MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cvgcmp Structured version   Visualization version   GIF version

Theorem cvgcmp 15720
Description: A comparison test for convergence of a real infinite series. Exercise 3 of [Gleason] p. 182. (Contributed by NM, 1-May-2005.) (Revised by Mario Carneiro, 24-Mar-2014.)
Hypotheses
Ref Expression
cvgcmp.1 𝑍 = (ℤ𝑀)
cvgcmp.2 (𝜑𝑁𝑍)
cvgcmp.3 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
cvgcmp.4 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℝ)
cvgcmp.5 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
cvgcmp.6 ((𝜑𝑘 ∈ (ℤ𝑁)) → 0 ≤ (𝐺𝑘))
cvgcmp.7 ((𝜑𝑘 ∈ (ℤ𝑁)) → (𝐺𝑘) ≤ (𝐹𝑘))
Assertion
Ref Expression
cvgcmp (𝜑 → seq𝑀( + , 𝐺) ∈ dom ⇝ )
Distinct variable groups:   𝑘,𝐹   𝑘,𝐺   𝜑,𝑘   𝑘,𝑀   𝑘,𝑁   𝑘,𝑍

Proof of Theorem cvgcmp
Dummy variables 𝑛 𝑚 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cvgcmp.1 . 2 𝑍 = (ℤ𝑀)
2 seqex 13907 . . 3 seq𝑀( + , 𝐺) ∈ V
32a1i 11 . 2 (𝜑 → seq𝑀( + , 𝐺) ∈ V)
4 cvgcmp.2 . . . . . . . 8 (𝜑𝑁𝑍)
54, 1eleqtrdi 2841 . . . . . . 7 (𝜑𝑁 ∈ (ℤ𝑀))
6 eluzel2 12734 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
75, 6syl 17 . . . . . 6 (𝜑𝑀 ∈ ℤ)
8 cvgcmp.5 . . . . . 6 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
91climcau 15575 . . . . . 6 ((𝑀 ∈ ℤ ∧ seq𝑀( + , 𝐹) ∈ dom ⇝ ) → ∀𝑥 ∈ ℝ+𝑚𝑍𝑛 ∈ (ℤ𝑚)(abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥)
107, 8, 9syl2anc 584 . . . . 5 (𝜑 → ∀𝑥 ∈ ℝ+𝑚𝑍𝑛 ∈ (ℤ𝑚)(abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥)
11 cvgcmp.3 . . . . . . . . . . 11 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
121, 7, 11serfre 13935 . . . . . . . . . 10 (𝜑 → seq𝑀( + , 𝐹):𝑍⟶ℝ)
1312ffvelcdmda 7017 . . . . . . . . 9 ((𝜑𝑛𝑍) → (seq𝑀( + , 𝐹)‘𝑛) ∈ ℝ)
1413recnd 11137 . . . . . . . 8 ((𝜑𝑛𝑍) → (seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ)
1514ralrimiva 3124 . . . . . . 7 (𝜑 → ∀𝑛𝑍 (seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ)
161r19.29uz 15255 . . . . . . . 8 ((∀𝑛𝑍 (seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ ∧ ∃𝑚𝑍𝑛 ∈ (ℤ𝑚)(abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥) → ∃𝑚𝑍𝑛 ∈ (ℤ𝑚)((seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥))
1716ex 412 . . . . . . 7 (∀𝑛𝑍 (seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ → (∃𝑚𝑍𝑛 ∈ (ℤ𝑚)(abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥 → ∃𝑚𝑍𝑛 ∈ (ℤ𝑚)((seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥)))
1815, 17syl 17 . . . . . 6 (𝜑 → (∃𝑚𝑍𝑛 ∈ (ℤ𝑚)(abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥 → ∃𝑚𝑍𝑛 ∈ (ℤ𝑚)((seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥)))
1918ralimdv 3146 . . . . 5 (𝜑 → (∀𝑥 ∈ ℝ+𝑚𝑍𝑛 ∈ (ℤ𝑚)(abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥 → ∀𝑥 ∈ ℝ+𝑚𝑍𝑛 ∈ (ℤ𝑚)((seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥)))
2010, 19mpd 15 . . . 4 (𝜑 → ∀𝑥 ∈ ℝ+𝑚𝑍𝑛 ∈ (ℤ𝑚)((seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥))
211uztrn2 12748 . . . . . . . . . . 11 ((𝑁𝑍𝑛 ∈ (ℤ𝑁)) → 𝑛𝑍)
224, 21sylan 580 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℤ𝑁)) → 𝑛𝑍)
23 cvgcmp.4 . . . . . . . . . . . . 13 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℝ)
241, 7, 23serfre 13935 . . . . . . . . . . . 12 (𝜑 → seq𝑀( + , 𝐺):𝑍⟶ℝ)
2524ffvelcdmda 7017 . . . . . . . . . . 11 ((𝜑𝑛𝑍) → (seq𝑀( + , 𝐺)‘𝑛) ∈ ℝ)
2625recnd 11137 . . . . . . . . . 10 ((𝜑𝑛𝑍) → (seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ)
2722, 26syldan 591 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℤ𝑁)) → (seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ)
2827ralrimiva 3124 . . . . . . . 8 (𝜑 → ∀𝑛 ∈ (ℤ𝑁)(seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ)
2928adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → ∀𝑛 ∈ (ℤ𝑁)(seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ)
30 simpll 766 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → 𝜑)
3130, 12syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → seq𝑀( + , 𝐹):𝑍⟶ℝ)
3230, 4syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → 𝑁𝑍)
33 simprl 770 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → 𝑚 ∈ (ℤ𝑁))
341uztrn2 12748 . . . . . . . . . . . . . . . 16 ((𝑁𝑍𝑚 ∈ (ℤ𝑁)) → 𝑚𝑍)
3532, 33, 34syl2anc 584 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → 𝑚𝑍)
3631, 35ffvelcdmd 7018 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → (seq𝑀( + , 𝐹)‘𝑚) ∈ ℝ)
37 eqid 2731 . . . . . . . . . . . . . . . . . 18 (ℤ𝑁) = (ℤ𝑁)
3837uztrn2 12748 . . . . . . . . . . . . . . . . 17 ((𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚)) → 𝑛 ∈ (ℤ𝑁))
3938adantl 481 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → 𝑛 ∈ (ℤ𝑁))
4032, 39, 21syl2anc 584 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → 𝑛𝑍)
4130, 40, 13syl2anc 584 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → (seq𝑀( + , 𝐹)‘𝑛) ∈ ℝ)
4230, 40, 25syl2anc 584 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → (seq𝑀( + , 𝐺)‘𝑛) ∈ ℝ)
4330, 24syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → seq𝑀( + , 𝐺):𝑍⟶ℝ)
4443, 35ffvelcdmd 7018 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → (seq𝑀( + , 𝐺)‘𝑚) ∈ ℝ)
4542, 44resubcld 11542 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → ((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚)) ∈ ℝ)
4635, 1eleqtrdi 2841 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → 𝑚 ∈ (ℤ𝑀))
47 simprr 772 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → 𝑛 ∈ (ℤ𝑚))
48 elfzuz 13417 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (𝑀...𝑛) → 𝑘 ∈ (ℤ𝑀))
4948, 1eleqtrrdi 2842 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (𝑀...𝑛) → 𝑘𝑍)
50 fveq2 6822 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑚 = 𝑘 → (𝐹𝑚) = (𝐹𝑘))
51 fveq2 6822 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑚 = 𝑘 → (𝐺𝑚) = (𝐺𝑘))
5250, 51oveq12d 7364 . . . . . . . . . . . . . . . . . . . . . 22 (𝑚 = 𝑘 → ((𝐹𝑚) − (𝐺𝑚)) = ((𝐹𝑘) − (𝐺𝑘)))
53 eqid 2731 . . . . . . . . . . . . . . . . . . . . . 22 (𝑚𝑍 ↦ ((𝐹𝑚) − (𝐺𝑚))) = (𝑚𝑍 ↦ ((𝐹𝑚) − (𝐺𝑚)))
54 ovex 7379 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹𝑘) − (𝐺𝑘)) ∈ V
5552, 53, 54fvmpt 6929 . . . . . . . . . . . . . . . . . . . . 21 (𝑘𝑍 → ((𝑚𝑍 ↦ ((𝐹𝑚) − (𝐺𝑚)))‘𝑘) = ((𝐹𝑘) − (𝐺𝑘)))
5655adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑘𝑍) → ((𝑚𝑍 ↦ ((𝐹𝑚) − (𝐺𝑚)))‘𝑘) = ((𝐹𝑘) − (𝐺𝑘)))
5711, 23resubcld 11542 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑘𝑍) → ((𝐹𝑘) − (𝐺𝑘)) ∈ ℝ)
5856, 57eqeltrd 2831 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘𝑍) → ((𝑚𝑍 ↦ ((𝐹𝑚) − (𝐺𝑚)))‘𝑘) ∈ ℝ)
5930, 49, 58syl2an 596 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) ∧ 𝑘 ∈ (𝑀...𝑛)) → ((𝑚𝑍 ↦ ((𝐹𝑚) − (𝐺𝑚)))‘𝑘) ∈ ℝ)
60 elfzuz 13417 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ((𝑚 + 1)...𝑛) → 𝑘 ∈ (ℤ‘(𝑚 + 1)))
61 peano2uz 12796 . . . . . . . . . . . . . . . . . . . . . 22 (𝑚 ∈ (ℤ𝑁) → (𝑚 + 1) ∈ (ℤ𝑁))
6233, 61syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → (𝑚 + 1) ∈ (ℤ𝑁))
6337uztrn2 12748 . . . . . . . . . . . . . . . . . . . . 21 (((𝑚 + 1) ∈ (ℤ𝑁) ∧ 𝑘 ∈ (ℤ‘(𝑚 + 1))) → 𝑘 ∈ (ℤ𝑁))
6462, 63sylan 580 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) ∧ 𝑘 ∈ (ℤ‘(𝑚 + 1))) → 𝑘 ∈ (ℤ𝑁))
65 cvgcmp.7 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑘 ∈ (ℤ𝑁)) → (𝐺𝑘) ≤ (𝐹𝑘))
661uztrn2 12748 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑁𝑍𝑘 ∈ (ℤ𝑁)) → 𝑘𝑍)
674, 66sylan 580 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑘 ∈ (ℤ𝑁)) → 𝑘𝑍)
6811, 23subge0d 11704 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑘𝑍) → (0 ≤ ((𝐹𝑘) − (𝐺𝑘)) ↔ (𝐺𝑘) ≤ (𝐹𝑘)))
6967, 68syldan 591 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑘 ∈ (ℤ𝑁)) → (0 ≤ ((𝐹𝑘) − (𝐺𝑘)) ↔ (𝐺𝑘) ≤ (𝐹𝑘)))
7065, 69mpbird 257 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑘 ∈ (ℤ𝑁)) → 0 ≤ ((𝐹𝑘) − (𝐺𝑘)))
7167, 55syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑘 ∈ (ℤ𝑁)) → ((𝑚𝑍 ↦ ((𝐹𝑚) − (𝐺𝑚)))‘𝑘) = ((𝐹𝑘) − (𝐺𝑘)))
7270, 71breqtrrd 5119 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑘 ∈ (ℤ𝑁)) → 0 ≤ ((𝑚𝑍 ↦ ((𝐹𝑚) − (𝐺𝑚)))‘𝑘))
7330, 64, 72syl2an2r 685 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) ∧ 𝑘 ∈ (ℤ‘(𝑚 + 1))) → 0 ≤ ((𝑚𝑍 ↦ ((𝐹𝑚) − (𝐺𝑚)))‘𝑘))
7460, 73sylan2 593 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) ∧ 𝑘 ∈ ((𝑚 + 1)...𝑛)) → 0 ≤ ((𝑚𝑍 ↦ ((𝐹𝑚) − (𝐺𝑚)))‘𝑘))
7546, 47, 59, 74sermono 13938 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → (seq𝑀( + , (𝑚𝑍 ↦ ((𝐹𝑚) − (𝐺𝑚))))‘𝑚) ≤ (seq𝑀( + , (𝑚𝑍 ↦ ((𝐹𝑚) − (𝐺𝑚))))‘𝑛))
76 elfzuz 13417 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (𝑀...𝑚) → 𝑘 ∈ (ℤ𝑀))
7776, 1eleqtrrdi 2842 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (𝑀...𝑚) → 𝑘𝑍)
7811recnd 11137 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
7930, 77, 78syl2an 596 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) ∧ 𝑘 ∈ (𝑀...𝑚)) → (𝐹𝑘) ∈ ℂ)
8023recnd 11137 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℂ)
8130, 77, 80syl2an 596 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) ∧ 𝑘 ∈ (𝑀...𝑚)) → (𝐺𝑘) ∈ ℂ)
8230, 77, 56syl2an 596 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) ∧ 𝑘 ∈ (𝑀...𝑚)) → ((𝑚𝑍 ↦ ((𝐹𝑚) − (𝐺𝑚)))‘𝑘) = ((𝐹𝑘) − (𝐺𝑘)))
8346, 79, 81, 82sersub 13949 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → (seq𝑀( + , (𝑚𝑍 ↦ ((𝐹𝑚) − (𝐺𝑚))))‘𝑚) = ((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐺)‘𝑚)))
8440, 1eleqtrdi 2841 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → 𝑛 ∈ (ℤ𝑀))
8530, 49, 78syl2an 596 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) ∧ 𝑘 ∈ (𝑀...𝑛)) → (𝐹𝑘) ∈ ℂ)
8630, 49, 80syl2an 596 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) ∧ 𝑘 ∈ (𝑀...𝑛)) → (𝐺𝑘) ∈ ℂ)
8730, 49, 56syl2an 596 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) ∧ 𝑘 ∈ (𝑀...𝑛)) → ((𝑚𝑍 ↦ ((𝐹𝑚) − (𝐺𝑚)))‘𝑘) = ((𝐹𝑘) − (𝐺𝑘)))
8884, 85, 86, 87sersub 13949 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → (seq𝑀( + , (𝑚𝑍 ↦ ((𝐹𝑚) − (𝐺𝑚))))‘𝑛) = ((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑛)))
8975, 83, 883brtr3d 5122 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → ((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐺)‘𝑚)) ≤ ((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑛)))
9041, 42resubcld 11542 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → ((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑛)) ∈ ℝ)
9136, 44, 90lesubaddd 11711 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → (((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐺)‘𝑚)) ≤ ((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑛)) ↔ (seq𝑀( + , 𝐹)‘𝑚) ≤ (((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑛)) + (seq𝑀( + , 𝐺)‘𝑚))))
9289, 91mpbid 232 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → (seq𝑀( + , 𝐹)‘𝑚) ≤ (((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑛)) + (seq𝑀( + , 𝐺)‘𝑚)))
9341recnd 11137 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → (seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ)
9442recnd 11137 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → (seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ)
9544recnd 11137 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → (seq𝑀( + , 𝐺)‘𝑚) ∈ ℂ)
9693, 94, 95subsubd 11497 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → ((seq𝑀( + , 𝐹)‘𝑛) − ((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) = (((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑛)) + (seq𝑀( + , 𝐺)‘𝑚)))
9792, 96breqtrrd 5119 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → (seq𝑀( + , 𝐹)‘𝑚) ≤ ((seq𝑀( + , 𝐹)‘𝑛) − ((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))))
9836, 41, 45, 97lesubd 11718 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → ((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚)) ≤ ((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚)))
9941, 36resubcld 11542 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → ((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚)) ∈ ℝ)
100 rpre 12896 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
101100ad2antlr 727 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → 𝑥 ∈ ℝ)
102 lelttr 11200 . . . . . . . . . . . . . 14 ((((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚)) ∈ ℝ ∧ ((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚)) ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚)) ≤ ((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚)) ∧ ((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚)) < 𝑥) → ((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚)) < 𝑥))
10345, 99, 101, 102syl3anc 1373 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → ((((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚)) ≤ ((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚)) ∧ ((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚)) < 𝑥) → ((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚)) < 𝑥))
10498, 103mpand 695 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → (((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚)) < 𝑥 → ((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚)) < 𝑥))
10530, 49, 11syl2an 596 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) ∧ 𝑘 ∈ (𝑀...𝑛)) → (𝐹𝑘) ∈ ℝ)
10660, 64sylan2 593 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) ∧ 𝑘 ∈ ((𝑚 + 1)...𝑛)) → 𝑘 ∈ (ℤ𝑁))
107 0red 11112 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ (ℤ𝑁)) → 0 ∈ ℝ)
10867, 23syldan 591 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ (ℤ𝑁)) → (𝐺𝑘) ∈ ℝ)
10967, 11syldan 591 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ (ℤ𝑁)) → (𝐹𝑘) ∈ ℝ)
110 cvgcmp.6 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ (ℤ𝑁)) → 0 ≤ (𝐺𝑘))
111107, 108, 109, 110, 65letrd 11267 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (ℤ𝑁)) → 0 ≤ (𝐹𝑘))
11230, 106, 111syl2an2r 685 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) ∧ 𝑘 ∈ ((𝑚 + 1)...𝑛)) → 0 ≤ (𝐹𝑘))
11346, 47, 105, 112sermono 13938 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → (seq𝑀( + , 𝐹)‘𝑚) ≤ (seq𝑀( + , 𝐹)‘𝑛))
11436, 41, 113abssubge0d 15338 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) = ((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚)))
115114breq1d 5101 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → ((abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥 ↔ ((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚)) < 𝑥))
11630, 49, 23syl2an 596 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) ∧ 𝑘 ∈ (𝑀...𝑛)) → (𝐺𝑘) ∈ ℝ)
11730, 64, 110syl2an2r 685 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) ∧ 𝑘 ∈ (ℤ‘(𝑚 + 1))) → 0 ≤ (𝐺𝑘))
11860, 117sylan2 593 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) ∧ 𝑘 ∈ ((𝑚 + 1)...𝑛)) → 0 ≤ (𝐺𝑘))
11946, 47, 116, 118sermono 13938 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → (seq𝑀( + , 𝐺)‘𝑚) ≤ (seq𝑀( + , 𝐺)‘𝑛))
12044, 42, 119abssubge0d 15338 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) = ((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚)))
121120breq1d 5101 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → ((abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥 ↔ ((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚)) < 𝑥))
122104, 115, 1213imtr4d 294 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → ((abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥 → (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥))
123122anassrs 467 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (ℤ𝑁)) ∧ 𝑛 ∈ (ℤ𝑚)) → ((abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥 → (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥))
124123adantld 490 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (ℤ𝑁)) ∧ 𝑛 ∈ (ℤ𝑚)) → (((seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥) → (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥))
125124ralimdva 3144 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (ℤ𝑁)) → (∀𝑛 ∈ (ℤ𝑚)((seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥) → ∀𝑛 ∈ (ℤ𝑚)(abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥))
126125reximdva 3145 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → (∃𝑚 ∈ (ℤ𝑁)∀𝑛 ∈ (ℤ𝑚)((seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥) → ∃𝑚 ∈ (ℤ𝑁)∀𝑛 ∈ (ℤ𝑚)(abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥))
12737r19.29uz 15255 . . . . . . 7 ((∀𝑛 ∈ (ℤ𝑁)(seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ ∧ ∃𝑚 ∈ (ℤ𝑁)∀𝑛 ∈ (ℤ𝑚)(abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥) → ∃𝑚 ∈ (ℤ𝑁)∀𝑛 ∈ (ℤ𝑚)((seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥))
12829, 126, 127syl6an 684 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (∃𝑚 ∈ (ℤ𝑁)∀𝑛 ∈ (ℤ𝑚)((seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥) → ∃𝑚 ∈ (ℤ𝑁)∀𝑛 ∈ (ℤ𝑚)((seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥)))
129128ralimdva 3144 . . . . 5 (𝜑 → (∀𝑥 ∈ ℝ+𝑚 ∈ (ℤ𝑁)∀𝑛 ∈ (ℤ𝑚)((seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥) → ∀𝑥 ∈ ℝ+𝑚 ∈ (ℤ𝑁)∀𝑛 ∈ (ℤ𝑚)((seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥)))
1301, 37cau4 15261 . . . . . 6 (𝑁𝑍 → (∀𝑥 ∈ ℝ+𝑚𝑍𝑛 ∈ (ℤ𝑚)((seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑚 ∈ (ℤ𝑁)∀𝑛 ∈ (ℤ𝑚)((seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥)))
1314, 130syl 17 . . . . 5 (𝜑 → (∀𝑥 ∈ ℝ+𝑚𝑍𝑛 ∈ (ℤ𝑚)((seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑚 ∈ (ℤ𝑁)∀𝑛 ∈ (ℤ𝑚)((seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥)))
1321, 37cau4 15261 . . . . . 6 (𝑁𝑍 → (∀𝑥 ∈ ℝ+𝑚𝑍𝑛 ∈ (ℤ𝑚)((seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑚 ∈ (ℤ𝑁)∀𝑛 ∈ (ℤ𝑚)((seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥)))
1334, 132syl 17 . . . . 5 (𝜑 → (∀𝑥 ∈ ℝ+𝑚𝑍𝑛 ∈ (ℤ𝑚)((seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑚 ∈ (ℤ𝑁)∀𝑛 ∈ (ℤ𝑚)((seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥)))
134129, 131, 1333imtr4d 294 . . . 4 (𝜑 → (∀𝑥 ∈ ℝ+𝑚𝑍𝑛 ∈ (ℤ𝑚)((seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥) → ∀𝑥 ∈ ℝ+𝑚𝑍𝑛 ∈ (ℤ𝑚)((seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥)))
13520, 134mpd 15 . . 3 (𝜑 → ∀𝑥 ∈ ℝ+𝑚𝑍𝑛 ∈ (ℤ𝑚)((seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥))
1361uztrn2 12748 . . . . . . . 8 ((𝑚𝑍𝑛 ∈ (ℤ𝑚)) → 𝑛𝑍)
137 simpr 484 . . . . . . . . 9 (((seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥) → (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥)
13825biantrurd 532 . . . . . . . . 9 ((𝜑𝑛𝑍) → ((abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥 ↔ ((seq𝑀( + , 𝐺)‘𝑛) ∈ ℝ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥)))
139137, 138imbitrid 244 . . . . . . . 8 ((𝜑𝑛𝑍) → (((seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥) → ((seq𝑀( + , 𝐺)‘𝑛) ∈ ℝ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥)))
140136, 139sylan2 593 . . . . . . 7 ((𝜑 ∧ (𝑚𝑍𝑛 ∈ (ℤ𝑚))) → (((seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥) → ((seq𝑀( + , 𝐺)‘𝑛) ∈ ℝ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥)))
141140anassrs 467 . . . . . 6 (((𝜑𝑚𝑍) ∧ 𝑛 ∈ (ℤ𝑚)) → (((seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥) → ((seq𝑀( + , 𝐺)‘𝑛) ∈ ℝ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥)))
142141ralimdva 3144 . . . . 5 ((𝜑𝑚𝑍) → (∀𝑛 ∈ (ℤ𝑚)((seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥) → ∀𝑛 ∈ (ℤ𝑚)((seq𝑀( + , 𝐺)‘𝑛) ∈ ℝ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥)))
143142reximdva 3145 . . . 4 (𝜑 → (∃𝑚𝑍𝑛 ∈ (ℤ𝑚)((seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥) → ∃𝑚𝑍𝑛 ∈ (ℤ𝑚)((seq𝑀( + , 𝐺)‘𝑛) ∈ ℝ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥)))
144143ralimdv 3146 . . 3 (𝜑 → (∀𝑥 ∈ ℝ+𝑚𝑍𝑛 ∈ (ℤ𝑚)((seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥) → ∀𝑥 ∈ ℝ+𝑚𝑍𝑛 ∈ (ℤ𝑚)((seq𝑀( + , 𝐺)‘𝑛) ∈ ℝ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥)))
145135, 144mpd 15 . 2 (𝜑 → ∀𝑥 ∈ ℝ+𝑚𝑍𝑛 ∈ (ℤ𝑚)((seq𝑀( + , 𝐺)‘𝑛) ∈ ℝ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥))
1461, 3, 145caurcvg2 15582 1 (𝜑 → seq𝑀( + , 𝐺) ∈ dom ⇝ )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  wrex 3056  Vcvv 3436   class class class wbr 5091  cmpt 5172  dom cdm 5616  wf 6477  cfv 6481  (class class class)co 7346  cc 11001  cr 11002  0cc0 11003  1c1 11004   + caddc 11006   < clt 11143  cle 11144  cmin 11341  cz 12465  cuz 12729  +crp 12887  ...cfz 13404  seqcseq 13905  abscabs 15138  cli 15388
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-inf2 9531  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080  ax-pre-sup 11081
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-pm 8753  df-en 8870  df-dom 8871  df-sdom 8872  df-sup 9326  df-inf 9327  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-div 11772  df-nn 12123  df-2 12185  df-3 12186  df-n0 12379  df-z 12466  df-uz 12730  df-rp 12888  df-ico 13248  df-fz 13405  df-fzo 13552  df-fl 13693  df-seq 13906  df-exp 13966  df-cj 15003  df-re 15004  df-im 15005  df-sqrt 15139  df-abs 15140  df-limsup 15375  df-clim 15392  df-rlim 15393
This theorem is referenced by:  cvgcmpce  15722  rpnnen2lem5  16124  aaliou3lem3  26277
  Copyright terms: Public domain W3C validator