MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspprat Structured version   Visualization version   GIF version

Theorem lspprat 21119
Description: A proper subspace of the span of a pair of vectors is the span of a singleton (an atom) or the zero subspace (if 𝑧 is zero). Proof suggested by Mario Carneiro, 28-Aug-2014. (Contributed by NM, 29-Aug-2014.)
Hypotheses
Ref Expression
lspprat.v 𝑉 = (Base‘𝑊)
lspprat.s 𝑆 = (LSubSp‘𝑊)
lspprat.n 𝑁 = (LSpan‘𝑊)
lspprat.w (𝜑𝑊 ∈ LVec)
lspprat.u (𝜑𝑈𝑆)
lspprat.x (𝜑𝑋𝑉)
lspprat.y (𝜑𝑌𝑉)
lspprat.p (𝜑𝑈 ⊊ (𝑁‘{𝑋, 𝑌}))
Assertion
Ref Expression
lspprat (𝜑 → ∃𝑧𝑉 𝑈 = (𝑁‘{𝑧}))
Distinct variable groups:   𝑧,𝑁   𝑧,𝑈   𝑧,𝑉   𝑧,𝑊   𝜑,𝑧
Allowed substitution hints:   𝑆(𝑧)   𝑋(𝑧)   𝑌(𝑧)

Proof of Theorem lspprat
StepHypRef Expression
1 ssdif0 4346 . . 3 (𝑈 ⊆ {(0g𝑊)} ↔ (𝑈 ∖ {(0g𝑊)}) = ∅)
2 lspprat.w . . . . . . . 8 (𝜑𝑊 ∈ LVec)
3 lveclmod 21069 . . . . . . . 8 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
42, 3syl 17 . . . . . . 7 (𝜑𝑊 ∈ LMod)
5 lspprat.v . . . . . . . 8 𝑉 = (Base‘𝑊)
6 eqid 2736 . . . . . . . 8 (0g𝑊) = (0g𝑊)
75, 6lmod0vcl 20853 . . . . . . 7 (𝑊 ∈ LMod → (0g𝑊) ∈ 𝑉)
84, 7syl 17 . . . . . 6 (𝜑 → (0g𝑊) ∈ 𝑉)
98adantr 480 . . . . 5 ((𝜑𝑈 ⊆ {(0g𝑊)}) → (0g𝑊) ∈ 𝑉)
10 simpr 484 . . . . . . 7 ((𝜑𝑈 ⊆ {(0g𝑊)}) → 𝑈 ⊆ {(0g𝑊)})
11 lspprat.u . . . . . . . . 9 (𝜑𝑈𝑆)
12 lspprat.s . . . . . . . . . 10 𝑆 = (LSubSp‘𝑊)
136, 12lss0ss 20911 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → {(0g𝑊)} ⊆ 𝑈)
144, 11, 13syl2anc 584 . . . . . . . 8 (𝜑 → {(0g𝑊)} ⊆ 𝑈)
1514adantr 480 . . . . . . 7 ((𝜑𝑈 ⊆ {(0g𝑊)}) → {(0g𝑊)} ⊆ 𝑈)
1610, 15eqssd 3981 . . . . . 6 ((𝜑𝑈 ⊆ {(0g𝑊)}) → 𝑈 = {(0g𝑊)})
17 lspprat.n . . . . . . . . 9 𝑁 = (LSpan‘𝑊)
186, 17lspsn0 20970 . . . . . . . 8 (𝑊 ∈ LMod → (𝑁‘{(0g𝑊)}) = {(0g𝑊)})
194, 18syl 17 . . . . . . 7 (𝜑 → (𝑁‘{(0g𝑊)}) = {(0g𝑊)})
2019adantr 480 . . . . . 6 ((𝜑𝑈 ⊆ {(0g𝑊)}) → (𝑁‘{(0g𝑊)}) = {(0g𝑊)})
2116, 20eqtr4d 2774 . . . . 5 ((𝜑𝑈 ⊆ {(0g𝑊)}) → 𝑈 = (𝑁‘{(0g𝑊)}))
22 sneq 4616 . . . . . . 7 (𝑧 = (0g𝑊) → {𝑧} = {(0g𝑊)})
2322fveq2d 6885 . . . . . 6 (𝑧 = (0g𝑊) → (𝑁‘{𝑧}) = (𝑁‘{(0g𝑊)}))
2423rspceeqv 3629 . . . . 5 (((0g𝑊) ∈ 𝑉𝑈 = (𝑁‘{(0g𝑊)})) → ∃𝑧𝑉 𝑈 = (𝑁‘{𝑧}))
259, 21, 24syl2anc 584 . . . 4 ((𝜑𝑈 ⊆ {(0g𝑊)}) → ∃𝑧𝑉 𝑈 = (𝑁‘{𝑧}))
2625ex 412 . . 3 (𝜑 → (𝑈 ⊆ {(0g𝑊)} → ∃𝑧𝑉 𝑈 = (𝑁‘{𝑧})))
271, 26biimtrrid 243 . 2 (𝜑 → ((𝑈 ∖ {(0g𝑊)}) = ∅ → ∃𝑧𝑉 𝑈 = (𝑁‘{𝑧})))
285, 12lssss 20898 . . . . . . . 8 (𝑈𝑆𝑈𝑉)
2911, 28syl 17 . . . . . . 7 (𝜑𝑈𝑉)
3029ssdifssd 4127 . . . . . 6 (𝜑 → (𝑈 ∖ {(0g𝑊)}) ⊆ 𝑉)
3130sseld 3962 . . . . 5 (𝜑 → (𝑧 ∈ (𝑈 ∖ {(0g𝑊)}) → 𝑧𝑉))
32 lspprat.x . . . . . 6 (𝜑𝑋𝑉)
33 lspprat.y . . . . . 6 (𝜑𝑌𝑉)
34 lspprat.p . . . . . 6 (𝜑𝑈 ⊊ (𝑁‘{𝑋, 𝑌}))
355, 12, 17, 2, 11, 32, 33, 34, 6lsppratlem6 21118 . . . . 5 (𝜑 → (𝑧 ∈ (𝑈 ∖ {(0g𝑊)}) → 𝑈 = (𝑁‘{𝑧})))
3631, 35jcad 512 . . . 4 (𝜑 → (𝑧 ∈ (𝑈 ∖ {(0g𝑊)}) → (𝑧𝑉𝑈 = (𝑁‘{𝑧}))))
3736eximdv 1917 . . 3 (𝜑 → (∃𝑧 𝑧 ∈ (𝑈 ∖ {(0g𝑊)}) → ∃𝑧(𝑧𝑉𝑈 = (𝑁‘{𝑧}))))
38 n0 4333 . . 3 ((𝑈 ∖ {(0g𝑊)}) ≠ ∅ ↔ ∃𝑧 𝑧 ∈ (𝑈 ∖ {(0g𝑊)}))
39 df-rex 3062 . . 3 (∃𝑧𝑉 𝑈 = (𝑁‘{𝑧}) ↔ ∃𝑧(𝑧𝑉𝑈 = (𝑁‘{𝑧})))
4037, 38, 393imtr4g 296 . 2 (𝜑 → ((𝑈 ∖ {(0g𝑊)}) ≠ ∅ → ∃𝑧𝑉 𝑈 = (𝑁‘{𝑧})))
4127, 40pm2.61dne 3019 1 (𝜑 → ∃𝑧𝑉 𝑈 = (𝑁‘{𝑧}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2109  wne 2933  wrex 3061  cdif 3928  wss 3931  wpss 3932  c0 4313  {csn 4606  {cpr 4608  cfv 6536  Basecbs 17233  0gc0g 17458  LModclmod 20822  LSubSpclss 20893  LSpanclspn 20933  LVecclvec 21065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-tpos 8230  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-3 12309  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-0g 17460  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-grp 18924  df-minusg 18925  df-sbg 18926  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-ring 20200  df-oppr 20302  df-dvdsr 20322  df-unit 20323  df-invr 20353  df-drng 20696  df-lmod 20824  df-lss 20894  df-lsp 20934  df-lvec 21066
This theorem is referenced by:  dvh3dim3N  41473
  Copyright terms: Public domain W3C validator