MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspprat Structured version   Visualization version   GIF version

Theorem lspprat 20415
Description: A proper subspace of the span of a pair of vectors is the span of a singleton (an atom) or the zero subspace (if 𝑧 is zero). Proof suggested by Mario Carneiro, 28-Aug-2014. (Contributed by NM, 29-Aug-2014.)
Hypotheses
Ref Expression
lspprat.v 𝑉 = (Base‘𝑊)
lspprat.s 𝑆 = (LSubSp‘𝑊)
lspprat.n 𝑁 = (LSpan‘𝑊)
lspprat.w (𝜑𝑊 ∈ LVec)
lspprat.u (𝜑𝑈𝑆)
lspprat.x (𝜑𝑋𝑉)
lspprat.y (𝜑𝑌𝑉)
lspprat.p (𝜑𝑈 ⊊ (𝑁‘{𝑋, 𝑌}))
Assertion
Ref Expression
lspprat (𝜑 → ∃𝑧𝑉 𝑈 = (𝑁‘{𝑧}))
Distinct variable groups:   𝑧,𝑁   𝑧,𝑈   𝑧,𝑉   𝑧,𝑊   𝜑,𝑧
Allowed substitution hints:   𝑆(𝑧)   𝑋(𝑧)   𝑌(𝑧)

Proof of Theorem lspprat
StepHypRef Expression
1 ssdif0 4297 . . 3 (𝑈 ⊆ {(0g𝑊)} ↔ (𝑈 ∖ {(0g𝑊)}) = ∅)
2 lspprat.w . . . . . . . 8 (𝜑𝑊 ∈ LVec)
3 lveclmod 20368 . . . . . . . 8 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
42, 3syl 17 . . . . . . 7 (𝜑𝑊 ∈ LMod)
5 lspprat.v . . . . . . . 8 𝑉 = (Base‘𝑊)
6 eqid 2738 . . . . . . . 8 (0g𝑊) = (0g𝑊)
75, 6lmod0vcl 20152 . . . . . . 7 (𝑊 ∈ LMod → (0g𝑊) ∈ 𝑉)
84, 7syl 17 . . . . . 6 (𝜑 → (0g𝑊) ∈ 𝑉)
98adantr 481 . . . . 5 ((𝜑𝑈 ⊆ {(0g𝑊)}) → (0g𝑊) ∈ 𝑉)
10 simpr 485 . . . . . . 7 ((𝜑𝑈 ⊆ {(0g𝑊)}) → 𝑈 ⊆ {(0g𝑊)})
11 lspprat.u . . . . . . . . 9 (𝜑𝑈𝑆)
12 lspprat.s . . . . . . . . . 10 𝑆 = (LSubSp‘𝑊)
136, 12lss0ss 20210 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → {(0g𝑊)} ⊆ 𝑈)
144, 11, 13syl2anc 584 . . . . . . . 8 (𝜑 → {(0g𝑊)} ⊆ 𝑈)
1514adantr 481 . . . . . . 7 ((𝜑𝑈 ⊆ {(0g𝑊)}) → {(0g𝑊)} ⊆ 𝑈)
1610, 15eqssd 3938 . . . . . 6 ((𝜑𝑈 ⊆ {(0g𝑊)}) → 𝑈 = {(0g𝑊)})
17 lspprat.n . . . . . . . . 9 𝑁 = (LSpan‘𝑊)
186, 17lspsn0 20270 . . . . . . . 8 (𝑊 ∈ LMod → (𝑁‘{(0g𝑊)}) = {(0g𝑊)})
194, 18syl 17 . . . . . . 7 (𝜑 → (𝑁‘{(0g𝑊)}) = {(0g𝑊)})
2019adantr 481 . . . . . 6 ((𝜑𝑈 ⊆ {(0g𝑊)}) → (𝑁‘{(0g𝑊)}) = {(0g𝑊)})
2116, 20eqtr4d 2781 . . . . 5 ((𝜑𝑈 ⊆ {(0g𝑊)}) → 𝑈 = (𝑁‘{(0g𝑊)}))
22 sneq 4571 . . . . . . 7 (𝑧 = (0g𝑊) → {𝑧} = {(0g𝑊)})
2322fveq2d 6778 . . . . . 6 (𝑧 = (0g𝑊) → (𝑁‘{𝑧}) = (𝑁‘{(0g𝑊)}))
2423rspceeqv 3575 . . . . 5 (((0g𝑊) ∈ 𝑉𝑈 = (𝑁‘{(0g𝑊)})) → ∃𝑧𝑉 𝑈 = (𝑁‘{𝑧}))
259, 21, 24syl2anc 584 . . . 4 ((𝜑𝑈 ⊆ {(0g𝑊)}) → ∃𝑧𝑉 𝑈 = (𝑁‘{𝑧}))
2625ex 413 . . 3 (𝜑 → (𝑈 ⊆ {(0g𝑊)} → ∃𝑧𝑉 𝑈 = (𝑁‘{𝑧})))
271, 26syl5bir 242 . 2 (𝜑 → ((𝑈 ∖ {(0g𝑊)}) = ∅ → ∃𝑧𝑉 𝑈 = (𝑁‘{𝑧})))
285, 12lssss 20198 . . . . . . . 8 (𝑈𝑆𝑈𝑉)
2911, 28syl 17 . . . . . . 7 (𝜑𝑈𝑉)
3029ssdifssd 4077 . . . . . 6 (𝜑 → (𝑈 ∖ {(0g𝑊)}) ⊆ 𝑉)
3130sseld 3920 . . . . 5 (𝜑 → (𝑧 ∈ (𝑈 ∖ {(0g𝑊)}) → 𝑧𝑉))
32 lspprat.x . . . . . 6 (𝜑𝑋𝑉)
33 lspprat.y . . . . . 6 (𝜑𝑌𝑉)
34 lspprat.p . . . . . 6 (𝜑𝑈 ⊊ (𝑁‘{𝑋, 𝑌}))
355, 12, 17, 2, 11, 32, 33, 34, 6lsppratlem6 20414 . . . . 5 (𝜑 → (𝑧 ∈ (𝑈 ∖ {(0g𝑊)}) → 𝑈 = (𝑁‘{𝑧})))
3631, 35jcad 513 . . . 4 (𝜑 → (𝑧 ∈ (𝑈 ∖ {(0g𝑊)}) → (𝑧𝑉𝑈 = (𝑁‘{𝑧}))))
3736eximdv 1920 . . 3 (𝜑 → (∃𝑧 𝑧 ∈ (𝑈 ∖ {(0g𝑊)}) → ∃𝑧(𝑧𝑉𝑈 = (𝑁‘{𝑧}))))
38 n0 4280 . . 3 ((𝑈 ∖ {(0g𝑊)}) ≠ ∅ ↔ ∃𝑧 𝑧 ∈ (𝑈 ∖ {(0g𝑊)}))
39 df-rex 3070 . . 3 (∃𝑧𝑉 𝑈 = (𝑁‘{𝑧}) ↔ ∃𝑧(𝑧𝑉𝑈 = (𝑁‘{𝑧})))
4037, 38, 393imtr4g 296 . 2 (𝜑 → ((𝑈 ∖ {(0g𝑊)}) ≠ ∅ → ∃𝑧𝑉 𝑈 = (𝑁‘{𝑧})))
4127, 40pm2.61dne 3031 1 (𝜑 → ∃𝑧𝑉 𝑈 = (𝑁‘{𝑧}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wex 1782  wcel 2106  wne 2943  wrex 3065  cdif 3884  wss 3887  wpss 3888  c0 4256  {csn 4561  {cpr 4563  cfv 6433  Basecbs 16912  0gc0g 17150  LModclmod 20123  LSubSpclss 20193  LSpanclspn 20233  LVecclvec 20364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-tpos 8042  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-grp 18580  df-minusg 18581  df-sbg 18582  df-cmn 19388  df-abl 19389  df-mgp 19721  df-ur 19738  df-ring 19785  df-oppr 19862  df-dvdsr 19883  df-unit 19884  df-invr 19914  df-drng 19993  df-lmod 20125  df-lss 20194  df-lsp 20234  df-lvec 20365
This theorem is referenced by:  dvh3dim3N  39463
  Copyright terms: Public domain W3C validator