| Step | Hyp | Ref
| Expression |
| 1 | | cvgcmp.1 |
. 2
⊢ 𝑍 =
(ℤ≥‘𝑀) |
| 2 | | seqex 14044 |
. . 3
⊢ seq𝑀( + , 𝐺) ∈ V |
| 3 | 2 | a1i 11 |
. 2
⊢ (𝜑 → seq𝑀( + , 𝐺) ∈ V) |
| 4 | | cvgcmp.2 |
. . . . . . . 8
⊢ (𝜑 → 𝑁 ∈ 𝑍) |
| 5 | 4, 1 | eleqtrdi 2851 |
. . . . . . 7
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
| 6 | | eluzel2 12883 |
. . . . . . 7
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑀 ∈ ℤ) |
| 7 | 5, 6 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 8 | | cvgcmp.5 |
. . . . . 6
⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) |
| 9 | 1 | climcau 15707 |
. . . . . 6
⊢ ((𝑀 ∈ ℤ ∧ seq𝑀( + , 𝐹) ∈ dom ⇝ ) → ∀𝑥 ∈ ℝ+
∃𝑚 ∈ 𝑍 ∀𝑛 ∈ (ℤ≥‘𝑚)(abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥) |
| 10 | 7, 8, 9 | syl2anc 584 |
. . . . 5
⊢ (𝜑 → ∀𝑥 ∈ ℝ+ ∃𝑚 ∈ 𝑍 ∀𝑛 ∈ (ℤ≥‘𝑚)(abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥) |
| 11 | | cvgcmp.3 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) |
| 12 | 1, 7, 11 | serfre 14072 |
. . . . . . . . . 10
⊢ (𝜑 → seq𝑀( + , 𝐹):𝑍⟶ℝ) |
| 13 | 12 | ffvelcdmda 7104 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (seq𝑀( + , 𝐹)‘𝑛) ∈ ℝ) |
| 14 | 13 | recnd 11289 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ) |
| 15 | 14 | ralrimiva 3146 |
. . . . . . 7
⊢ (𝜑 → ∀𝑛 ∈ 𝑍 (seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ) |
| 16 | 1 | r19.29uz 15389 |
. . . . . . . 8
⊢
((∀𝑛 ∈
𝑍 (seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ ∧ ∃𝑚 ∈ 𝑍 ∀𝑛 ∈ (ℤ≥‘𝑚)(abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥) → ∃𝑚 ∈ 𝑍 ∀𝑛 ∈ (ℤ≥‘𝑚)((seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥)) |
| 17 | 16 | ex 412 |
. . . . . . 7
⊢
(∀𝑛 ∈
𝑍 (seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ → (∃𝑚 ∈ 𝑍 ∀𝑛 ∈ (ℤ≥‘𝑚)(abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥 → ∃𝑚 ∈ 𝑍 ∀𝑛 ∈ (ℤ≥‘𝑚)((seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥))) |
| 18 | 15, 17 | syl 17 |
. . . . . 6
⊢ (𝜑 → (∃𝑚 ∈ 𝑍 ∀𝑛 ∈ (ℤ≥‘𝑚)(abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥 → ∃𝑚 ∈ 𝑍 ∀𝑛 ∈ (ℤ≥‘𝑚)((seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥))) |
| 19 | 18 | ralimdv 3169 |
. . . . 5
⊢ (𝜑 → (∀𝑥 ∈ ℝ+
∃𝑚 ∈ 𝑍 ∀𝑛 ∈ (ℤ≥‘𝑚)(abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥 → ∀𝑥 ∈ ℝ+ ∃𝑚 ∈ 𝑍 ∀𝑛 ∈ (ℤ≥‘𝑚)((seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥))) |
| 20 | 10, 19 | mpd 15 |
. . . 4
⊢ (𝜑 → ∀𝑥 ∈ ℝ+ ∃𝑚 ∈ 𝑍 ∀𝑛 ∈ (ℤ≥‘𝑚)((seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥)) |
| 21 | 1 | uztrn2 12897 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → 𝑛 ∈ 𝑍) |
| 22 | 4, 21 | sylan 580 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → 𝑛 ∈ 𝑍) |
| 23 | | cvgcmp.4 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ ℝ) |
| 24 | 1, 7, 23 | serfre 14072 |
. . . . . . . . . . . 12
⊢ (𝜑 → seq𝑀( + , 𝐺):𝑍⟶ℝ) |
| 25 | 24 | ffvelcdmda 7104 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (seq𝑀( + , 𝐺)‘𝑛) ∈ ℝ) |
| 26 | 25 | recnd 11289 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ) |
| 27 | 22, 26 | syldan 591 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → (seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ) |
| 28 | 27 | ralrimiva 3146 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑛 ∈ (ℤ≥‘𝑁)(seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ) |
| 29 | 28 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
∀𝑛 ∈
(ℤ≥‘𝑁)(seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ) |
| 30 | | simpll 767 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑚 ∈
(ℤ≥‘𝑁) ∧ 𝑛 ∈ (ℤ≥‘𝑚))) → 𝜑) |
| 31 | 30, 12 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑚 ∈
(ℤ≥‘𝑁) ∧ 𝑛 ∈ (ℤ≥‘𝑚))) → seq𝑀( + , 𝐹):𝑍⟶ℝ) |
| 32 | 30, 4 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑚 ∈
(ℤ≥‘𝑁) ∧ 𝑛 ∈ (ℤ≥‘𝑚))) → 𝑁 ∈ 𝑍) |
| 33 | | simprl 771 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑚 ∈
(ℤ≥‘𝑁) ∧ 𝑛 ∈ (ℤ≥‘𝑚))) → 𝑚 ∈ (ℤ≥‘𝑁)) |
| 34 | 1 | uztrn2 12897 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 ∈ 𝑍 ∧ 𝑚 ∈ (ℤ≥‘𝑁)) → 𝑚 ∈ 𝑍) |
| 35 | 32, 33, 34 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑚 ∈
(ℤ≥‘𝑁) ∧ 𝑛 ∈ (ℤ≥‘𝑚))) → 𝑚 ∈ 𝑍) |
| 36 | 31, 35 | ffvelcdmd 7105 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑚 ∈
(ℤ≥‘𝑁) ∧ 𝑛 ∈ (ℤ≥‘𝑚))) → (seq𝑀( + , 𝐹)‘𝑚) ∈ ℝ) |
| 37 | | eqid 2737 |
. . . . . . . . . . . . . . . . . 18
⊢
(ℤ≥‘𝑁) = (ℤ≥‘𝑁) |
| 38 | 37 | uztrn2 12897 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑚 ∈
(ℤ≥‘𝑁) ∧ 𝑛 ∈ (ℤ≥‘𝑚)) → 𝑛 ∈ (ℤ≥‘𝑁)) |
| 39 | 38 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑚 ∈
(ℤ≥‘𝑁) ∧ 𝑛 ∈ (ℤ≥‘𝑚))) → 𝑛 ∈ (ℤ≥‘𝑁)) |
| 40 | 32, 39, 21 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑚 ∈
(ℤ≥‘𝑁) ∧ 𝑛 ∈ (ℤ≥‘𝑚))) → 𝑛 ∈ 𝑍) |
| 41 | 30, 40, 13 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑚 ∈
(ℤ≥‘𝑁) ∧ 𝑛 ∈ (ℤ≥‘𝑚))) → (seq𝑀( + , 𝐹)‘𝑛) ∈ ℝ) |
| 42 | 30, 40, 25 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑚 ∈
(ℤ≥‘𝑁) ∧ 𝑛 ∈ (ℤ≥‘𝑚))) → (seq𝑀( + , 𝐺)‘𝑛) ∈ ℝ) |
| 43 | 30, 24 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑚 ∈
(ℤ≥‘𝑁) ∧ 𝑛 ∈ (ℤ≥‘𝑚))) → seq𝑀( + , 𝐺):𝑍⟶ℝ) |
| 44 | 43, 35 | ffvelcdmd 7105 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑚 ∈
(ℤ≥‘𝑁) ∧ 𝑛 ∈ (ℤ≥‘𝑚))) → (seq𝑀( + , 𝐺)‘𝑚) ∈ ℝ) |
| 45 | 42, 44 | resubcld 11691 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑚 ∈
(ℤ≥‘𝑁) ∧ 𝑛 ∈ (ℤ≥‘𝑚))) → ((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚)) ∈ ℝ) |
| 46 | 35, 1 | eleqtrdi 2851 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑚 ∈
(ℤ≥‘𝑁) ∧ 𝑛 ∈ (ℤ≥‘𝑚))) → 𝑚 ∈ (ℤ≥‘𝑀)) |
| 47 | | simprr 773 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑚 ∈
(ℤ≥‘𝑁) ∧ 𝑛 ∈ (ℤ≥‘𝑚))) → 𝑛 ∈ (ℤ≥‘𝑚)) |
| 48 | | elfzuz 13560 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 ∈ (𝑀...𝑛) → 𝑘 ∈ (ℤ≥‘𝑀)) |
| 49 | 48, 1 | eleqtrrdi 2852 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 ∈ (𝑀...𝑛) → 𝑘 ∈ 𝑍) |
| 50 | | fveq2 6906 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑚 = 𝑘 → (𝐹‘𝑚) = (𝐹‘𝑘)) |
| 51 | | fveq2 6906 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑚 = 𝑘 → (𝐺‘𝑚) = (𝐺‘𝑘)) |
| 52 | 50, 51 | oveq12d 7449 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑚 = 𝑘 → ((𝐹‘𝑚) − (𝐺‘𝑚)) = ((𝐹‘𝑘) − (𝐺‘𝑘))) |
| 53 | | eqid 2737 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚) − (𝐺‘𝑚))) = (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚) − (𝐺‘𝑚))) |
| 54 | | ovex 7464 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐹‘𝑘) − (𝐺‘𝑘)) ∈ V |
| 55 | 52, 53, 54 | fvmpt 7016 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 ∈ 𝑍 → ((𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚) − (𝐺‘𝑚)))‘𝑘) = ((𝐹‘𝑘) − (𝐺‘𝑘))) |
| 56 | 55 | adantl 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚) − (𝐺‘𝑚)))‘𝑘) = ((𝐹‘𝑘) − (𝐺‘𝑘))) |
| 57 | 11, 23 | resubcld 11691 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝐹‘𝑘) − (𝐺‘𝑘)) ∈ ℝ) |
| 58 | 56, 57 | eqeltrd 2841 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚) − (𝐺‘𝑚)))‘𝑘) ∈ ℝ) |
| 59 | 30, 49, 58 | syl2an 596 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑚 ∈
(ℤ≥‘𝑁) ∧ 𝑛 ∈ (ℤ≥‘𝑚))) ∧ 𝑘 ∈ (𝑀...𝑛)) → ((𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚) − (𝐺‘𝑚)))‘𝑘) ∈ ℝ) |
| 60 | | elfzuz 13560 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 ∈ ((𝑚 + 1)...𝑛) → 𝑘 ∈ (ℤ≥‘(𝑚 + 1))) |
| 61 | | peano2uz 12943 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑚 ∈
(ℤ≥‘𝑁) → (𝑚 + 1) ∈
(ℤ≥‘𝑁)) |
| 62 | 33, 61 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑚 ∈
(ℤ≥‘𝑁) ∧ 𝑛 ∈ (ℤ≥‘𝑚))) → (𝑚 + 1) ∈
(ℤ≥‘𝑁)) |
| 63 | 37 | uztrn2 12897 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑚 + 1) ∈
(ℤ≥‘𝑁) ∧ 𝑘 ∈ (ℤ≥‘(𝑚 + 1))) → 𝑘 ∈
(ℤ≥‘𝑁)) |
| 64 | 62, 63 | sylan 580 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑚 ∈
(ℤ≥‘𝑁) ∧ 𝑛 ∈ (ℤ≥‘𝑚))) ∧ 𝑘 ∈ (ℤ≥‘(𝑚 + 1))) → 𝑘 ∈
(ℤ≥‘𝑁)) |
| 65 | | cvgcmp.7 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → (𝐺‘𝑘) ≤ (𝐹‘𝑘)) |
| 66 | 1 | uztrn2 12897 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑁 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → 𝑘 ∈ 𝑍) |
| 67 | 4, 66 | sylan 580 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → 𝑘 ∈ 𝑍) |
| 68 | 11, 23 | subge0d 11853 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (0 ≤ ((𝐹‘𝑘) − (𝐺‘𝑘)) ↔ (𝐺‘𝑘) ≤ (𝐹‘𝑘))) |
| 69 | 67, 68 | syldan 591 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → (0 ≤ ((𝐹‘𝑘) − (𝐺‘𝑘)) ↔ (𝐺‘𝑘) ≤ (𝐹‘𝑘))) |
| 70 | 65, 69 | mpbird 257 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → 0 ≤ ((𝐹‘𝑘) − (𝐺‘𝑘))) |
| 71 | 67, 55 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → ((𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚) − (𝐺‘𝑚)))‘𝑘) = ((𝐹‘𝑘) − (𝐺‘𝑘))) |
| 72 | 70, 71 | breqtrrd 5171 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → 0 ≤ ((𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚) − (𝐺‘𝑚)))‘𝑘)) |
| 73 | 30, 64, 72 | syl2an2r 685 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑚 ∈
(ℤ≥‘𝑁) ∧ 𝑛 ∈ (ℤ≥‘𝑚))) ∧ 𝑘 ∈ (ℤ≥‘(𝑚 + 1))) → 0 ≤ ((𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚) − (𝐺‘𝑚)))‘𝑘)) |
| 74 | 60, 73 | sylan2 593 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑚 ∈
(ℤ≥‘𝑁) ∧ 𝑛 ∈ (ℤ≥‘𝑚))) ∧ 𝑘 ∈ ((𝑚 + 1)...𝑛)) → 0 ≤ ((𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚) − (𝐺‘𝑚)))‘𝑘)) |
| 75 | 46, 47, 59, 74 | sermono 14075 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑚 ∈
(ℤ≥‘𝑁) ∧ 𝑛 ∈ (ℤ≥‘𝑚))) → (seq𝑀( + , (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚) − (𝐺‘𝑚))))‘𝑚) ≤ (seq𝑀( + , (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚) − (𝐺‘𝑚))))‘𝑛)) |
| 76 | | elfzuz 13560 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 ∈ (𝑀...𝑚) → 𝑘 ∈ (ℤ≥‘𝑀)) |
| 77 | 76, 1 | eleqtrrdi 2852 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 ∈ (𝑀...𝑚) → 𝑘 ∈ 𝑍) |
| 78 | 11 | recnd 11289 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) |
| 79 | 30, 77, 78 | syl2an 596 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑚 ∈
(ℤ≥‘𝑁) ∧ 𝑛 ∈ (ℤ≥‘𝑚))) ∧ 𝑘 ∈ (𝑀...𝑚)) → (𝐹‘𝑘) ∈ ℂ) |
| 80 | 23 | recnd 11289 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ ℂ) |
| 81 | 30, 77, 80 | syl2an 596 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑚 ∈
(ℤ≥‘𝑁) ∧ 𝑛 ∈ (ℤ≥‘𝑚))) ∧ 𝑘 ∈ (𝑀...𝑚)) → (𝐺‘𝑘) ∈ ℂ) |
| 82 | 30, 77, 56 | syl2an 596 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑚 ∈
(ℤ≥‘𝑁) ∧ 𝑛 ∈ (ℤ≥‘𝑚))) ∧ 𝑘 ∈ (𝑀...𝑚)) → ((𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚) − (𝐺‘𝑚)))‘𝑘) = ((𝐹‘𝑘) − (𝐺‘𝑘))) |
| 83 | 46, 79, 81, 82 | sersub 14086 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑚 ∈
(ℤ≥‘𝑁) ∧ 𝑛 ∈ (ℤ≥‘𝑚))) → (seq𝑀( + , (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚) − (𝐺‘𝑚))))‘𝑚) = ((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐺)‘𝑚))) |
| 84 | 40, 1 | eleqtrdi 2851 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑚 ∈
(ℤ≥‘𝑁) ∧ 𝑛 ∈ (ℤ≥‘𝑚))) → 𝑛 ∈ (ℤ≥‘𝑀)) |
| 85 | 30, 49, 78 | syl2an 596 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑚 ∈
(ℤ≥‘𝑁) ∧ 𝑛 ∈ (ℤ≥‘𝑚))) ∧ 𝑘 ∈ (𝑀...𝑛)) → (𝐹‘𝑘) ∈ ℂ) |
| 86 | 30, 49, 80 | syl2an 596 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑚 ∈
(ℤ≥‘𝑁) ∧ 𝑛 ∈ (ℤ≥‘𝑚))) ∧ 𝑘 ∈ (𝑀...𝑛)) → (𝐺‘𝑘) ∈ ℂ) |
| 87 | 30, 49, 56 | syl2an 596 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑚 ∈
(ℤ≥‘𝑁) ∧ 𝑛 ∈ (ℤ≥‘𝑚))) ∧ 𝑘 ∈ (𝑀...𝑛)) → ((𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚) − (𝐺‘𝑚)))‘𝑘) = ((𝐹‘𝑘) − (𝐺‘𝑘))) |
| 88 | 84, 85, 86, 87 | sersub 14086 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑚 ∈
(ℤ≥‘𝑁) ∧ 𝑛 ∈ (ℤ≥‘𝑚))) → (seq𝑀( + , (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚) − (𝐺‘𝑚))))‘𝑛) = ((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑛))) |
| 89 | 75, 83, 88 | 3brtr3d 5174 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑚 ∈
(ℤ≥‘𝑁) ∧ 𝑛 ∈ (ℤ≥‘𝑚))) → ((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐺)‘𝑚)) ≤ ((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑛))) |
| 90 | 41, 42 | resubcld 11691 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑚 ∈
(ℤ≥‘𝑁) ∧ 𝑛 ∈ (ℤ≥‘𝑚))) → ((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑛)) ∈ ℝ) |
| 91 | 36, 44, 90 | lesubaddd 11860 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑚 ∈
(ℤ≥‘𝑁) ∧ 𝑛 ∈ (ℤ≥‘𝑚))) → (((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐺)‘𝑚)) ≤ ((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑛)) ↔ (seq𝑀( + , 𝐹)‘𝑚) ≤ (((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑛)) + (seq𝑀( + , 𝐺)‘𝑚)))) |
| 92 | 89, 91 | mpbid 232 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑚 ∈
(ℤ≥‘𝑁) ∧ 𝑛 ∈ (ℤ≥‘𝑚))) → (seq𝑀( + , 𝐹)‘𝑚) ≤ (((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑛)) + (seq𝑀( + , 𝐺)‘𝑚))) |
| 93 | 41 | recnd 11289 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑚 ∈
(ℤ≥‘𝑁) ∧ 𝑛 ∈ (ℤ≥‘𝑚))) → (seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ) |
| 94 | 42 | recnd 11289 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑚 ∈
(ℤ≥‘𝑁) ∧ 𝑛 ∈ (ℤ≥‘𝑚))) → (seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ) |
| 95 | 44 | recnd 11289 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑚 ∈
(ℤ≥‘𝑁) ∧ 𝑛 ∈ (ℤ≥‘𝑚))) → (seq𝑀( + , 𝐺)‘𝑚) ∈ ℂ) |
| 96 | 93, 94, 95 | subsubd 11648 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑚 ∈
(ℤ≥‘𝑁) ∧ 𝑛 ∈ (ℤ≥‘𝑚))) → ((seq𝑀( + , 𝐹)‘𝑛) − ((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) = (((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑛)) + (seq𝑀( + , 𝐺)‘𝑚))) |
| 97 | 92, 96 | breqtrrd 5171 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑚 ∈
(ℤ≥‘𝑁) ∧ 𝑛 ∈ (ℤ≥‘𝑚))) → (seq𝑀( + , 𝐹)‘𝑚) ≤ ((seq𝑀( + , 𝐹)‘𝑛) − ((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚)))) |
| 98 | 36, 41, 45, 97 | lesubd 11867 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑚 ∈
(ℤ≥‘𝑁) ∧ 𝑛 ∈ (ℤ≥‘𝑚))) → ((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚)) ≤ ((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) |
| 99 | 41, 36 | resubcld 11691 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑚 ∈
(ℤ≥‘𝑁) ∧ 𝑛 ∈ (ℤ≥‘𝑚))) → ((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚)) ∈ ℝ) |
| 100 | | rpre 13043 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ ℝ+
→ 𝑥 ∈
ℝ) |
| 101 | 100 | ad2antlr 727 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑚 ∈
(ℤ≥‘𝑁) ∧ 𝑛 ∈ (ℤ≥‘𝑚))) → 𝑥 ∈ ℝ) |
| 102 | | lelttr 11351 |
. . . . . . . . . . . . . 14
⊢
((((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚)) ∈ ℝ ∧ ((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚)) ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚)) ≤ ((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚)) ∧ ((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚)) < 𝑥) → ((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚)) < 𝑥)) |
| 103 | 45, 99, 101, 102 | syl3anc 1373 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑚 ∈
(ℤ≥‘𝑁) ∧ 𝑛 ∈ (ℤ≥‘𝑚))) → ((((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚)) ≤ ((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚)) ∧ ((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚)) < 𝑥) → ((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚)) < 𝑥)) |
| 104 | 98, 103 | mpand 695 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑚 ∈
(ℤ≥‘𝑁) ∧ 𝑛 ∈ (ℤ≥‘𝑚))) → (((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚)) < 𝑥 → ((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚)) < 𝑥)) |
| 105 | 30, 49, 11 | syl2an 596 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑚 ∈
(ℤ≥‘𝑁) ∧ 𝑛 ∈ (ℤ≥‘𝑚))) ∧ 𝑘 ∈ (𝑀...𝑛)) → (𝐹‘𝑘) ∈ ℝ) |
| 106 | 60, 64 | sylan2 593 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑚 ∈
(ℤ≥‘𝑁) ∧ 𝑛 ∈ (ℤ≥‘𝑚))) ∧ 𝑘 ∈ ((𝑚 + 1)...𝑛)) → 𝑘 ∈ (ℤ≥‘𝑁)) |
| 107 | | 0red 11264 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → 0 ∈
ℝ) |
| 108 | 67, 23 | syldan 591 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → (𝐺‘𝑘) ∈ ℝ) |
| 109 | 67, 11 | syldan 591 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → (𝐹‘𝑘) ∈ ℝ) |
| 110 | | cvgcmp.6 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → 0 ≤ (𝐺‘𝑘)) |
| 111 | 107, 108,
109, 110, 65 | letrd 11418 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → 0 ≤ (𝐹‘𝑘)) |
| 112 | 30, 106, 111 | syl2an2r 685 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑚 ∈
(ℤ≥‘𝑁) ∧ 𝑛 ∈ (ℤ≥‘𝑚))) ∧ 𝑘 ∈ ((𝑚 + 1)...𝑛)) → 0 ≤ (𝐹‘𝑘)) |
| 113 | 46, 47, 105, 112 | sermono 14075 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑚 ∈
(ℤ≥‘𝑁) ∧ 𝑛 ∈ (ℤ≥‘𝑚))) → (seq𝑀( + , 𝐹)‘𝑚) ≤ (seq𝑀( + , 𝐹)‘𝑛)) |
| 114 | 36, 41, 113 | abssubge0d 15470 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑚 ∈
(ℤ≥‘𝑁) ∧ 𝑛 ∈ (ℤ≥‘𝑚))) → (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) = ((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) |
| 115 | 114 | breq1d 5153 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑚 ∈
(ℤ≥‘𝑁) ∧ 𝑛 ∈ (ℤ≥‘𝑚))) →
((abs‘((seq𝑀( + ,
𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥 ↔ ((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚)) < 𝑥)) |
| 116 | 30, 49, 23 | syl2an 596 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑚 ∈
(ℤ≥‘𝑁) ∧ 𝑛 ∈ (ℤ≥‘𝑚))) ∧ 𝑘 ∈ (𝑀...𝑛)) → (𝐺‘𝑘) ∈ ℝ) |
| 117 | 30, 64, 110 | syl2an2r 685 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑚 ∈
(ℤ≥‘𝑁) ∧ 𝑛 ∈ (ℤ≥‘𝑚))) ∧ 𝑘 ∈ (ℤ≥‘(𝑚 + 1))) → 0 ≤ (𝐺‘𝑘)) |
| 118 | 60, 117 | sylan2 593 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑚 ∈
(ℤ≥‘𝑁) ∧ 𝑛 ∈ (ℤ≥‘𝑚))) ∧ 𝑘 ∈ ((𝑚 + 1)...𝑛)) → 0 ≤ (𝐺‘𝑘)) |
| 119 | 46, 47, 116, 118 | sermono 14075 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑚 ∈
(ℤ≥‘𝑁) ∧ 𝑛 ∈ (ℤ≥‘𝑚))) → (seq𝑀( + , 𝐺)‘𝑚) ≤ (seq𝑀( + , 𝐺)‘𝑛)) |
| 120 | 44, 42, 119 | abssubge0d 15470 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑚 ∈
(ℤ≥‘𝑁) ∧ 𝑛 ∈ (ℤ≥‘𝑚))) → (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) = ((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) |
| 121 | 120 | breq1d 5153 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑚 ∈
(ℤ≥‘𝑁) ∧ 𝑛 ∈ (ℤ≥‘𝑚))) →
((abs‘((seq𝑀( + ,
𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥 ↔ ((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚)) < 𝑥)) |
| 122 | 104, 115,
121 | 3imtr4d 294 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑚 ∈
(ℤ≥‘𝑁) ∧ 𝑛 ∈ (ℤ≥‘𝑚))) →
((abs‘((seq𝑀( + ,
𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥 → (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥)) |
| 123 | 122 | anassrs 467 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈
(ℤ≥‘𝑁)) ∧ 𝑛 ∈ (ℤ≥‘𝑚)) → ((abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥 → (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥)) |
| 124 | 123 | adantld 490 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈
(ℤ≥‘𝑁)) ∧ 𝑛 ∈ (ℤ≥‘𝑚)) → (((seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥) → (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥)) |
| 125 | 124 | ralimdva 3167 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈
(ℤ≥‘𝑁)) → (∀𝑛 ∈ (ℤ≥‘𝑚)((seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥) → ∀𝑛 ∈ (ℤ≥‘𝑚)(abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥)) |
| 126 | 125 | reximdva 3168 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(∃𝑚 ∈
(ℤ≥‘𝑁)∀𝑛 ∈ (ℤ≥‘𝑚)((seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥) → ∃𝑚 ∈ (ℤ≥‘𝑁)∀𝑛 ∈ (ℤ≥‘𝑚)(abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥)) |
| 127 | 37 | r19.29uz 15389 |
. . . . . . 7
⊢
((∀𝑛 ∈
(ℤ≥‘𝑁)(seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ ∧ ∃𝑚 ∈
(ℤ≥‘𝑁)∀𝑛 ∈ (ℤ≥‘𝑚)(abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥) → ∃𝑚 ∈ (ℤ≥‘𝑁)∀𝑛 ∈ (ℤ≥‘𝑚)((seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥)) |
| 128 | 29, 126, 127 | syl6an 684 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(∃𝑚 ∈
(ℤ≥‘𝑁)∀𝑛 ∈ (ℤ≥‘𝑚)((seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥) → ∃𝑚 ∈ (ℤ≥‘𝑁)∀𝑛 ∈ (ℤ≥‘𝑚)((seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥))) |
| 129 | 128 | ralimdva 3167 |
. . . . 5
⊢ (𝜑 → (∀𝑥 ∈ ℝ+
∃𝑚 ∈
(ℤ≥‘𝑁)∀𝑛 ∈ (ℤ≥‘𝑚)((seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥) → ∀𝑥 ∈ ℝ+ ∃𝑚 ∈
(ℤ≥‘𝑁)∀𝑛 ∈ (ℤ≥‘𝑚)((seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥))) |
| 130 | 1, 37 | cau4 15395 |
. . . . . 6
⊢ (𝑁 ∈ 𝑍 → (∀𝑥 ∈ ℝ+ ∃𝑚 ∈ 𝑍 ∀𝑛 ∈ (ℤ≥‘𝑚)((seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+ ∃𝑚 ∈
(ℤ≥‘𝑁)∀𝑛 ∈ (ℤ≥‘𝑚)((seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥))) |
| 131 | 4, 130 | syl 17 |
. . . . 5
⊢ (𝜑 → (∀𝑥 ∈ ℝ+
∃𝑚 ∈ 𝑍 ∀𝑛 ∈ (ℤ≥‘𝑚)((seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+ ∃𝑚 ∈
(ℤ≥‘𝑁)∀𝑛 ∈ (ℤ≥‘𝑚)((seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥))) |
| 132 | 1, 37 | cau4 15395 |
. . . . . 6
⊢ (𝑁 ∈ 𝑍 → (∀𝑥 ∈ ℝ+ ∃𝑚 ∈ 𝑍 ∀𝑛 ∈ (ℤ≥‘𝑚)((seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+ ∃𝑚 ∈
(ℤ≥‘𝑁)∀𝑛 ∈ (ℤ≥‘𝑚)((seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥))) |
| 133 | 4, 132 | syl 17 |
. . . . 5
⊢ (𝜑 → (∀𝑥 ∈ ℝ+
∃𝑚 ∈ 𝑍 ∀𝑛 ∈ (ℤ≥‘𝑚)((seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+ ∃𝑚 ∈
(ℤ≥‘𝑁)∀𝑛 ∈ (ℤ≥‘𝑚)((seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥))) |
| 134 | 129, 131,
133 | 3imtr4d 294 |
. . . 4
⊢ (𝜑 → (∀𝑥 ∈ ℝ+
∃𝑚 ∈ 𝑍 ∀𝑛 ∈ (ℤ≥‘𝑚)((seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥) → ∀𝑥 ∈ ℝ+ ∃𝑚 ∈ 𝑍 ∀𝑛 ∈ (ℤ≥‘𝑚)((seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥))) |
| 135 | 20, 134 | mpd 15 |
. . 3
⊢ (𝜑 → ∀𝑥 ∈ ℝ+ ∃𝑚 ∈ 𝑍 ∀𝑛 ∈ (ℤ≥‘𝑚)((seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥)) |
| 136 | 1 | uztrn2 12897 |
. . . . . . . 8
⊢ ((𝑚 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑚)) → 𝑛 ∈ 𝑍) |
| 137 | | simpr 484 |
. . . . . . . . 9
⊢
(((seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥) → (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥) |
| 138 | 25 | biantrurd 532 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → ((abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥 ↔ ((seq𝑀( + , 𝐺)‘𝑛) ∈ ℝ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥))) |
| 139 | 137, 138 | imbitrid 244 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (((seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥) → ((seq𝑀( + , 𝐺)‘𝑛) ∈ ℝ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥))) |
| 140 | 136, 139 | sylan2 593 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑚 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑚))) → (((seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥) → ((seq𝑀( + , 𝐺)‘𝑛) ∈ ℝ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥))) |
| 141 | 140 | anassrs 467 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑚 ∈ 𝑍) ∧ 𝑛 ∈ (ℤ≥‘𝑚)) → (((seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥) → ((seq𝑀( + , 𝐺)‘𝑛) ∈ ℝ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥))) |
| 142 | 141 | ralimdva 3167 |
. . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → (∀𝑛 ∈ (ℤ≥‘𝑚)((seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥) → ∀𝑛 ∈ (ℤ≥‘𝑚)((seq𝑀( + , 𝐺)‘𝑛) ∈ ℝ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥))) |
| 143 | 142 | reximdva 3168 |
. . . 4
⊢ (𝜑 → (∃𝑚 ∈ 𝑍 ∀𝑛 ∈ (ℤ≥‘𝑚)((seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥) → ∃𝑚 ∈ 𝑍 ∀𝑛 ∈ (ℤ≥‘𝑚)((seq𝑀( + , 𝐺)‘𝑛) ∈ ℝ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥))) |
| 144 | 143 | ralimdv 3169 |
. . 3
⊢ (𝜑 → (∀𝑥 ∈ ℝ+
∃𝑚 ∈ 𝑍 ∀𝑛 ∈ (ℤ≥‘𝑚)((seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥) → ∀𝑥 ∈ ℝ+ ∃𝑚 ∈ 𝑍 ∀𝑛 ∈ (ℤ≥‘𝑚)((seq𝑀( + , 𝐺)‘𝑛) ∈ ℝ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥))) |
| 145 | 135, 144 | mpd 15 |
. 2
⊢ (𝜑 → ∀𝑥 ∈ ℝ+ ∃𝑚 ∈ 𝑍 ∀𝑛 ∈ (ℤ≥‘𝑚)((seq𝑀( + , 𝐺)‘𝑛) ∈ ℝ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥)) |
| 146 | 1, 3, 145 | caurcvg2 15714 |
1
⊢ (𝜑 → seq𝑀( + , 𝐺) ∈ dom ⇝ ) |