MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cvgcmp Structured version   Visualization version   GIF version

Theorem cvgcmp 15848
Description: A comparison test for convergence of a real infinite series. Exercise 3 of [Gleason] p. 182. (Contributed by NM, 1-May-2005.) (Revised by Mario Carneiro, 24-Mar-2014.)
Hypotheses
Ref Expression
cvgcmp.1 𝑍 = (ℤ𝑀)
cvgcmp.2 (𝜑𝑁𝑍)
cvgcmp.3 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
cvgcmp.4 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℝ)
cvgcmp.5 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
cvgcmp.6 ((𝜑𝑘 ∈ (ℤ𝑁)) → 0 ≤ (𝐺𝑘))
cvgcmp.7 ((𝜑𝑘 ∈ (ℤ𝑁)) → (𝐺𝑘) ≤ (𝐹𝑘))
Assertion
Ref Expression
cvgcmp (𝜑 → seq𝑀( + , 𝐺) ∈ dom ⇝ )
Distinct variable groups:   𝑘,𝐹   𝑘,𝐺   𝜑,𝑘   𝑘,𝑀   𝑘,𝑁   𝑘,𝑍

Proof of Theorem cvgcmp
Dummy variables 𝑛 𝑚 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cvgcmp.1 . 2 𝑍 = (ℤ𝑀)
2 seqex 14040 . . 3 seq𝑀( + , 𝐺) ∈ V
32a1i 11 . 2 (𝜑 → seq𝑀( + , 𝐺) ∈ V)
4 cvgcmp.2 . . . . . . . 8 (𝜑𝑁𝑍)
54, 1eleqtrdi 2848 . . . . . . 7 (𝜑𝑁 ∈ (ℤ𝑀))
6 eluzel2 12880 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
75, 6syl 17 . . . . . 6 (𝜑𝑀 ∈ ℤ)
8 cvgcmp.5 . . . . . 6 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
91climcau 15703 . . . . . 6 ((𝑀 ∈ ℤ ∧ seq𝑀( + , 𝐹) ∈ dom ⇝ ) → ∀𝑥 ∈ ℝ+𝑚𝑍𝑛 ∈ (ℤ𝑚)(abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥)
107, 8, 9syl2anc 584 . . . . 5 (𝜑 → ∀𝑥 ∈ ℝ+𝑚𝑍𝑛 ∈ (ℤ𝑚)(abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥)
11 cvgcmp.3 . . . . . . . . . . 11 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
121, 7, 11serfre 14068 . . . . . . . . . 10 (𝜑 → seq𝑀( + , 𝐹):𝑍⟶ℝ)
1312ffvelcdmda 7103 . . . . . . . . 9 ((𝜑𝑛𝑍) → (seq𝑀( + , 𝐹)‘𝑛) ∈ ℝ)
1413recnd 11286 . . . . . . . 8 ((𝜑𝑛𝑍) → (seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ)
1514ralrimiva 3143 . . . . . . 7 (𝜑 → ∀𝑛𝑍 (seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ)
161r19.29uz 15385 . . . . . . . 8 ((∀𝑛𝑍 (seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ ∧ ∃𝑚𝑍𝑛 ∈ (ℤ𝑚)(abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥) → ∃𝑚𝑍𝑛 ∈ (ℤ𝑚)((seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥))
1716ex 412 . . . . . . 7 (∀𝑛𝑍 (seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ → (∃𝑚𝑍𝑛 ∈ (ℤ𝑚)(abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥 → ∃𝑚𝑍𝑛 ∈ (ℤ𝑚)((seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥)))
1815, 17syl 17 . . . . . 6 (𝜑 → (∃𝑚𝑍𝑛 ∈ (ℤ𝑚)(abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥 → ∃𝑚𝑍𝑛 ∈ (ℤ𝑚)((seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥)))
1918ralimdv 3166 . . . . 5 (𝜑 → (∀𝑥 ∈ ℝ+𝑚𝑍𝑛 ∈ (ℤ𝑚)(abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥 → ∀𝑥 ∈ ℝ+𝑚𝑍𝑛 ∈ (ℤ𝑚)((seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥)))
2010, 19mpd 15 . . . 4 (𝜑 → ∀𝑥 ∈ ℝ+𝑚𝑍𝑛 ∈ (ℤ𝑚)((seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥))
211uztrn2 12894 . . . . . . . . . . 11 ((𝑁𝑍𝑛 ∈ (ℤ𝑁)) → 𝑛𝑍)
224, 21sylan 580 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℤ𝑁)) → 𝑛𝑍)
23 cvgcmp.4 . . . . . . . . . . . . 13 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℝ)
241, 7, 23serfre 14068 . . . . . . . . . . . 12 (𝜑 → seq𝑀( + , 𝐺):𝑍⟶ℝ)
2524ffvelcdmda 7103 . . . . . . . . . . 11 ((𝜑𝑛𝑍) → (seq𝑀( + , 𝐺)‘𝑛) ∈ ℝ)
2625recnd 11286 . . . . . . . . . 10 ((𝜑𝑛𝑍) → (seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ)
2722, 26syldan 591 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℤ𝑁)) → (seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ)
2827ralrimiva 3143 . . . . . . . 8 (𝜑 → ∀𝑛 ∈ (ℤ𝑁)(seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ)
2928adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → ∀𝑛 ∈ (ℤ𝑁)(seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ)
30 simpll 767 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → 𝜑)
3130, 12syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → seq𝑀( + , 𝐹):𝑍⟶ℝ)
3230, 4syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → 𝑁𝑍)
33 simprl 771 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → 𝑚 ∈ (ℤ𝑁))
341uztrn2 12894 . . . . . . . . . . . . . . . 16 ((𝑁𝑍𝑚 ∈ (ℤ𝑁)) → 𝑚𝑍)
3532, 33, 34syl2anc 584 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → 𝑚𝑍)
3631, 35ffvelcdmd 7104 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → (seq𝑀( + , 𝐹)‘𝑚) ∈ ℝ)
37 eqid 2734 . . . . . . . . . . . . . . . . . 18 (ℤ𝑁) = (ℤ𝑁)
3837uztrn2 12894 . . . . . . . . . . . . . . . . 17 ((𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚)) → 𝑛 ∈ (ℤ𝑁))
3938adantl 481 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → 𝑛 ∈ (ℤ𝑁))
4032, 39, 21syl2anc 584 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → 𝑛𝑍)
4130, 40, 13syl2anc 584 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → (seq𝑀( + , 𝐹)‘𝑛) ∈ ℝ)
4230, 40, 25syl2anc 584 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → (seq𝑀( + , 𝐺)‘𝑛) ∈ ℝ)
4330, 24syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → seq𝑀( + , 𝐺):𝑍⟶ℝ)
4443, 35ffvelcdmd 7104 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → (seq𝑀( + , 𝐺)‘𝑚) ∈ ℝ)
4542, 44resubcld 11688 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → ((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚)) ∈ ℝ)
4635, 1eleqtrdi 2848 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → 𝑚 ∈ (ℤ𝑀))
47 simprr 773 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → 𝑛 ∈ (ℤ𝑚))
48 elfzuz 13556 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (𝑀...𝑛) → 𝑘 ∈ (ℤ𝑀))
4948, 1eleqtrrdi 2849 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (𝑀...𝑛) → 𝑘𝑍)
50 fveq2 6906 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑚 = 𝑘 → (𝐹𝑚) = (𝐹𝑘))
51 fveq2 6906 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑚 = 𝑘 → (𝐺𝑚) = (𝐺𝑘))
5250, 51oveq12d 7448 . . . . . . . . . . . . . . . . . . . . . 22 (𝑚 = 𝑘 → ((𝐹𝑚) − (𝐺𝑚)) = ((𝐹𝑘) − (𝐺𝑘)))
53 eqid 2734 . . . . . . . . . . . . . . . . . . . . . 22 (𝑚𝑍 ↦ ((𝐹𝑚) − (𝐺𝑚))) = (𝑚𝑍 ↦ ((𝐹𝑚) − (𝐺𝑚)))
54 ovex 7463 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹𝑘) − (𝐺𝑘)) ∈ V
5552, 53, 54fvmpt 7015 . . . . . . . . . . . . . . . . . . . . 21 (𝑘𝑍 → ((𝑚𝑍 ↦ ((𝐹𝑚) − (𝐺𝑚)))‘𝑘) = ((𝐹𝑘) − (𝐺𝑘)))
5655adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑘𝑍) → ((𝑚𝑍 ↦ ((𝐹𝑚) − (𝐺𝑚)))‘𝑘) = ((𝐹𝑘) − (𝐺𝑘)))
5711, 23resubcld 11688 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑘𝑍) → ((𝐹𝑘) − (𝐺𝑘)) ∈ ℝ)
5856, 57eqeltrd 2838 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘𝑍) → ((𝑚𝑍 ↦ ((𝐹𝑚) − (𝐺𝑚)))‘𝑘) ∈ ℝ)
5930, 49, 58syl2an 596 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) ∧ 𝑘 ∈ (𝑀...𝑛)) → ((𝑚𝑍 ↦ ((𝐹𝑚) − (𝐺𝑚)))‘𝑘) ∈ ℝ)
60 elfzuz 13556 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ((𝑚 + 1)...𝑛) → 𝑘 ∈ (ℤ‘(𝑚 + 1)))
61 peano2uz 12940 . . . . . . . . . . . . . . . . . . . . . 22 (𝑚 ∈ (ℤ𝑁) → (𝑚 + 1) ∈ (ℤ𝑁))
6233, 61syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → (𝑚 + 1) ∈ (ℤ𝑁))
6337uztrn2 12894 . . . . . . . . . . . . . . . . . . . . 21 (((𝑚 + 1) ∈ (ℤ𝑁) ∧ 𝑘 ∈ (ℤ‘(𝑚 + 1))) → 𝑘 ∈ (ℤ𝑁))
6462, 63sylan 580 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) ∧ 𝑘 ∈ (ℤ‘(𝑚 + 1))) → 𝑘 ∈ (ℤ𝑁))
65 cvgcmp.7 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑘 ∈ (ℤ𝑁)) → (𝐺𝑘) ≤ (𝐹𝑘))
661uztrn2 12894 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑁𝑍𝑘 ∈ (ℤ𝑁)) → 𝑘𝑍)
674, 66sylan 580 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑘 ∈ (ℤ𝑁)) → 𝑘𝑍)
6811, 23subge0d 11850 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑘𝑍) → (0 ≤ ((𝐹𝑘) − (𝐺𝑘)) ↔ (𝐺𝑘) ≤ (𝐹𝑘)))
6967, 68syldan 591 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑘 ∈ (ℤ𝑁)) → (0 ≤ ((𝐹𝑘) − (𝐺𝑘)) ↔ (𝐺𝑘) ≤ (𝐹𝑘)))
7065, 69mpbird 257 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑘 ∈ (ℤ𝑁)) → 0 ≤ ((𝐹𝑘) − (𝐺𝑘)))
7167, 55syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑘 ∈ (ℤ𝑁)) → ((𝑚𝑍 ↦ ((𝐹𝑚) − (𝐺𝑚)))‘𝑘) = ((𝐹𝑘) − (𝐺𝑘)))
7270, 71breqtrrd 5175 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑘 ∈ (ℤ𝑁)) → 0 ≤ ((𝑚𝑍 ↦ ((𝐹𝑚) − (𝐺𝑚)))‘𝑘))
7330, 64, 72syl2an2r 685 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) ∧ 𝑘 ∈ (ℤ‘(𝑚 + 1))) → 0 ≤ ((𝑚𝑍 ↦ ((𝐹𝑚) − (𝐺𝑚)))‘𝑘))
7460, 73sylan2 593 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) ∧ 𝑘 ∈ ((𝑚 + 1)...𝑛)) → 0 ≤ ((𝑚𝑍 ↦ ((𝐹𝑚) − (𝐺𝑚)))‘𝑘))
7546, 47, 59, 74sermono 14071 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → (seq𝑀( + , (𝑚𝑍 ↦ ((𝐹𝑚) − (𝐺𝑚))))‘𝑚) ≤ (seq𝑀( + , (𝑚𝑍 ↦ ((𝐹𝑚) − (𝐺𝑚))))‘𝑛))
76 elfzuz 13556 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (𝑀...𝑚) → 𝑘 ∈ (ℤ𝑀))
7776, 1eleqtrrdi 2849 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (𝑀...𝑚) → 𝑘𝑍)
7811recnd 11286 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
7930, 77, 78syl2an 596 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) ∧ 𝑘 ∈ (𝑀...𝑚)) → (𝐹𝑘) ∈ ℂ)
8023recnd 11286 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℂ)
8130, 77, 80syl2an 596 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) ∧ 𝑘 ∈ (𝑀...𝑚)) → (𝐺𝑘) ∈ ℂ)
8230, 77, 56syl2an 596 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) ∧ 𝑘 ∈ (𝑀...𝑚)) → ((𝑚𝑍 ↦ ((𝐹𝑚) − (𝐺𝑚)))‘𝑘) = ((𝐹𝑘) − (𝐺𝑘)))
8346, 79, 81, 82sersub 14082 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → (seq𝑀( + , (𝑚𝑍 ↦ ((𝐹𝑚) − (𝐺𝑚))))‘𝑚) = ((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐺)‘𝑚)))
8440, 1eleqtrdi 2848 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → 𝑛 ∈ (ℤ𝑀))
8530, 49, 78syl2an 596 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) ∧ 𝑘 ∈ (𝑀...𝑛)) → (𝐹𝑘) ∈ ℂ)
8630, 49, 80syl2an 596 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) ∧ 𝑘 ∈ (𝑀...𝑛)) → (𝐺𝑘) ∈ ℂ)
8730, 49, 56syl2an 596 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) ∧ 𝑘 ∈ (𝑀...𝑛)) → ((𝑚𝑍 ↦ ((𝐹𝑚) − (𝐺𝑚)))‘𝑘) = ((𝐹𝑘) − (𝐺𝑘)))
8884, 85, 86, 87sersub 14082 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → (seq𝑀( + , (𝑚𝑍 ↦ ((𝐹𝑚) − (𝐺𝑚))))‘𝑛) = ((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑛)))
8975, 83, 883brtr3d 5178 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → ((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐺)‘𝑚)) ≤ ((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑛)))
9041, 42resubcld 11688 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → ((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑛)) ∈ ℝ)
9136, 44, 90lesubaddd 11857 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → (((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐺)‘𝑚)) ≤ ((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑛)) ↔ (seq𝑀( + , 𝐹)‘𝑚) ≤ (((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑛)) + (seq𝑀( + , 𝐺)‘𝑚))))
9289, 91mpbid 232 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → (seq𝑀( + , 𝐹)‘𝑚) ≤ (((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑛)) + (seq𝑀( + , 𝐺)‘𝑚)))
9341recnd 11286 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → (seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ)
9442recnd 11286 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → (seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ)
9544recnd 11286 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → (seq𝑀( + , 𝐺)‘𝑚) ∈ ℂ)
9693, 94, 95subsubd 11645 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → ((seq𝑀( + , 𝐹)‘𝑛) − ((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) = (((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑛)) + (seq𝑀( + , 𝐺)‘𝑚)))
9792, 96breqtrrd 5175 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → (seq𝑀( + , 𝐹)‘𝑚) ≤ ((seq𝑀( + , 𝐹)‘𝑛) − ((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))))
9836, 41, 45, 97lesubd 11864 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → ((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚)) ≤ ((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚)))
9941, 36resubcld 11688 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → ((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚)) ∈ ℝ)
100 rpre 13040 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
101100ad2antlr 727 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → 𝑥 ∈ ℝ)
102 lelttr 11348 . . . . . . . . . . . . . 14 ((((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚)) ∈ ℝ ∧ ((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚)) ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚)) ≤ ((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚)) ∧ ((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚)) < 𝑥) → ((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚)) < 𝑥))
10345, 99, 101, 102syl3anc 1370 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → ((((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚)) ≤ ((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚)) ∧ ((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚)) < 𝑥) → ((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚)) < 𝑥))
10498, 103mpand 695 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → (((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚)) < 𝑥 → ((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚)) < 𝑥))
10530, 49, 11syl2an 596 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) ∧ 𝑘 ∈ (𝑀...𝑛)) → (𝐹𝑘) ∈ ℝ)
10660, 64sylan2 593 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) ∧ 𝑘 ∈ ((𝑚 + 1)...𝑛)) → 𝑘 ∈ (ℤ𝑁))
107 0red 11261 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ (ℤ𝑁)) → 0 ∈ ℝ)
10867, 23syldan 591 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ (ℤ𝑁)) → (𝐺𝑘) ∈ ℝ)
10967, 11syldan 591 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ (ℤ𝑁)) → (𝐹𝑘) ∈ ℝ)
110 cvgcmp.6 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ (ℤ𝑁)) → 0 ≤ (𝐺𝑘))
111107, 108, 109, 110, 65letrd 11415 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (ℤ𝑁)) → 0 ≤ (𝐹𝑘))
11230, 106, 111syl2an2r 685 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) ∧ 𝑘 ∈ ((𝑚 + 1)...𝑛)) → 0 ≤ (𝐹𝑘))
11346, 47, 105, 112sermono 14071 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → (seq𝑀( + , 𝐹)‘𝑚) ≤ (seq𝑀( + , 𝐹)‘𝑛))
11436, 41, 113abssubge0d 15466 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) = ((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚)))
115114breq1d 5157 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → ((abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥 ↔ ((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚)) < 𝑥))
11630, 49, 23syl2an 596 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) ∧ 𝑘 ∈ (𝑀...𝑛)) → (𝐺𝑘) ∈ ℝ)
11730, 64, 110syl2an2r 685 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) ∧ 𝑘 ∈ (ℤ‘(𝑚 + 1))) → 0 ≤ (𝐺𝑘))
11860, 117sylan2 593 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) ∧ 𝑘 ∈ ((𝑚 + 1)...𝑛)) → 0 ≤ (𝐺𝑘))
11946, 47, 116, 118sermono 14071 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → (seq𝑀( + , 𝐺)‘𝑚) ≤ (seq𝑀( + , 𝐺)‘𝑛))
12044, 42, 119abssubge0d 15466 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) = ((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚)))
121120breq1d 5157 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → ((abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥 ↔ ((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚)) < 𝑥))
122104, 115, 1213imtr4d 294 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → ((abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥 → (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥))
123122anassrs 467 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (ℤ𝑁)) ∧ 𝑛 ∈ (ℤ𝑚)) → ((abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥 → (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥))
124123adantld 490 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (ℤ𝑁)) ∧ 𝑛 ∈ (ℤ𝑚)) → (((seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥) → (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥))
125124ralimdva 3164 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (ℤ𝑁)) → (∀𝑛 ∈ (ℤ𝑚)((seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥) → ∀𝑛 ∈ (ℤ𝑚)(abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥))
126125reximdva 3165 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → (∃𝑚 ∈ (ℤ𝑁)∀𝑛 ∈ (ℤ𝑚)((seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥) → ∃𝑚 ∈ (ℤ𝑁)∀𝑛 ∈ (ℤ𝑚)(abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥))
12737r19.29uz 15385 . . . . . . 7 ((∀𝑛 ∈ (ℤ𝑁)(seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ ∧ ∃𝑚 ∈ (ℤ𝑁)∀𝑛 ∈ (ℤ𝑚)(abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥) → ∃𝑚 ∈ (ℤ𝑁)∀𝑛 ∈ (ℤ𝑚)((seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥))
12829, 126, 127syl6an 684 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (∃𝑚 ∈ (ℤ𝑁)∀𝑛 ∈ (ℤ𝑚)((seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥) → ∃𝑚 ∈ (ℤ𝑁)∀𝑛 ∈ (ℤ𝑚)((seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥)))
129128ralimdva 3164 . . . . 5 (𝜑 → (∀𝑥 ∈ ℝ+𝑚 ∈ (ℤ𝑁)∀𝑛 ∈ (ℤ𝑚)((seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥) → ∀𝑥 ∈ ℝ+𝑚 ∈ (ℤ𝑁)∀𝑛 ∈ (ℤ𝑚)((seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥)))
1301, 37cau4 15391 . . . . . 6 (𝑁𝑍 → (∀𝑥 ∈ ℝ+𝑚𝑍𝑛 ∈ (ℤ𝑚)((seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑚 ∈ (ℤ𝑁)∀𝑛 ∈ (ℤ𝑚)((seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥)))
1314, 130syl 17 . . . . 5 (𝜑 → (∀𝑥 ∈ ℝ+𝑚𝑍𝑛 ∈ (ℤ𝑚)((seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑚 ∈ (ℤ𝑁)∀𝑛 ∈ (ℤ𝑚)((seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥)))
1321, 37cau4 15391 . . . . . 6 (𝑁𝑍 → (∀𝑥 ∈ ℝ+𝑚𝑍𝑛 ∈ (ℤ𝑚)((seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑚 ∈ (ℤ𝑁)∀𝑛 ∈ (ℤ𝑚)((seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥)))
1334, 132syl 17 . . . . 5 (𝜑 → (∀𝑥 ∈ ℝ+𝑚𝑍𝑛 ∈ (ℤ𝑚)((seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑚 ∈ (ℤ𝑁)∀𝑛 ∈ (ℤ𝑚)((seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥)))
134129, 131, 1333imtr4d 294 . . . 4 (𝜑 → (∀𝑥 ∈ ℝ+𝑚𝑍𝑛 ∈ (ℤ𝑚)((seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥) → ∀𝑥 ∈ ℝ+𝑚𝑍𝑛 ∈ (ℤ𝑚)((seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥)))
13520, 134mpd 15 . . 3 (𝜑 → ∀𝑥 ∈ ℝ+𝑚𝑍𝑛 ∈ (ℤ𝑚)((seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥))
1361uztrn2 12894 . . . . . . . 8 ((𝑚𝑍𝑛 ∈ (ℤ𝑚)) → 𝑛𝑍)
137 simpr 484 . . . . . . . . 9 (((seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥) → (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥)
13825biantrurd 532 . . . . . . . . 9 ((𝜑𝑛𝑍) → ((abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥 ↔ ((seq𝑀( + , 𝐺)‘𝑛) ∈ ℝ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥)))
139137, 138imbitrid 244 . . . . . . . 8 ((𝜑𝑛𝑍) → (((seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥) → ((seq𝑀( + , 𝐺)‘𝑛) ∈ ℝ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥)))
140136, 139sylan2 593 . . . . . . 7 ((𝜑 ∧ (𝑚𝑍𝑛 ∈ (ℤ𝑚))) → (((seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥) → ((seq𝑀( + , 𝐺)‘𝑛) ∈ ℝ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥)))
141140anassrs 467 . . . . . 6 (((𝜑𝑚𝑍) ∧ 𝑛 ∈ (ℤ𝑚)) → (((seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥) → ((seq𝑀( + , 𝐺)‘𝑛) ∈ ℝ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥)))
142141ralimdva 3164 . . . . 5 ((𝜑𝑚𝑍) → (∀𝑛 ∈ (ℤ𝑚)((seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥) → ∀𝑛 ∈ (ℤ𝑚)((seq𝑀( + , 𝐺)‘𝑛) ∈ ℝ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥)))
143142reximdva 3165 . . . 4 (𝜑 → (∃𝑚𝑍𝑛 ∈ (ℤ𝑚)((seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥) → ∃𝑚𝑍𝑛 ∈ (ℤ𝑚)((seq𝑀( + , 𝐺)‘𝑛) ∈ ℝ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥)))
144143ralimdv 3166 . . 3 (𝜑 → (∀𝑥 ∈ ℝ+𝑚𝑍𝑛 ∈ (ℤ𝑚)((seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥) → ∀𝑥 ∈ ℝ+𝑚𝑍𝑛 ∈ (ℤ𝑚)((seq𝑀( + , 𝐺)‘𝑛) ∈ ℝ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥)))
145135, 144mpd 15 . 2 (𝜑 → ∀𝑥 ∈ ℝ+𝑚𝑍𝑛 ∈ (ℤ𝑚)((seq𝑀( + , 𝐺)‘𝑛) ∈ ℝ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥))
1461, 3, 145caurcvg2 15710 1 (𝜑 → seq𝑀( + , 𝐺) ∈ dom ⇝ )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1536  wcel 2105  wral 3058  wrex 3067  Vcvv 3477   class class class wbr 5147  cmpt 5230  dom cdm 5688  wf 6558  cfv 6562  (class class class)co 7430  cc 11150  cr 11151  0cc0 11152  1c1 11153   + caddc 11155   < clt 11292  cle 11293  cmin 11489  cz 12610  cuz 12875  +crp 13031  ...cfz 13543  seqcseq 14038  abscabs 15269  cli 15516
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-inf2 9678  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-er 8743  df-pm 8867  df-en 8984  df-dom 8985  df-sdom 8986  df-sup 9479  df-inf 9480  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-n0 12524  df-z 12611  df-uz 12876  df-rp 13032  df-ico 13389  df-fz 13544  df-fzo 13691  df-fl 13828  df-seq 14039  df-exp 14099  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-limsup 15503  df-clim 15520  df-rlim 15521
This theorem is referenced by:  cvgcmpce  15850  rpnnen2lem5  16250  aaliou3lem3  26400
  Copyright terms: Public domain W3C validator