MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspprat Structured version   Visualization version   GIF version

Theorem lspprat 21178
Description: A proper subspace of the span of a pair of vectors is the span of a singleton (an atom) or the zero subspace (if 𝑧 is zero). Proof suggested by Mario Carneiro, 28-Aug-2014. (Contributed by NM, 29-Aug-2014.)
Hypotheses
Ref Expression
lspprat.v 𝑉 = (Base‘𝑊)
lspprat.s 𝑆 = (LSubSp‘𝑊)
lspprat.n 𝑁 = (LSpan‘𝑊)
lspprat.w (𝜑𝑊 ∈ LVec)
lspprat.u (𝜑𝑈𝑆)
lspprat.x (𝜑𝑋𝑉)
lspprat.y (𝜑𝑌𝑉)
lspprat.p (𝜑𝑈 ⊊ (𝑁‘{𝑋, 𝑌}))
Assertion
Ref Expression
lspprat (𝜑 → ∃𝑧𝑉 𝑈 = (𝑁‘{𝑧}))
Distinct variable groups:   𝑧,𝑁   𝑧,𝑈   𝑧,𝑉   𝑧,𝑊   𝜑,𝑧
Allowed substitution hints:   𝑆(𝑧)   𝑋(𝑧)   𝑌(𝑧)

Proof of Theorem lspprat
StepHypRef Expression
1 ssdif0 4389 . . 3 (𝑈 ⊆ {(0g𝑊)} ↔ (𝑈 ∖ {(0g𝑊)}) = ∅)
2 lspprat.w . . . . . . . 8 (𝜑𝑊 ∈ LVec)
3 lveclmod 21128 . . . . . . . 8 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
42, 3syl 17 . . . . . . 7 (𝜑𝑊 ∈ LMod)
5 lspprat.v . . . . . . . 8 𝑉 = (Base‘𝑊)
6 eqid 2740 . . . . . . . 8 (0g𝑊) = (0g𝑊)
75, 6lmod0vcl 20911 . . . . . . 7 (𝑊 ∈ LMod → (0g𝑊) ∈ 𝑉)
84, 7syl 17 . . . . . 6 (𝜑 → (0g𝑊) ∈ 𝑉)
98adantr 480 . . . . 5 ((𝜑𝑈 ⊆ {(0g𝑊)}) → (0g𝑊) ∈ 𝑉)
10 simpr 484 . . . . . . 7 ((𝜑𝑈 ⊆ {(0g𝑊)}) → 𝑈 ⊆ {(0g𝑊)})
11 lspprat.u . . . . . . . . 9 (𝜑𝑈𝑆)
12 lspprat.s . . . . . . . . . 10 𝑆 = (LSubSp‘𝑊)
136, 12lss0ss 20970 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → {(0g𝑊)} ⊆ 𝑈)
144, 11, 13syl2anc 583 . . . . . . . 8 (𝜑 → {(0g𝑊)} ⊆ 𝑈)
1514adantr 480 . . . . . . 7 ((𝜑𝑈 ⊆ {(0g𝑊)}) → {(0g𝑊)} ⊆ 𝑈)
1610, 15eqssd 4026 . . . . . 6 ((𝜑𝑈 ⊆ {(0g𝑊)}) → 𝑈 = {(0g𝑊)})
17 lspprat.n . . . . . . . . 9 𝑁 = (LSpan‘𝑊)
186, 17lspsn0 21029 . . . . . . . 8 (𝑊 ∈ LMod → (𝑁‘{(0g𝑊)}) = {(0g𝑊)})
194, 18syl 17 . . . . . . 7 (𝜑 → (𝑁‘{(0g𝑊)}) = {(0g𝑊)})
2019adantr 480 . . . . . 6 ((𝜑𝑈 ⊆ {(0g𝑊)}) → (𝑁‘{(0g𝑊)}) = {(0g𝑊)})
2116, 20eqtr4d 2783 . . . . 5 ((𝜑𝑈 ⊆ {(0g𝑊)}) → 𝑈 = (𝑁‘{(0g𝑊)}))
22 sneq 4658 . . . . . . 7 (𝑧 = (0g𝑊) → {𝑧} = {(0g𝑊)})
2322fveq2d 6924 . . . . . 6 (𝑧 = (0g𝑊) → (𝑁‘{𝑧}) = (𝑁‘{(0g𝑊)}))
2423rspceeqv 3658 . . . . 5 (((0g𝑊) ∈ 𝑉𝑈 = (𝑁‘{(0g𝑊)})) → ∃𝑧𝑉 𝑈 = (𝑁‘{𝑧}))
259, 21, 24syl2anc 583 . . . 4 ((𝜑𝑈 ⊆ {(0g𝑊)}) → ∃𝑧𝑉 𝑈 = (𝑁‘{𝑧}))
2625ex 412 . . 3 (𝜑 → (𝑈 ⊆ {(0g𝑊)} → ∃𝑧𝑉 𝑈 = (𝑁‘{𝑧})))
271, 26biimtrrid 243 . 2 (𝜑 → ((𝑈 ∖ {(0g𝑊)}) = ∅ → ∃𝑧𝑉 𝑈 = (𝑁‘{𝑧})))
285, 12lssss 20957 . . . . . . . 8 (𝑈𝑆𝑈𝑉)
2911, 28syl 17 . . . . . . 7 (𝜑𝑈𝑉)
3029ssdifssd 4170 . . . . . 6 (𝜑 → (𝑈 ∖ {(0g𝑊)}) ⊆ 𝑉)
3130sseld 4007 . . . . 5 (𝜑 → (𝑧 ∈ (𝑈 ∖ {(0g𝑊)}) → 𝑧𝑉))
32 lspprat.x . . . . . 6 (𝜑𝑋𝑉)
33 lspprat.y . . . . . 6 (𝜑𝑌𝑉)
34 lspprat.p . . . . . 6 (𝜑𝑈 ⊊ (𝑁‘{𝑋, 𝑌}))
355, 12, 17, 2, 11, 32, 33, 34, 6lsppratlem6 21177 . . . . 5 (𝜑 → (𝑧 ∈ (𝑈 ∖ {(0g𝑊)}) → 𝑈 = (𝑁‘{𝑧})))
3631, 35jcad 512 . . . 4 (𝜑 → (𝑧 ∈ (𝑈 ∖ {(0g𝑊)}) → (𝑧𝑉𝑈 = (𝑁‘{𝑧}))))
3736eximdv 1916 . . 3 (𝜑 → (∃𝑧 𝑧 ∈ (𝑈 ∖ {(0g𝑊)}) → ∃𝑧(𝑧𝑉𝑈 = (𝑁‘{𝑧}))))
38 n0 4376 . . 3 ((𝑈 ∖ {(0g𝑊)}) ≠ ∅ ↔ ∃𝑧 𝑧 ∈ (𝑈 ∖ {(0g𝑊)}))
39 df-rex 3077 . . 3 (∃𝑧𝑉 𝑈 = (𝑁‘{𝑧}) ↔ ∃𝑧(𝑧𝑉𝑈 = (𝑁‘{𝑧})))
4037, 38, 393imtr4g 296 . 2 (𝜑 → ((𝑈 ∖ {(0g𝑊)}) ≠ ∅ → ∃𝑧𝑉 𝑈 = (𝑁‘{𝑧})))
4127, 40pm2.61dne 3034 1 (𝜑 → ∃𝑧𝑉 𝑈 = (𝑁‘{𝑧}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wex 1777  wcel 2108  wne 2946  wrex 3076  cdif 3973  wss 3976  wpss 3977  c0 4352  {csn 4648  {cpr 4650  cfv 6573  Basecbs 17258  0gc0g 17499  LModclmod 20880  LSubSpclss 20952  LSpanclspn 20992  LVecclvec 21124
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-tpos 8267  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-minusg 18977  df-sbg 18978  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-oppr 20360  df-dvdsr 20383  df-unit 20384  df-invr 20414  df-drng 20753  df-lmod 20882  df-lss 20953  df-lsp 20993  df-lvec 21125
This theorem is referenced by:  dvh3dim3N  41406
  Copyright terms: Public domain W3C validator