MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cvgcmp Structured version   Visualization version   GIF version

Theorem cvgcmp 15456
Description: A comparison test for convergence of a real infinite series. Exercise 3 of [Gleason] p. 182. (Contributed by NM, 1-May-2005.) (Revised by Mario Carneiro, 24-Mar-2014.)
Hypotheses
Ref Expression
cvgcmp.1 𝑍 = (ℤ𝑀)
cvgcmp.2 (𝜑𝑁𝑍)
cvgcmp.3 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
cvgcmp.4 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℝ)
cvgcmp.5 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
cvgcmp.6 ((𝜑𝑘 ∈ (ℤ𝑁)) → 0 ≤ (𝐺𝑘))
cvgcmp.7 ((𝜑𝑘 ∈ (ℤ𝑁)) → (𝐺𝑘) ≤ (𝐹𝑘))
Assertion
Ref Expression
cvgcmp (𝜑 → seq𝑀( + , 𝐺) ∈ dom ⇝ )
Distinct variable groups:   𝑘,𝐹   𝑘,𝐺   𝜑,𝑘   𝑘,𝑀   𝑘,𝑁   𝑘,𝑍

Proof of Theorem cvgcmp
Dummy variables 𝑛 𝑚 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cvgcmp.1 . 2 𝑍 = (ℤ𝑀)
2 seqex 13651 . . 3 seq𝑀( + , 𝐺) ∈ V
32a1i 11 . 2 (𝜑 → seq𝑀( + , 𝐺) ∈ V)
4 cvgcmp.2 . . . . . . . 8 (𝜑𝑁𝑍)
54, 1eleqtrdi 2849 . . . . . . 7 (𝜑𝑁 ∈ (ℤ𝑀))
6 eluzel2 12516 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
75, 6syl 17 . . . . . 6 (𝜑𝑀 ∈ ℤ)
8 cvgcmp.5 . . . . . 6 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
91climcau 15310 . . . . . 6 ((𝑀 ∈ ℤ ∧ seq𝑀( + , 𝐹) ∈ dom ⇝ ) → ∀𝑥 ∈ ℝ+𝑚𝑍𝑛 ∈ (ℤ𝑚)(abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥)
107, 8, 9syl2anc 583 . . . . 5 (𝜑 → ∀𝑥 ∈ ℝ+𝑚𝑍𝑛 ∈ (ℤ𝑚)(abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥)
11 cvgcmp.3 . . . . . . . . . . 11 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
121, 7, 11serfre 13680 . . . . . . . . . 10 (𝜑 → seq𝑀( + , 𝐹):𝑍⟶ℝ)
1312ffvelrnda 6943 . . . . . . . . 9 ((𝜑𝑛𝑍) → (seq𝑀( + , 𝐹)‘𝑛) ∈ ℝ)
1413recnd 10934 . . . . . . . 8 ((𝜑𝑛𝑍) → (seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ)
1514ralrimiva 3107 . . . . . . 7 (𝜑 → ∀𝑛𝑍 (seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ)
161r19.29uz 14990 . . . . . . . 8 ((∀𝑛𝑍 (seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ ∧ ∃𝑚𝑍𝑛 ∈ (ℤ𝑚)(abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥) → ∃𝑚𝑍𝑛 ∈ (ℤ𝑚)((seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥))
1716ex 412 . . . . . . 7 (∀𝑛𝑍 (seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ → (∃𝑚𝑍𝑛 ∈ (ℤ𝑚)(abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥 → ∃𝑚𝑍𝑛 ∈ (ℤ𝑚)((seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥)))
1815, 17syl 17 . . . . . 6 (𝜑 → (∃𝑚𝑍𝑛 ∈ (ℤ𝑚)(abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥 → ∃𝑚𝑍𝑛 ∈ (ℤ𝑚)((seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥)))
1918ralimdv 3103 . . . . 5 (𝜑 → (∀𝑥 ∈ ℝ+𝑚𝑍𝑛 ∈ (ℤ𝑚)(abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥 → ∀𝑥 ∈ ℝ+𝑚𝑍𝑛 ∈ (ℤ𝑚)((seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥)))
2010, 19mpd 15 . . . 4 (𝜑 → ∀𝑥 ∈ ℝ+𝑚𝑍𝑛 ∈ (ℤ𝑚)((seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥))
211uztrn2 12530 . . . . . . . . . . 11 ((𝑁𝑍𝑛 ∈ (ℤ𝑁)) → 𝑛𝑍)
224, 21sylan 579 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℤ𝑁)) → 𝑛𝑍)
23 cvgcmp.4 . . . . . . . . . . . . 13 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℝ)
241, 7, 23serfre 13680 . . . . . . . . . . . 12 (𝜑 → seq𝑀( + , 𝐺):𝑍⟶ℝ)
2524ffvelrnda 6943 . . . . . . . . . . 11 ((𝜑𝑛𝑍) → (seq𝑀( + , 𝐺)‘𝑛) ∈ ℝ)
2625recnd 10934 . . . . . . . . . 10 ((𝜑𝑛𝑍) → (seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ)
2722, 26syldan 590 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℤ𝑁)) → (seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ)
2827ralrimiva 3107 . . . . . . . 8 (𝜑 → ∀𝑛 ∈ (ℤ𝑁)(seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ)
2928adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → ∀𝑛 ∈ (ℤ𝑁)(seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ)
30 simpll 763 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → 𝜑)
3130, 12syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → seq𝑀( + , 𝐹):𝑍⟶ℝ)
3230, 4syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → 𝑁𝑍)
33 simprl 767 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → 𝑚 ∈ (ℤ𝑁))
341uztrn2 12530 . . . . . . . . . . . . . . . 16 ((𝑁𝑍𝑚 ∈ (ℤ𝑁)) → 𝑚𝑍)
3532, 33, 34syl2anc 583 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → 𝑚𝑍)
3631, 35ffvelrnd 6944 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → (seq𝑀( + , 𝐹)‘𝑚) ∈ ℝ)
37 eqid 2738 . . . . . . . . . . . . . . . . . 18 (ℤ𝑁) = (ℤ𝑁)
3837uztrn2 12530 . . . . . . . . . . . . . . . . 17 ((𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚)) → 𝑛 ∈ (ℤ𝑁))
3938adantl 481 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → 𝑛 ∈ (ℤ𝑁))
4032, 39, 21syl2anc 583 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → 𝑛𝑍)
4130, 40, 13syl2anc 583 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → (seq𝑀( + , 𝐹)‘𝑛) ∈ ℝ)
4230, 40, 25syl2anc 583 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → (seq𝑀( + , 𝐺)‘𝑛) ∈ ℝ)
4330, 24syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → seq𝑀( + , 𝐺):𝑍⟶ℝ)
4443, 35ffvelrnd 6944 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → (seq𝑀( + , 𝐺)‘𝑚) ∈ ℝ)
4542, 44resubcld 11333 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → ((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚)) ∈ ℝ)
4635, 1eleqtrdi 2849 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → 𝑚 ∈ (ℤ𝑀))
47 simprr 769 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → 𝑛 ∈ (ℤ𝑚))
48 elfzuz 13181 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (𝑀...𝑛) → 𝑘 ∈ (ℤ𝑀))
4948, 1eleqtrrdi 2850 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (𝑀...𝑛) → 𝑘𝑍)
50 fveq2 6756 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑚 = 𝑘 → (𝐹𝑚) = (𝐹𝑘))
51 fveq2 6756 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑚 = 𝑘 → (𝐺𝑚) = (𝐺𝑘))
5250, 51oveq12d 7273 . . . . . . . . . . . . . . . . . . . . . 22 (𝑚 = 𝑘 → ((𝐹𝑚) − (𝐺𝑚)) = ((𝐹𝑘) − (𝐺𝑘)))
53 eqid 2738 . . . . . . . . . . . . . . . . . . . . . 22 (𝑚𝑍 ↦ ((𝐹𝑚) − (𝐺𝑚))) = (𝑚𝑍 ↦ ((𝐹𝑚) − (𝐺𝑚)))
54 ovex 7288 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹𝑘) − (𝐺𝑘)) ∈ V
5552, 53, 54fvmpt 6857 . . . . . . . . . . . . . . . . . . . . 21 (𝑘𝑍 → ((𝑚𝑍 ↦ ((𝐹𝑚) − (𝐺𝑚)))‘𝑘) = ((𝐹𝑘) − (𝐺𝑘)))
5655adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑘𝑍) → ((𝑚𝑍 ↦ ((𝐹𝑚) − (𝐺𝑚)))‘𝑘) = ((𝐹𝑘) − (𝐺𝑘)))
5711, 23resubcld 11333 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑘𝑍) → ((𝐹𝑘) − (𝐺𝑘)) ∈ ℝ)
5856, 57eqeltrd 2839 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘𝑍) → ((𝑚𝑍 ↦ ((𝐹𝑚) − (𝐺𝑚)))‘𝑘) ∈ ℝ)
5930, 49, 58syl2an 595 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) ∧ 𝑘 ∈ (𝑀...𝑛)) → ((𝑚𝑍 ↦ ((𝐹𝑚) − (𝐺𝑚)))‘𝑘) ∈ ℝ)
60 elfzuz 13181 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ((𝑚 + 1)...𝑛) → 𝑘 ∈ (ℤ‘(𝑚 + 1)))
61 peano2uz 12570 . . . . . . . . . . . . . . . . . . . . . 22 (𝑚 ∈ (ℤ𝑁) → (𝑚 + 1) ∈ (ℤ𝑁))
6233, 61syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → (𝑚 + 1) ∈ (ℤ𝑁))
6337uztrn2 12530 . . . . . . . . . . . . . . . . . . . . 21 (((𝑚 + 1) ∈ (ℤ𝑁) ∧ 𝑘 ∈ (ℤ‘(𝑚 + 1))) → 𝑘 ∈ (ℤ𝑁))
6462, 63sylan 579 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) ∧ 𝑘 ∈ (ℤ‘(𝑚 + 1))) → 𝑘 ∈ (ℤ𝑁))
65 cvgcmp.7 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑘 ∈ (ℤ𝑁)) → (𝐺𝑘) ≤ (𝐹𝑘))
661uztrn2 12530 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑁𝑍𝑘 ∈ (ℤ𝑁)) → 𝑘𝑍)
674, 66sylan 579 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑘 ∈ (ℤ𝑁)) → 𝑘𝑍)
6811, 23subge0d 11495 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑘𝑍) → (0 ≤ ((𝐹𝑘) − (𝐺𝑘)) ↔ (𝐺𝑘) ≤ (𝐹𝑘)))
6967, 68syldan 590 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑘 ∈ (ℤ𝑁)) → (0 ≤ ((𝐹𝑘) − (𝐺𝑘)) ↔ (𝐺𝑘) ≤ (𝐹𝑘)))
7065, 69mpbird 256 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑘 ∈ (ℤ𝑁)) → 0 ≤ ((𝐹𝑘) − (𝐺𝑘)))
7167, 55syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑘 ∈ (ℤ𝑁)) → ((𝑚𝑍 ↦ ((𝐹𝑚) − (𝐺𝑚)))‘𝑘) = ((𝐹𝑘) − (𝐺𝑘)))
7270, 71breqtrrd 5098 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑘 ∈ (ℤ𝑁)) → 0 ≤ ((𝑚𝑍 ↦ ((𝐹𝑚) − (𝐺𝑚)))‘𝑘))
7330, 64, 72syl2an2r 681 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) ∧ 𝑘 ∈ (ℤ‘(𝑚 + 1))) → 0 ≤ ((𝑚𝑍 ↦ ((𝐹𝑚) − (𝐺𝑚)))‘𝑘))
7460, 73sylan2 592 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) ∧ 𝑘 ∈ ((𝑚 + 1)...𝑛)) → 0 ≤ ((𝑚𝑍 ↦ ((𝐹𝑚) − (𝐺𝑚)))‘𝑘))
7546, 47, 59, 74sermono 13683 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → (seq𝑀( + , (𝑚𝑍 ↦ ((𝐹𝑚) − (𝐺𝑚))))‘𝑚) ≤ (seq𝑀( + , (𝑚𝑍 ↦ ((𝐹𝑚) − (𝐺𝑚))))‘𝑛))
76 elfzuz 13181 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (𝑀...𝑚) → 𝑘 ∈ (ℤ𝑀))
7776, 1eleqtrrdi 2850 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (𝑀...𝑚) → 𝑘𝑍)
7811recnd 10934 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
7930, 77, 78syl2an 595 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) ∧ 𝑘 ∈ (𝑀...𝑚)) → (𝐹𝑘) ∈ ℂ)
8023recnd 10934 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℂ)
8130, 77, 80syl2an 595 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) ∧ 𝑘 ∈ (𝑀...𝑚)) → (𝐺𝑘) ∈ ℂ)
8230, 77, 56syl2an 595 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) ∧ 𝑘 ∈ (𝑀...𝑚)) → ((𝑚𝑍 ↦ ((𝐹𝑚) − (𝐺𝑚)))‘𝑘) = ((𝐹𝑘) − (𝐺𝑘)))
8346, 79, 81, 82sersub 13694 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → (seq𝑀( + , (𝑚𝑍 ↦ ((𝐹𝑚) − (𝐺𝑚))))‘𝑚) = ((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐺)‘𝑚)))
8440, 1eleqtrdi 2849 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → 𝑛 ∈ (ℤ𝑀))
8530, 49, 78syl2an 595 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) ∧ 𝑘 ∈ (𝑀...𝑛)) → (𝐹𝑘) ∈ ℂ)
8630, 49, 80syl2an 595 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) ∧ 𝑘 ∈ (𝑀...𝑛)) → (𝐺𝑘) ∈ ℂ)
8730, 49, 56syl2an 595 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) ∧ 𝑘 ∈ (𝑀...𝑛)) → ((𝑚𝑍 ↦ ((𝐹𝑚) − (𝐺𝑚)))‘𝑘) = ((𝐹𝑘) − (𝐺𝑘)))
8884, 85, 86, 87sersub 13694 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → (seq𝑀( + , (𝑚𝑍 ↦ ((𝐹𝑚) − (𝐺𝑚))))‘𝑛) = ((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑛)))
8975, 83, 883brtr3d 5101 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → ((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐺)‘𝑚)) ≤ ((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑛)))
9041, 42resubcld 11333 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → ((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑛)) ∈ ℝ)
9136, 44, 90lesubaddd 11502 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → (((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐺)‘𝑚)) ≤ ((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑛)) ↔ (seq𝑀( + , 𝐹)‘𝑚) ≤ (((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑛)) + (seq𝑀( + , 𝐺)‘𝑚))))
9289, 91mpbid 231 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → (seq𝑀( + , 𝐹)‘𝑚) ≤ (((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑛)) + (seq𝑀( + , 𝐺)‘𝑚)))
9341recnd 10934 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → (seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ)
9442recnd 10934 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → (seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ)
9544recnd 10934 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → (seq𝑀( + , 𝐺)‘𝑚) ∈ ℂ)
9693, 94, 95subsubd 11290 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → ((seq𝑀( + , 𝐹)‘𝑛) − ((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) = (((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑛)) + (seq𝑀( + , 𝐺)‘𝑚)))
9792, 96breqtrrd 5098 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → (seq𝑀( + , 𝐹)‘𝑚) ≤ ((seq𝑀( + , 𝐹)‘𝑛) − ((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))))
9836, 41, 45, 97lesubd 11509 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → ((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚)) ≤ ((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚)))
9941, 36resubcld 11333 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → ((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚)) ∈ ℝ)
100 rpre 12667 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
101100ad2antlr 723 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → 𝑥 ∈ ℝ)
102 lelttr 10996 . . . . . . . . . . . . . 14 ((((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚)) ∈ ℝ ∧ ((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚)) ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚)) ≤ ((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚)) ∧ ((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚)) < 𝑥) → ((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚)) < 𝑥))
10345, 99, 101, 102syl3anc 1369 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → ((((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚)) ≤ ((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚)) ∧ ((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚)) < 𝑥) → ((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚)) < 𝑥))
10498, 103mpand 691 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → (((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚)) < 𝑥 → ((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚)) < 𝑥))
10530, 49, 11syl2an 595 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) ∧ 𝑘 ∈ (𝑀...𝑛)) → (𝐹𝑘) ∈ ℝ)
10660, 64sylan2 592 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) ∧ 𝑘 ∈ ((𝑚 + 1)...𝑛)) → 𝑘 ∈ (ℤ𝑁))
107 0red 10909 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ (ℤ𝑁)) → 0 ∈ ℝ)
10867, 23syldan 590 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ (ℤ𝑁)) → (𝐺𝑘) ∈ ℝ)
10967, 11syldan 590 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ (ℤ𝑁)) → (𝐹𝑘) ∈ ℝ)
110 cvgcmp.6 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ (ℤ𝑁)) → 0 ≤ (𝐺𝑘))
111107, 108, 109, 110, 65letrd 11062 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (ℤ𝑁)) → 0 ≤ (𝐹𝑘))
11230, 106, 111syl2an2r 681 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) ∧ 𝑘 ∈ ((𝑚 + 1)...𝑛)) → 0 ≤ (𝐹𝑘))
11346, 47, 105, 112sermono 13683 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → (seq𝑀( + , 𝐹)‘𝑚) ≤ (seq𝑀( + , 𝐹)‘𝑛))
11436, 41, 113abssubge0d 15071 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) = ((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚)))
115114breq1d 5080 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → ((abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥 ↔ ((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚)) < 𝑥))
11630, 49, 23syl2an 595 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) ∧ 𝑘 ∈ (𝑀...𝑛)) → (𝐺𝑘) ∈ ℝ)
11730, 64, 110syl2an2r 681 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) ∧ 𝑘 ∈ (ℤ‘(𝑚 + 1))) → 0 ≤ (𝐺𝑘))
11860, 117sylan2 592 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) ∧ 𝑘 ∈ ((𝑚 + 1)...𝑛)) → 0 ≤ (𝐺𝑘))
11946, 47, 116, 118sermono 13683 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → (seq𝑀( + , 𝐺)‘𝑚) ≤ (seq𝑀( + , 𝐺)‘𝑛))
12044, 42, 119abssubge0d 15071 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) = ((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚)))
121120breq1d 5080 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → ((abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥 ↔ ((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚)) < 𝑥))
122104, 115, 1213imtr4d 293 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → ((abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥 → (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥))
123122anassrs 467 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (ℤ𝑁)) ∧ 𝑛 ∈ (ℤ𝑚)) → ((abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥 → (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥))
124123adantld 490 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (ℤ𝑁)) ∧ 𝑛 ∈ (ℤ𝑚)) → (((seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥) → (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥))
125124ralimdva 3102 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (ℤ𝑁)) → (∀𝑛 ∈ (ℤ𝑚)((seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥) → ∀𝑛 ∈ (ℤ𝑚)(abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥))
126125reximdva 3202 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → (∃𝑚 ∈ (ℤ𝑁)∀𝑛 ∈ (ℤ𝑚)((seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥) → ∃𝑚 ∈ (ℤ𝑁)∀𝑛 ∈ (ℤ𝑚)(abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥))
12737r19.29uz 14990 . . . . . . 7 ((∀𝑛 ∈ (ℤ𝑁)(seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ ∧ ∃𝑚 ∈ (ℤ𝑁)∀𝑛 ∈ (ℤ𝑚)(abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥) → ∃𝑚 ∈ (ℤ𝑁)∀𝑛 ∈ (ℤ𝑚)((seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥))
12829, 126, 127syl6an 680 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (∃𝑚 ∈ (ℤ𝑁)∀𝑛 ∈ (ℤ𝑚)((seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥) → ∃𝑚 ∈ (ℤ𝑁)∀𝑛 ∈ (ℤ𝑚)((seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥)))
129128ralimdva 3102 . . . . 5 (𝜑 → (∀𝑥 ∈ ℝ+𝑚 ∈ (ℤ𝑁)∀𝑛 ∈ (ℤ𝑚)((seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥) → ∀𝑥 ∈ ℝ+𝑚 ∈ (ℤ𝑁)∀𝑛 ∈ (ℤ𝑚)((seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥)))
1301, 37cau4 14996 . . . . . 6 (𝑁𝑍 → (∀𝑥 ∈ ℝ+𝑚𝑍𝑛 ∈ (ℤ𝑚)((seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑚 ∈ (ℤ𝑁)∀𝑛 ∈ (ℤ𝑚)((seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥)))
1314, 130syl 17 . . . . 5 (𝜑 → (∀𝑥 ∈ ℝ+𝑚𝑍𝑛 ∈ (ℤ𝑚)((seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑚 ∈ (ℤ𝑁)∀𝑛 ∈ (ℤ𝑚)((seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥)))
1321, 37cau4 14996 . . . . . 6 (𝑁𝑍 → (∀𝑥 ∈ ℝ+𝑚𝑍𝑛 ∈ (ℤ𝑚)((seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑚 ∈ (ℤ𝑁)∀𝑛 ∈ (ℤ𝑚)((seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥)))
1334, 132syl 17 . . . . 5 (𝜑 → (∀𝑥 ∈ ℝ+𝑚𝑍𝑛 ∈ (ℤ𝑚)((seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑚 ∈ (ℤ𝑁)∀𝑛 ∈ (ℤ𝑚)((seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥)))
134129, 131, 1333imtr4d 293 . . . 4 (𝜑 → (∀𝑥 ∈ ℝ+𝑚𝑍𝑛 ∈ (ℤ𝑚)((seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥) → ∀𝑥 ∈ ℝ+𝑚𝑍𝑛 ∈ (ℤ𝑚)((seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥)))
13520, 134mpd 15 . . 3 (𝜑 → ∀𝑥 ∈ ℝ+𝑚𝑍𝑛 ∈ (ℤ𝑚)((seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥))
1361uztrn2 12530 . . . . . . . 8 ((𝑚𝑍𝑛 ∈ (ℤ𝑚)) → 𝑛𝑍)
137 simpr 484 . . . . . . . . 9 (((seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥) → (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥)
13825biantrurd 532 . . . . . . . . 9 ((𝜑𝑛𝑍) → ((abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥 ↔ ((seq𝑀( + , 𝐺)‘𝑛) ∈ ℝ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥)))
139137, 138syl5ib 243 . . . . . . . 8 ((𝜑𝑛𝑍) → (((seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥) → ((seq𝑀( + , 𝐺)‘𝑛) ∈ ℝ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥)))
140136, 139sylan2 592 . . . . . . 7 ((𝜑 ∧ (𝑚𝑍𝑛 ∈ (ℤ𝑚))) → (((seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥) → ((seq𝑀( + , 𝐺)‘𝑛) ∈ ℝ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥)))
141140anassrs 467 . . . . . 6 (((𝜑𝑚𝑍) ∧ 𝑛 ∈ (ℤ𝑚)) → (((seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥) → ((seq𝑀( + , 𝐺)‘𝑛) ∈ ℝ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥)))
142141ralimdva 3102 . . . . 5 ((𝜑𝑚𝑍) → (∀𝑛 ∈ (ℤ𝑚)((seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥) → ∀𝑛 ∈ (ℤ𝑚)((seq𝑀( + , 𝐺)‘𝑛) ∈ ℝ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥)))
143142reximdva 3202 . . . 4 (𝜑 → (∃𝑚𝑍𝑛 ∈ (ℤ𝑚)((seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥) → ∃𝑚𝑍𝑛 ∈ (ℤ𝑚)((seq𝑀( + , 𝐺)‘𝑛) ∈ ℝ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥)))
144143ralimdv 3103 . . 3 (𝜑 → (∀𝑥 ∈ ℝ+𝑚𝑍𝑛 ∈ (ℤ𝑚)((seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥) → ∀𝑥 ∈ ℝ+𝑚𝑍𝑛 ∈ (ℤ𝑚)((seq𝑀( + , 𝐺)‘𝑛) ∈ ℝ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥)))
145135, 144mpd 15 . 2 (𝜑 → ∀𝑥 ∈ ℝ+𝑚𝑍𝑛 ∈ (ℤ𝑚)((seq𝑀( + , 𝐺)‘𝑛) ∈ ℝ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥))
1461, 3, 145caurcvg2 15317 1 (𝜑 → seq𝑀( + , 𝐺) ∈ dom ⇝ )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  wrex 3064  Vcvv 3422   class class class wbr 5070  cmpt 5153  dom cdm 5580  wf 6414  cfv 6418  (class class class)co 7255  cc 10800  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   < clt 10940  cle 10941  cmin 11135  cz 12249  cuz 12511  +crp 12659  ...cfz 13168  seqcseq 13649  abscabs 14873  cli 15121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-ico 13014  df-fz 13169  df-fzo 13312  df-fl 13440  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-limsup 15108  df-clim 15125  df-rlim 15126
This theorem is referenced by:  cvgcmpce  15458  rpnnen2lem5  15855  aaliou3lem3  25409
  Copyright terms: Public domain W3C validator