a pair of vectors is the span of a singleton (an atom) or the zero subspace (if 𝑧 is zero). Proof suggested by Mario Carneiro, 28-Aug-2014. (Contributed by NM, 29-Aug-2014.)
Hypotheses
Ref Expression
lspprat.v 𝑉 = (Base‘𝑊)
lspprat.s 𝑆 = (LSubSp‘𝑊)
lspprat.n 𝑁 = (LSpan‘𝑊)
lspprat.w (𝜑𝑊 ∈ LVec)
lspprat.u (𝜑𝑈𝑆)
lspprat.x (𝜑𝑋𝑉)
lspprat.y (𝜑𝑌𝑉)
lspprat.p (𝜑𝑈 ⊊ (𝑁‘{𝑋, 𝑌}))
Assertion
Ref Expression
lspprat (𝜑 → ∃𝑧𝑉 𝑈 = (𝑁‘{𝑧}))
Distinct variable groups:   𝑧,𝑁   𝑧,𝑈   𝑧,𝑉   𝑧,𝑊   𝜑,𝑧
Allowed substitution hints:   𝑆(𝑧)   𝑋(𝑧)   𝑌(𝑧)

Proof of Theorem lspprat
StepHypRef Expression
1 ssdif0 4243 . . 3 (𝑈 ⊆ {(0g𝑊)} ↔ (𝑈 ∖ {(0g𝑊)}) = ∅)
2 lspprat.w . . . . . . . 8 (𝜑𝑊 ∈ LVec)
3 lveclmod 19568 . . . . . . . 8 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
42, 3syl 17 . . . . . . 7 (𝜑𝑊 ∈ LMod)
5 lspprat.v . . . . . . . 8 𝑉 = (Base‘𝑊)
6 eqid 2795 . . . . . . . 8 (0g𝑊) = (0g𝑊)
75, 6lmod0vcl 19353 . . . . . . 7 (𝑊 ∈ LMod → (0g𝑊) ∈ 𝑉)
84, 7syl 17 . . . . . 6 (𝜑 → (0g𝑊) ∈ 𝑉)
98adantr 481 . . . . 5 ((𝜑𝑈 ⊆ {(0g𝑊)}) → (0g𝑊) ∈ 𝑉)
10 simpr 485 . . . . . . 7 ((𝜑𝑈 ⊆ {(0g𝑊)}) → 𝑈 ⊆ {(0g𝑊)})
11 lspprat.u . . . . . . . . 9 (𝜑𝑈𝑆)
12 lspprat.s . . . . . . . . . 10 𝑆 = (LSubSp‘𝑊)
136, 12lss0ss 19410 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → {(0g𝑊)} ⊆ 𝑈)
144, 11, 13syl2anc 584 . . . . . . . 8 (𝜑 → {(0g𝑊)} ⊆ 𝑈)
1514adantr 481 . . . . . . 7 ((𝜑𝑈 ⊆ {(0g𝑊)}) → {(0g𝑊)} ⊆ 𝑈)
1610, 15eqssd 3906 . . . . . 6 ((𝜑𝑈 ⊆ {(0g𝑊)}) → 𝑈 = {(0g𝑊)})
17 lspprat.n . . . . . . . . 9 𝑁 = (LSpan‘𝑊)
186, 17lspsn0 19470 . . . . . . . 8 (𝑊 ∈ LMod → (𝑁‘{(0g𝑊)}) = {(0g𝑊)})
194, 18syl 17 . . . . . . 7 (𝜑 → (𝑁‘{(0g𝑊)}) = {(0g𝑊)})
2019adantr 481 . . . . . 6 ((𝜑𝑈 ⊆ {(0g𝑊)}) → (𝑁‘{(0g𝑊)}) = {(0g𝑊)})
2116, 20eqtr4d 2834 . . . . 5 ((𝜑𝑈 ⊆ {(0g𝑊)}) → 𝑈 = (𝑁‘{(0g𝑊)}))
22 sneq 4482 . . . . . . 7 (𝑧 = (0g𝑊) → {𝑧} = {(0g𝑊)})
2322fveq2d 6542 . . . . . 6 (𝑧 = (0g𝑊) → (𝑁‘{𝑧}) = (𝑁‘{(0g𝑊)}))
2423rspceeqv 3577 . . . . 5 (((0g𝑊) ∈ 𝑉𝑈 = (𝑁‘{(0g𝑊)})) → ∃𝑧𝑉 𝑈 = (𝑁‘{𝑧}))
259, 21, 24syl2anc 584 . . . 4 ((𝜑𝑈 ⊆ {(0g𝑊)}) → ∃𝑧𝑉 𝑈 = (𝑁‘{𝑧}))
2625ex 413 . . 3 (𝜑 → (𝑈 ⊆ {(0g𝑊)} → ∃𝑧𝑉 𝑈 = (𝑁‘{𝑧})))
271, 26syl5bir 244 . 2 (𝜑 → ((𝑈 ∖ {(0g𝑊)}) = ∅ → ∃𝑧𝑉 𝑈 = (𝑁‘{𝑧})))
285, 12lssss 19398 . . . . . . . 8 (𝑈𝑆𝑈𝑉)
2911, 28syl 17 . . . . . . 7 (𝜑𝑈𝑉)
3029ssdifssd 4040 . . . . . 6 (𝜑 → (𝑈 ∖ {(0g𝑊)}) ⊆ 𝑉)
3130sseld 3888 . . . . 5 (𝜑 → (𝑧 ∈ (𝑈 ∖ {(0g𝑊)}) → 𝑧𝑉))
32 lspprat.x . . . . . 6 (𝜑𝑋𝑉)
33 lspprat.y . . . . . 6 (𝜑𝑌𝑉)
34 lspprat.p . . . . . 6 (𝜑𝑈 ⊊ (𝑁‘{𝑋, 𝑌}))
355, 12, 17, 2, 11, 32, 33, 34, 6lsppratlem6 19614 . . . . 5 (𝜑 → (𝑧 ∈ (𝑈 ∖ {(0g𝑊)}) → 𝑈 = (𝑁‘{𝑧})))
3631, 35jcad 513 . . . 4 (𝜑 → (𝑧 ∈ (𝑈 ∖ {(0g𝑊)}) → (𝑧𝑉𝑈 = (𝑁‘{𝑧}))))
3736eximdv 1895 . . 3 (𝜑 → (∃𝑧 𝑧 ∈ (𝑈 ∖ {(0g𝑊)}) → ∃𝑧(𝑧𝑉𝑈 = (𝑁‘{𝑧}))))
38 n0 4230 . . 3 ((𝑈 ∖ {(0g𝑊)}) ≠ ∅ ↔ ∃𝑧 𝑧 ∈ (𝑈 ∖ {(0g𝑊)}))
39 df-rex 3111 . . 3 (∃𝑧𝑉 𝑈 = (𝑁‘{𝑧}) ↔ ∃𝑧(𝑧𝑉𝑈 = (𝑁‘{𝑧})))
4037, 38, 393imtr4g 297 . 2 (𝜑 → ((𝑈 ∖ {(0g𝑊)}) ≠ ∅ → ∃𝑧𝑉 𝑈 = (𝑁‘{𝑧})))
4127, 40pm2.61dne 3071 1 (𝜑 → ∃𝑧𝑉 𝑈 = (𝑁‘{𝑧}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1522  wex 1761  wcel 2081  wne 2984  wrex 3106  cdif 3856  wss 3859  wpss 3860  c0 4211  {csn 4472  {cpr 4474  cfv 6225  Basecbs 16312  0gc0g 16542  LModclmod 19324  LSubSpclss 19393  LSpanclspn 19433  LVecclvec 19564
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5081  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319  ax-cnex 10439  ax-resscn 10440  ax-1cn 10441  ax-icn 10442  ax-addcl 10443  ax-addrcl 10444  ax-mulcl 10445  ax-mulrcl 10446  ax-mulcom 10447  ax-addass 10448  ax-mulass 10449  ax-distr 10450  ax-i2m1 10451  ax-1ne0 10452  ax-1rid 10453  ax-rnegex 10454  ax-rrecex 10455  ax-cnre 10456  ax-pre-lttri 10457  ax-pre-lttrn 10458  ax-pre-ltadd 10459  ax-pre-mulgt0 10460
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-pss 3876  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-tp 4477  df-op 4479  df-uni 4746  df-int 4783  df-iun 4827  df-br 4963  df-opab 5025  df-mpt 5042  df-tr 5064  df-id 5348  df-eprel 5353  df-po 5362  df-so 5363  df-fr 5402  df-we 5404  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-pred 6023  df-ord 6069  df-on 6070  df-lim 6071  df-suc 6072  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-riota 6977  df-ov 7019  df-oprab 7020  df-mpo 7021  df-om 7437  df-1st 7545  df-2nd 7546  df-tpos 7743  df-wrecs 7798  df-recs 7860  df-rdg 7898  df-er 8139  df-en 8358  df-dom 8359  df-sdom 8360  df-pnf 10523  df-mnf 10524  df-xr 10525  df-ltxr 10526  df-le 10527  df-sub 10719  df-neg 10720  df-nn 11487  df-2 11548  df-3 11549  df-ndx 16315  df-slot 16316  df-base 16318  df-sets 16319  df-ress 16320  df-plusg 16407  df-mulr 16408  df-0g 16544  df-mgm 17681  df-sgrp 17723  df-mnd 17734  df-grp 17864  df-minusg 17865  df-sbg 17866  df-cmn 18635  df-abl 18636  df-mgp 18930  df-ur 18942  df-ring 18989  df-oppr 19063  df-dvdsr 19081  df-unit 19082  df-invr 19112  df-drng 19194  df-lmod 19326  df-lss 19394  df-lsp 19434  df-lvec 19565
This theorem is referenced by:  dvh3dim3N  38135
  Copyright terms: Public domain W3C validator