MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspprat Structured version   Visualization version   GIF version

Theorem lspprat 19426
Description: A proper subspace of the span of a pair of vectors is the span of a singleton (an atom) or the zero subspace (if 𝑧 is zero). Proof suggested by Mario Carneiro, 28-Aug-2014. (Contributed by NM, 29-Aug-2014.)
Hypotheses
Ref Expression
lspprat.v 𝑉 = (Base‘𝑊)
lspprat.s 𝑆 = (LSubSp‘𝑊)
lspprat.n 𝑁 = (LSpan‘𝑊)
lspprat.w (𝜑𝑊 ∈ LVec)
lspprat.u (𝜑𝑈𝑆)
lspprat.x (𝜑𝑋𝑉)
lspprat.y (𝜑𝑌𝑉)
lspprat.p (𝜑𝑈 ⊊ (𝑁‘{𝑋, 𝑌}))
Assertion
Ref Expression
lspprat (𝜑 → ∃𝑧𝑉 𝑈 = (𝑁‘{𝑧}))
Distinct variable groups:   𝑧,𝑁   𝑧,𝑈   𝑧,𝑉   𝑧,𝑊   𝜑,𝑧
Allowed substitution hints:   𝑆(𝑧)   𝑋(𝑧)   𝑌(𝑧)

Proof of Theorem lspprat
StepHypRef Expression
1 ssdif0 4105 . . 3 (𝑈 ⊆ {(0g𝑊)} ↔ (𝑈 ∖ {(0g𝑊)}) = ∅)
2 lspprat.w . . . . . . . 8 (𝜑𝑊 ∈ LVec)
3 lveclmod 19377 . . . . . . . 8 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
42, 3syl 17 . . . . . . 7 (𝜑𝑊 ∈ LMod)
5 lspprat.v . . . . . . . 8 𝑉 = (Base‘𝑊)
6 eqid 2764 . . . . . . . 8 (0g𝑊) = (0g𝑊)
75, 6lmod0vcl 19160 . . . . . . 7 (𝑊 ∈ LMod → (0g𝑊) ∈ 𝑉)
84, 7syl 17 . . . . . 6 (𝜑 → (0g𝑊) ∈ 𝑉)
98adantr 472 . . . . 5 ((𝜑𝑈 ⊆ {(0g𝑊)}) → (0g𝑊) ∈ 𝑉)
10 simpr 477 . . . . . . 7 ((𝜑𝑈 ⊆ {(0g𝑊)}) → 𝑈 ⊆ {(0g𝑊)})
11 lspprat.u . . . . . . . . 9 (𝜑𝑈𝑆)
12 lspprat.s . . . . . . . . . 10 𝑆 = (LSubSp‘𝑊)
136, 12lss0ss 19217 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → {(0g𝑊)} ⊆ 𝑈)
144, 11, 13syl2anc 579 . . . . . . . 8 (𝜑 → {(0g𝑊)} ⊆ 𝑈)
1514adantr 472 . . . . . . 7 ((𝜑𝑈 ⊆ {(0g𝑊)}) → {(0g𝑊)} ⊆ 𝑈)
1610, 15eqssd 3777 . . . . . 6 ((𝜑𝑈 ⊆ {(0g𝑊)}) → 𝑈 = {(0g𝑊)})
17 lspprat.n . . . . . . . . 9 𝑁 = (LSpan‘𝑊)
186, 17lspsn0 19279 . . . . . . . 8 (𝑊 ∈ LMod → (𝑁‘{(0g𝑊)}) = {(0g𝑊)})
194, 18syl 17 . . . . . . 7 (𝜑 → (𝑁‘{(0g𝑊)}) = {(0g𝑊)})
2019adantr 472 . . . . . 6 ((𝜑𝑈 ⊆ {(0g𝑊)}) → (𝑁‘{(0g𝑊)}) = {(0g𝑊)})
2116, 20eqtr4d 2801 . . . . 5 ((𝜑𝑈 ⊆ {(0g𝑊)}) → 𝑈 = (𝑁‘{(0g𝑊)}))
22 sneq 4343 . . . . . . 7 (𝑧 = (0g𝑊) → {𝑧} = {(0g𝑊)})
2322fveq2d 6378 . . . . . 6 (𝑧 = (0g𝑊) → (𝑁‘{𝑧}) = (𝑁‘{(0g𝑊)}))
2423rspceeqv 3478 . . . . 5 (((0g𝑊) ∈ 𝑉𝑈 = (𝑁‘{(0g𝑊)})) → ∃𝑧𝑉 𝑈 = (𝑁‘{𝑧}))
259, 21, 24syl2anc 579 . . . 4 ((𝜑𝑈 ⊆ {(0g𝑊)}) → ∃𝑧𝑉 𝑈 = (𝑁‘{𝑧}))
2625ex 401 . . 3 (𝜑 → (𝑈 ⊆ {(0g𝑊)} → ∃𝑧𝑉 𝑈 = (𝑁‘{𝑧})))
271, 26syl5bir 234 . 2 (𝜑 → ((𝑈 ∖ {(0g𝑊)}) = ∅ → ∃𝑧𝑉 𝑈 = (𝑁‘{𝑧})))
285, 12lssss 19205 . . . . . . . 8 (𝑈𝑆𝑈𝑉)
2911, 28syl 17 . . . . . . 7 (𝜑𝑈𝑉)
3029ssdifssd 3909 . . . . . 6 (𝜑 → (𝑈 ∖ {(0g𝑊)}) ⊆ 𝑉)
3130sseld 3759 . . . . 5 (𝜑 → (𝑧 ∈ (𝑈 ∖ {(0g𝑊)}) → 𝑧𝑉))
32 lspprat.x . . . . . 6 (𝜑𝑋𝑉)
33 lspprat.y . . . . . 6 (𝜑𝑌𝑉)
34 lspprat.p . . . . . 6 (𝜑𝑈 ⊊ (𝑁‘{𝑋, 𝑌}))
355, 12, 17, 2, 11, 32, 33, 34, 6lsppratlem6 19425 . . . . 5 (𝜑 → (𝑧 ∈ (𝑈 ∖ {(0g𝑊)}) → 𝑈 = (𝑁‘{𝑧})))
3631, 35jcad 508 . . . 4 (𝜑 → (𝑧 ∈ (𝑈 ∖ {(0g𝑊)}) → (𝑧𝑉𝑈 = (𝑁‘{𝑧}))))
3736eximdv 2012 . . 3 (𝜑 → (∃𝑧 𝑧 ∈ (𝑈 ∖ {(0g𝑊)}) → ∃𝑧(𝑧𝑉𝑈 = (𝑁‘{𝑧}))))
38 n0 4094 . . 3 ((𝑈 ∖ {(0g𝑊)}) ≠ ∅ ↔ ∃𝑧 𝑧 ∈ (𝑈 ∖ {(0g𝑊)}))
39 df-rex 3060 . . 3 (∃𝑧𝑉 𝑈 = (𝑁‘{𝑧}) ↔ ∃𝑧(𝑧𝑉𝑈 = (𝑁‘{𝑧})))
4037, 38, 393imtr4g 287 . 2 (𝜑 → ((𝑈 ∖ {(0g𝑊)}) ≠ ∅ → ∃𝑧𝑉 𝑈 = (𝑁‘{𝑧})))
4127, 40pm2.61dne 3022 1 (𝜑 → ∃𝑧𝑉 𝑈 = (𝑁‘{𝑧}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1652  wex 1874  wcel 2155  wne 2936  wrex 3055  cdif 3728  wss 3731  wpss 3732  c0 4078  {csn 4333  {cpr 4335  cfv 6067  Basecbs 16131  0gc0g 16367  LModclmod 19131  LSubSpclss 19200  LSpanclspn 19242  LVecclvec 19373
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2069  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2349  ax-ext 2742  ax-rep 4929  ax-sep 4940  ax-nul 4948  ax-pow 5000  ax-pr 5061  ax-un 7146  ax-cnex 10244  ax-resscn 10245  ax-1cn 10246  ax-icn 10247  ax-addcl 10248  ax-addrcl 10249  ax-mulcl 10250  ax-mulrcl 10251  ax-mulcom 10252  ax-addass 10253  ax-mulass 10254  ax-distr 10255  ax-i2m1 10256  ax-1ne0 10257  ax-1rid 10258  ax-rnegex 10259  ax-rrecex 10260  ax-cnre 10261  ax-pre-lttri 10262  ax-pre-lttrn 10263  ax-pre-ltadd 10264  ax-pre-mulgt0 10265
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2062  df-mo 2564  df-eu 2581  df-clab 2751  df-cleq 2757  df-clel 2760  df-nfc 2895  df-ne 2937  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3351  df-sbc 3596  df-csb 3691  df-dif 3734  df-un 3736  df-in 3738  df-ss 3745  df-pss 3747  df-nul 4079  df-if 4243  df-pw 4316  df-sn 4334  df-pr 4336  df-tp 4338  df-op 4340  df-uni 4594  df-int 4633  df-iun 4677  df-br 4809  df-opab 4871  df-mpt 4888  df-tr 4911  df-id 5184  df-eprel 5189  df-po 5197  df-so 5198  df-fr 5235  df-we 5237  df-xp 5282  df-rel 5283  df-cnv 5284  df-co 5285  df-dm 5286  df-rn 5287  df-res 5288  df-ima 5289  df-pred 5864  df-ord 5910  df-on 5911  df-lim 5912  df-suc 5913  df-iota 6030  df-fun 6069  df-fn 6070  df-f 6071  df-f1 6072  df-fo 6073  df-f1o 6074  df-fv 6075  df-riota 6802  df-ov 6844  df-oprab 6845  df-mpt2 6846  df-om 7263  df-1st 7365  df-2nd 7366  df-tpos 7554  df-wrecs 7609  df-recs 7671  df-rdg 7709  df-er 7946  df-en 8160  df-dom 8161  df-sdom 8162  df-pnf 10329  df-mnf 10330  df-xr 10331  df-ltxr 10332  df-le 10333  df-sub 10521  df-neg 10522  df-nn 11274  df-2 11334  df-3 11335  df-ndx 16134  df-slot 16135  df-base 16137  df-sets 16138  df-ress 16139  df-plusg 16228  df-mulr 16229  df-0g 16369  df-mgm 17509  df-sgrp 17551  df-mnd 17562  df-grp 17693  df-minusg 17694  df-sbg 17695  df-cmn 18460  df-abl 18461  df-mgp 18756  df-ur 18768  df-ring 18815  df-oppr 18889  df-dvdsr 18907  df-unit 18908  df-invr 18938  df-drng 19017  df-lmod 19133  df-lss 19201  df-lsp 19243  df-lvec 19374
This theorem is referenced by:  dvh3dim3N  37337
  Copyright terms: Public domain W3C validator