| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lspprat | Structured version Visualization version GIF version | ||
| Description: A proper subspace of the span of a pair of vectors is the span of a singleton (an atom) or the zero subspace (if 𝑧 is zero). Proof suggested by Mario Carneiro, 28-Aug-2014. (Contributed by NM, 29-Aug-2014.) |
| Ref | Expression |
|---|---|
| lspprat.v | ⊢ 𝑉 = (Base‘𝑊) |
| lspprat.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
| lspprat.n | ⊢ 𝑁 = (LSpan‘𝑊) |
| lspprat.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
| lspprat.u | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
| lspprat.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| lspprat.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
| lspprat.p | ⊢ (𝜑 → 𝑈 ⊊ (𝑁‘{𝑋, 𝑌})) |
| Ref | Expression |
|---|---|
| lspprat | ⊢ (𝜑 → ∃𝑧 ∈ 𝑉 𝑈 = (𝑁‘{𝑧})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssdif0 4319 | . . 3 ⊢ (𝑈 ⊆ {(0g‘𝑊)} ↔ (𝑈 ∖ {(0g‘𝑊)}) = ∅) | |
| 2 | lspprat.w | . . . . . . . 8 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
| 3 | lveclmod 21028 | . . . . . . . 8 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
| 4 | 2, 3 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑊 ∈ LMod) |
| 5 | lspprat.v | . . . . . . . 8 ⊢ 𝑉 = (Base‘𝑊) | |
| 6 | eqid 2729 | . . . . . . . 8 ⊢ (0g‘𝑊) = (0g‘𝑊) | |
| 7 | 5, 6 | lmod0vcl 20812 | . . . . . . 7 ⊢ (𝑊 ∈ LMod → (0g‘𝑊) ∈ 𝑉) |
| 8 | 4, 7 | syl 17 | . . . . . 6 ⊢ (𝜑 → (0g‘𝑊) ∈ 𝑉) |
| 9 | 8 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑈 ⊆ {(0g‘𝑊)}) → (0g‘𝑊) ∈ 𝑉) |
| 10 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑈 ⊆ {(0g‘𝑊)}) → 𝑈 ⊆ {(0g‘𝑊)}) | |
| 11 | lspprat.u | . . . . . . . . 9 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
| 12 | lspprat.s | . . . . . . . . . 10 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 13 | 6, 12 | lss0ss 20870 | . . . . . . . . 9 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → {(0g‘𝑊)} ⊆ 𝑈) |
| 14 | 4, 11, 13 | syl2anc 584 | . . . . . . . 8 ⊢ (𝜑 → {(0g‘𝑊)} ⊆ 𝑈) |
| 15 | 14 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑈 ⊆ {(0g‘𝑊)}) → {(0g‘𝑊)} ⊆ 𝑈) |
| 16 | 10, 15 | eqssd 3955 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑈 ⊆ {(0g‘𝑊)}) → 𝑈 = {(0g‘𝑊)}) |
| 17 | lspprat.n | . . . . . . . . 9 ⊢ 𝑁 = (LSpan‘𝑊) | |
| 18 | 6, 17 | lspsn0 20929 | . . . . . . . 8 ⊢ (𝑊 ∈ LMod → (𝑁‘{(0g‘𝑊)}) = {(0g‘𝑊)}) |
| 19 | 4, 18 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (𝑁‘{(0g‘𝑊)}) = {(0g‘𝑊)}) |
| 20 | 19 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑈 ⊆ {(0g‘𝑊)}) → (𝑁‘{(0g‘𝑊)}) = {(0g‘𝑊)}) |
| 21 | 16, 20 | eqtr4d 2767 | . . . . 5 ⊢ ((𝜑 ∧ 𝑈 ⊆ {(0g‘𝑊)}) → 𝑈 = (𝑁‘{(0g‘𝑊)})) |
| 22 | sneq 4589 | . . . . . . 7 ⊢ (𝑧 = (0g‘𝑊) → {𝑧} = {(0g‘𝑊)}) | |
| 23 | 22 | fveq2d 6830 | . . . . . 6 ⊢ (𝑧 = (0g‘𝑊) → (𝑁‘{𝑧}) = (𝑁‘{(0g‘𝑊)})) |
| 24 | 23 | rspceeqv 3602 | . . . . 5 ⊢ (((0g‘𝑊) ∈ 𝑉 ∧ 𝑈 = (𝑁‘{(0g‘𝑊)})) → ∃𝑧 ∈ 𝑉 𝑈 = (𝑁‘{𝑧})) |
| 25 | 9, 21, 24 | syl2anc 584 | . . . 4 ⊢ ((𝜑 ∧ 𝑈 ⊆ {(0g‘𝑊)}) → ∃𝑧 ∈ 𝑉 𝑈 = (𝑁‘{𝑧})) |
| 26 | 25 | ex 412 | . . 3 ⊢ (𝜑 → (𝑈 ⊆ {(0g‘𝑊)} → ∃𝑧 ∈ 𝑉 𝑈 = (𝑁‘{𝑧}))) |
| 27 | 1, 26 | biimtrrid 243 | . 2 ⊢ (𝜑 → ((𝑈 ∖ {(0g‘𝑊)}) = ∅ → ∃𝑧 ∈ 𝑉 𝑈 = (𝑁‘{𝑧}))) |
| 28 | 5, 12 | lssss 20857 | . . . . . . . 8 ⊢ (𝑈 ∈ 𝑆 → 𝑈 ⊆ 𝑉) |
| 29 | 11, 28 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑈 ⊆ 𝑉) |
| 30 | 29 | ssdifssd 4100 | . . . . . 6 ⊢ (𝜑 → (𝑈 ∖ {(0g‘𝑊)}) ⊆ 𝑉) |
| 31 | 30 | sseld 3936 | . . . . 5 ⊢ (𝜑 → (𝑧 ∈ (𝑈 ∖ {(0g‘𝑊)}) → 𝑧 ∈ 𝑉)) |
| 32 | lspprat.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 33 | lspprat.y | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
| 34 | lspprat.p | . . . . . 6 ⊢ (𝜑 → 𝑈 ⊊ (𝑁‘{𝑋, 𝑌})) | |
| 35 | 5, 12, 17, 2, 11, 32, 33, 34, 6 | lsppratlem6 21077 | . . . . 5 ⊢ (𝜑 → (𝑧 ∈ (𝑈 ∖ {(0g‘𝑊)}) → 𝑈 = (𝑁‘{𝑧}))) |
| 36 | 31, 35 | jcad 512 | . . . 4 ⊢ (𝜑 → (𝑧 ∈ (𝑈 ∖ {(0g‘𝑊)}) → (𝑧 ∈ 𝑉 ∧ 𝑈 = (𝑁‘{𝑧})))) |
| 37 | 36 | eximdv 1917 | . . 3 ⊢ (𝜑 → (∃𝑧 𝑧 ∈ (𝑈 ∖ {(0g‘𝑊)}) → ∃𝑧(𝑧 ∈ 𝑉 ∧ 𝑈 = (𝑁‘{𝑧})))) |
| 38 | n0 4306 | . . 3 ⊢ ((𝑈 ∖ {(0g‘𝑊)}) ≠ ∅ ↔ ∃𝑧 𝑧 ∈ (𝑈 ∖ {(0g‘𝑊)})) | |
| 39 | df-rex 3054 | . . 3 ⊢ (∃𝑧 ∈ 𝑉 𝑈 = (𝑁‘{𝑧}) ↔ ∃𝑧(𝑧 ∈ 𝑉 ∧ 𝑈 = (𝑁‘{𝑧}))) | |
| 40 | 37, 38, 39 | 3imtr4g 296 | . 2 ⊢ (𝜑 → ((𝑈 ∖ {(0g‘𝑊)}) ≠ ∅ → ∃𝑧 ∈ 𝑉 𝑈 = (𝑁‘{𝑧}))) |
| 41 | 27, 40 | pm2.61dne 3011 | 1 ⊢ (𝜑 → ∃𝑧 ∈ 𝑉 𝑈 = (𝑁‘{𝑧})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ≠ wne 2925 ∃wrex 3053 ∖ cdif 3902 ⊆ wss 3905 ⊊ wpss 3906 ∅c0 4286 {csn 4579 {cpr 4581 ‘cfv 6486 Basecbs 17138 0gc0g 17361 LModclmod 20781 LSubSpclss 20852 LSpanclspn 20892 LVecclvec 21024 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-tpos 8166 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-3 12210 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-plusg 17192 df-mulr 17193 df-0g 17363 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-grp 18833 df-minusg 18834 df-sbg 18835 df-cmn 19679 df-abl 19680 df-mgp 20044 df-rng 20056 df-ur 20085 df-ring 20138 df-oppr 20240 df-dvdsr 20260 df-unit 20261 df-invr 20291 df-drng 20634 df-lmod 20783 df-lss 20853 df-lsp 20893 df-lvec 21025 |
| This theorem is referenced by: dvh3dim3N 41428 |
| Copyright terms: Public domain | W3C validator |