Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lspprat | Structured version Visualization version GIF version |
Description: A proper subspace of the span of a pair of vectors is the span of a singleton (an atom) or the zero subspace (if 𝑧 is zero). Proof suggested by Mario Carneiro, 28-Aug-2014. (Contributed by NM, 29-Aug-2014.) |
Ref | Expression |
---|---|
lspprat.v | ⊢ 𝑉 = (Base‘𝑊) |
lspprat.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
lspprat.n | ⊢ 𝑁 = (LSpan‘𝑊) |
lspprat.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
lspprat.u | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
lspprat.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
lspprat.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
lspprat.p | ⊢ (𝜑 → 𝑈 ⊊ (𝑁‘{𝑋, 𝑌})) |
Ref | Expression |
---|---|
lspprat | ⊢ (𝜑 → ∃𝑧 ∈ 𝑉 𝑈 = (𝑁‘{𝑧})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssdif0 4253 | . . 3 ⊢ (𝑈 ⊆ {(0g‘𝑊)} ↔ (𝑈 ∖ {(0g‘𝑊)}) = ∅) | |
2 | lspprat.w | . . . . . . . 8 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
3 | lveclmod 19998 | . . . . . . . 8 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
4 | 2, 3 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑊 ∈ LMod) |
5 | lspprat.v | . . . . . . . 8 ⊢ 𝑉 = (Base‘𝑊) | |
6 | eqid 2738 | . . . . . . . 8 ⊢ (0g‘𝑊) = (0g‘𝑊) | |
7 | 5, 6 | lmod0vcl 19783 | . . . . . . 7 ⊢ (𝑊 ∈ LMod → (0g‘𝑊) ∈ 𝑉) |
8 | 4, 7 | syl 17 | . . . . . 6 ⊢ (𝜑 → (0g‘𝑊) ∈ 𝑉) |
9 | 8 | adantr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑈 ⊆ {(0g‘𝑊)}) → (0g‘𝑊) ∈ 𝑉) |
10 | simpr 488 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑈 ⊆ {(0g‘𝑊)}) → 𝑈 ⊆ {(0g‘𝑊)}) | |
11 | lspprat.u | . . . . . . . . 9 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
12 | lspprat.s | . . . . . . . . . 10 ⊢ 𝑆 = (LSubSp‘𝑊) | |
13 | 6, 12 | lss0ss 19840 | . . . . . . . . 9 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → {(0g‘𝑊)} ⊆ 𝑈) |
14 | 4, 11, 13 | syl2anc 587 | . . . . . . . 8 ⊢ (𝜑 → {(0g‘𝑊)} ⊆ 𝑈) |
15 | 14 | adantr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑈 ⊆ {(0g‘𝑊)}) → {(0g‘𝑊)} ⊆ 𝑈) |
16 | 10, 15 | eqssd 3895 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑈 ⊆ {(0g‘𝑊)}) → 𝑈 = {(0g‘𝑊)}) |
17 | lspprat.n | . . . . . . . . 9 ⊢ 𝑁 = (LSpan‘𝑊) | |
18 | 6, 17 | lspsn0 19900 | . . . . . . . 8 ⊢ (𝑊 ∈ LMod → (𝑁‘{(0g‘𝑊)}) = {(0g‘𝑊)}) |
19 | 4, 18 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (𝑁‘{(0g‘𝑊)}) = {(0g‘𝑊)}) |
20 | 19 | adantr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑈 ⊆ {(0g‘𝑊)}) → (𝑁‘{(0g‘𝑊)}) = {(0g‘𝑊)}) |
21 | 16, 20 | eqtr4d 2776 | . . . . 5 ⊢ ((𝜑 ∧ 𝑈 ⊆ {(0g‘𝑊)}) → 𝑈 = (𝑁‘{(0g‘𝑊)})) |
22 | sneq 4527 | . . . . . . 7 ⊢ (𝑧 = (0g‘𝑊) → {𝑧} = {(0g‘𝑊)}) | |
23 | 22 | fveq2d 6679 | . . . . . 6 ⊢ (𝑧 = (0g‘𝑊) → (𝑁‘{𝑧}) = (𝑁‘{(0g‘𝑊)})) |
24 | 23 | rspceeqv 3542 | . . . . 5 ⊢ (((0g‘𝑊) ∈ 𝑉 ∧ 𝑈 = (𝑁‘{(0g‘𝑊)})) → ∃𝑧 ∈ 𝑉 𝑈 = (𝑁‘{𝑧})) |
25 | 9, 21, 24 | syl2anc 587 | . . . 4 ⊢ ((𝜑 ∧ 𝑈 ⊆ {(0g‘𝑊)}) → ∃𝑧 ∈ 𝑉 𝑈 = (𝑁‘{𝑧})) |
26 | 25 | ex 416 | . . 3 ⊢ (𝜑 → (𝑈 ⊆ {(0g‘𝑊)} → ∃𝑧 ∈ 𝑉 𝑈 = (𝑁‘{𝑧}))) |
27 | 1, 26 | syl5bir 246 | . 2 ⊢ (𝜑 → ((𝑈 ∖ {(0g‘𝑊)}) = ∅ → ∃𝑧 ∈ 𝑉 𝑈 = (𝑁‘{𝑧}))) |
28 | 5, 12 | lssss 19828 | . . . . . . . 8 ⊢ (𝑈 ∈ 𝑆 → 𝑈 ⊆ 𝑉) |
29 | 11, 28 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑈 ⊆ 𝑉) |
30 | 29 | ssdifssd 4034 | . . . . . 6 ⊢ (𝜑 → (𝑈 ∖ {(0g‘𝑊)}) ⊆ 𝑉) |
31 | 30 | sseld 3877 | . . . . 5 ⊢ (𝜑 → (𝑧 ∈ (𝑈 ∖ {(0g‘𝑊)}) → 𝑧 ∈ 𝑉)) |
32 | lspprat.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
33 | lspprat.y | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
34 | lspprat.p | . . . . . 6 ⊢ (𝜑 → 𝑈 ⊊ (𝑁‘{𝑋, 𝑌})) | |
35 | 5, 12, 17, 2, 11, 32, 33, 34, 6 | lsppratlem6 20044 | . . . . 5 ⊢ (𝜑 → (𝑧 ∈ (𝑈 ∖ {(0g‘𝑊)}) → 𝑈 = (𝑁‘{𝑧}))) |
36 | 31, 35 | jcad 516 | . . . 4 ⊢ (𝜑 → (𝑧 ∈ (𝑈 ∖ {(0g‘𝑊)}) → (𝑧 ∈ 𝑉 ∧ 𝑈 = (𝑁‘{𝑧})))) |
37 | 36 | eximdv 1923 | . . 3 ⊢ (𝜑 → (∃𝑧 𝑧 ∈ (𝑈 ∖ {(0g‘𝑊)}) → ∃𝑧(𝑧 ∈ 𝑉 ∧ 𝑈 = (𝑁‘{𝑧})))) |
38 | n0 4236 | . . 3 ⊢ ((𝑈 ∖ {(0g‘𝑊)}) ≠ ∅ ↔ ∃𝑧 𝑧 ∈ (𝑈 ∖ {(0g‘𝑊)})) | |
39 | df-rex 3059 | . . 3 ⊢ (∃𝑧 ∈ 𝑉 𝑈 = (𝑁‘{𝑧}) ↔ ∃𝑧(𝑧 ∈ 𝑉 ∧ 𝑈 = (𝑁‘{𝑧}))) | |
40 | 37, 38, 39 | 3imtr4g 299 | . 2 ⊢ (𝜑 → ((𝑈 ∖ {(0g‘𝑊)}) ≠ ∅ → ∃𝑧 ∈ 𝑉 𝑈 = (𝑁‘{𝑧}))) |
41 | 27, 40 | pm2.61dne 3020 | 1 ⊢ (𝜑 → ∃𝑧 ∈ 𝑉 𝑈 = (𝑁‘{𝑧})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1542 ∃wex 1786 ∈ wcel 2113 ≠ wne 2934 ∃wrex 3054 ∖ cdif 3841 ⊆ wss 3844 ⊊ wpss 3845 ∅c0 4212 {csn 4517 {cpr 4519 ‘cfv 6340 Basecbs 16587 0gc0g 16817 LModclmod 19754 LSubSpclss 19823 LSpanclspn 19863 LVecclvec 19994 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-10 2144 ax-11 2161 ax-12 2178 ax-ext 2710 ax-rep 5155 ax-sep 5168 ax-nul 5175 ax-pow 5233 ax-pr 5297 ax-un 7480 ax-cnex 10672 ax-resscn 10673 ax-1cn 10674 ax-icn 10675 ax-addcl 10676 ax-addrcl 10677 ax-mulcl 10678 ax-mulrcl 10679 ax-mulcom 10680 ax-addass 10681 ax-mulass 10682 ax-distr 10683 ax-i2m1 10684 ax-1ne0 10685 ax-1rid 10686 ax-rnegex 10687 ax-rrecex 10688 ax-cnre 10689 ax-pre-lttri 10690 ax-pre-lttrn 10691 ax-pre-ltadd 10692 ax-pre-mulgt0 10693 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2074 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rmo 3061 df-rab 3062 df-v 3400 df-sbc 3683 df-csb 3792 df-dif 3847 df-un 3849 df-in 3851 df-ss 3861 df-pss 3863 df-nul 4213 df-if 4416 df-pw 4491 df-sn 4518 df-pr 4520 df-tp 4522 df-op 4524 df-uni 4798 df-int 4838 df-iun 4884 df-br 5032 df-opab 5094 df-mpt 5112 df-tr 5138 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5484 df-we 5486 df-xp 5532 df-rel 5533 df-cnv 5534 df-co 5535 df-dm 5536 df-rn 5537 df-res 5538 df-ima 5539 df-pred 6130 df-ord 6176 df-on 6177 df-lim 6178 df-suc 6179 df-iota 6298 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-riota 7128 df-ov 7174 df-oprab 7175 df-mpo 7176 df-om 7601 df-1st 7715 df-2nd 7716 df-tpos 7922 df-wrecs 7977 df-recs 8038 df-rdg 8076 df-er 8321 df-en 8557 df-dom 8558 df-sdom 8559 df-pnf 10756 df-mnf 10757 df-xr 10758 df-ltxr 10759 df-le 10760 df-sub 10951 df-neg 10952 df-nn 11718 df-2 11780 df-3 11781 df-ndx 16590 df-slot 16591 df-base 16593 df-sets 16594 df-ress 16595 df-plusg 16682 df-mulr 16683 df-0g 16819 df-mgm 17969 df-sgrp 18018 df-mnd 18029 df-grp 18223 df-minusg 18224 df-sbg 18225 df-cmn 19027 df-abl 19028 df-mgp 19360 df-ur 19372 df-ring 19419 df-oppr 19496 df-dvdsr 19514 df-unit 19515 df-invr 19545 df-drng 19624 df-lmod 19756 df-lss 19824 df-lsp 19864 df-lvec 19995 |
This theorem is referenced by: dvh3dim3N 39083 |
Copyright terms: Public domain | W3C validator |