![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lspprat | Structured version Visualization version GIF version |
Description: A proper subspace of the span of a pair of vectors is the span of a singleton (an atom) or the zero subspace (if 𝑧 is zero). Proof suggested by Mario Carneiro, 28-Aug-2014. (Contributed by NM, 29-Aug-2014.) |
Ref | Expression |
---|---|
lspprat.v | ⊢ 𝑉 = (Base‘𝑊) |
lspprat.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
lspprat.n | ⊢ 𝑁 = (LSpan‘𝑊) |
lspprat.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
lspprat.u | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
lspprat.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
lspprat.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
lspprat.p | ⊢ (𝜑 → 𝑈 ⊊ (𝑁‘{𝑋, 𝑌})) |
Ref | Expression |
---|---|
lspprat | ⊢ (𝜑 → ∃𝑧 ∈ 𝑉 𝑈 = (𝑁‘{𝑧})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssdif0 4389 | . . 3 ⊢ (𝑈 ⊆ {(0g‘𝑊)} ↔ (𝑈 ∖ {(0g‘𝑊)}) = ∅) | |
2 | lspprat.w | . . . . . . . 8 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
3 | lveclmod 21128 | . . . . . . . 8 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
4 | 2, 3 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑊 ∈ LMod) |
5 | lspprat.v | . . . . . . . 8 ⊢ 𝑉 = (Base‘𝑊) | |
6 | eqid 2740 | . . . . . . . 8 ⊢ (0g‘𝑊) = (0g‘𝑊) | |
7 | 5, 6 | lmod0vcl 20911 | . . . . . . 7 ⊢ (𝑊 ∈ LMod → (0g‘𝑊) ∈ 𝑉) |
8 | 4, 7 | syl 17 | . . . . . 6 ⊢ (𝜑 → (0g‘𝑊) ∈ 𝑉) |
9 | 8 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑈 ⊆ {(0g‘𝑊)}) → (0g‘𝑊) ∈ 𝑉) |
10 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑈 ⊆ {(0g‘𝑊)}) → 𝑈 ⊆ {(0g‘𝑊)}) | |
11 | lspprat.u | . . . . . . . . 9 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
12 | lspprat.s | . . . . . . . . . 10 ⊢ 𝑆 = (LSubSp‘𝑊) | |
13 | 6, 12 | lss0ss 20970 | . . . . . . . . 9 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → {(0g‘𝑊)} ⊆ 𝑈) |
14 | 4, 11, 13 | syl2anc 583 | . . . . . . . 8 ⊢ (𝜑 → {(0g‘𝑊)} ⊆ 𝑈) |
15 | 14 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑈 ⊆ {(0g‘𝑊)}) → {(0g‘𝑊)} ⊆ 𝑈) |
16 | 10, 15 | eqssd 4026 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑈 ⊆ {(0g‘𝑊)}) → 𝑈 = {(0g‘𝑊)}) |
17 | lspprat.n | . . . . . . . . 9 ⊢ 𝑁 = (LSpan‘𝑊) | |
18 | 6, 17 | lspsn0 21029 | . . . . . . . 8 ⊢ (𝑊 ∈ LMod → (𝑁‘{(0g‘𝑊)}) = {(0g‘𝑊)}) |
19 | 4, 18 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (𝑁‘{(0g‘𝑊)}) = {(0g‘𝑊)}) |
20 | 19 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑈 ⊆ {(0g‘𝑊)}) → (𝑁‘{(0g‘𝑊)}) = {(0g‘𝑊)}) |
21 | 16, 20 | eqtr4d 2783 | . . . . 5 ⊢ ((𝜑 ∧ 𝑈 ⊆ {(0g‘𝑊)}) → 𝑈 = (𝑁‘{(0g‘𝑊)})) |
22 | sneq 4658 | . . . . . . 7 ⊢ (𝑧 = (0g‘𝑊) → {𝑧} = {(0g‘𝑊)}) | |
23 | 22 | fveq2d 6924 | . . . . . 6 ⊢ (𝑧 = (0g‘𝑊) → (𝑁‘{𝑧}) = (𝑁‘{(0g‘𝑊)})) |
24 | 23 | rspceeqv 3658 | . . . . 5 ⊢ (((0g‘𝑊) ∈ 𝑉 ∧ 𝑈 = (𝑁‘{(0g‘𝑊)})) → ∃𝑧 ∈ 𝑉 𝑈 = (𝑁‘{𝑧})) |
25 | 9, 21, 24 | syl2anc 583 | . . . 4 ⊢ ((𝜑 ∧ 𝑈 ⊆ {(0g‘𝑊)}) → ∃𝑧 ∈ 𝑉 𝑈 = (𝑁‘{𝑧})) |
26 | 25 | ex 412 | . . 3 ⊢ (𝜑 → (𝑈 ⊆ {(0g‘𝑊)} → ∃𝑧 ∈ 𝑉 𝑈 = (𝑁‘{𝑧}))) |
27 | 1, 26 | biimtrrid 243 | . 2 ⊢ (𝜑 → ((𝑈 ∖ {(0g‘𝑊)}) = ∅ → ∃𝑧 ∈ 𝑉 𝑈 = (𝑁‘{𝑧}))) |
28 | 5, 12 | lssss 20957 | . . . . . . . 8 ⊢ (𝑈 ∈ 𝑆 → 𝑈 ⊆ 𝑉) |
29 | 11, 28 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑈 ⊆ 𝑉) |
30 | 29 | ssdifssd 4170 | . . . . . 6 ⊢ (𝜑 → (𝑈 ∖ {(0g‘𝑊)}) ⊆ 𝑉) |
31 | 30 | sseld 4007 | . . . . 5 ⊢ (𝜑 → (𝑧 ∈ (𝑈 ∖ {(0g‘𝑊)}) → 𝑧 ∈ 𝑉)) |
32 | lspprat.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
33 | lspprat.y | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
34 | lspprat.p | . . . . . 6 ⊢ (𝜑 → 𝑈 ⊊ (𝑁‘{𝑋, 𝑌})) | |
35 | 5, 12, 17, 2, 11, 32, 33, 34, 6 | lsppratlem6 21177 | . . . . 5 ⊢ (𝜑 → (𝑧 ∈ (𝑈 ∖ {(0g‘𝑊)}) → 𝑈 = (𝑁‘{𝑧}))) |
36 | 31, 35 | jcad 512 | . . . 4 ⊢ (𝜑 → (𝑧 ∈ (𝑈 ∖ {(0g‘𝑊)}) → (𝑧 ∈ 𝑉 ∧ 𝑈 = (𝑁‘{𝑧})))) |
37 | 36 | eximdv 1916 | . . 3 ⊢ (𝜑 → (∃𝑧 𝑧 ∈ (𝑈 ∖ {(0g‘𝑊)}) → ∃𝑧(𝑧 ∈ 𝑉 ∧ 𝑈 = (𝑁‘{𝑧})))) |
38 | n0 4376 | . . 3 ⊢ ((𝑈 ∖ {(0g‘𝑊)}) ≠ ∅ ↔ ∃𝑧 𝑧 ∈ (𝑈 ∖ {(0g‘𝑊)})) | |
39 | df-rex 3077 | . . 3 ⊢ (∃𝑧 ∈ 𝑉 𝑈 = (𝑁‘{𝑧}) ↔ ∃𝑧(𝑧 ∈ 𝑉 ∧ 𝑈 = (𝑁‘{𝑧}))) | |
40 | 37, 38, 39 | 3imtr4g 296 | . 2 ⊢ (𝜑 → ((𝑈 ∖ {(0g‘𝑊)}) ≠ ∅ → ∃𝑧 ∈ 𝑉 𝑈 = (𝑁‘{𝑧}))) |
41 | 27, 40 | pm2.61dne 3034 | 1 ⊢ (𝜑 → ∃𝑧 ∈ 𝑉 𝑈 = (𝑁‘{𝑧})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∃wex 1777 ∈ wcel 2108 ≠ wne 2946 ∃wrex 3076 ∖ cdif 3973 ⊆ wss 3976 ⊊ wpss 3977 ∅c0 4352 {csn 4648 {cpr 4650 ‘cfv 6573 Basecbs 17258 0gc0g 17499 LModclmod 20880 LSubSpclss 20952 LSpanclspn 20992 LVecclvec 21124 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-tpos 8267 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-0g 17501 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-grp 18976 df-minusg 18977 df-sbg 18978 df-cmn 19824 df-abl 19825 df-mgp 20162 df-rng 20180 df-ur 20209 df-ring 20262 df-oppr 20360 df-dvdsr 20383 df-unit 20384 df-invr 20414 df-drng 20753 df-lmod 20882 df-lss 20953 df-lsp 20993 df-lvec 21125 |
This theorem is referenced by: dvh3dim3N 41406 |
Copyright terms: Public domain | W3C validator |