MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.2uz Structured version   Visualization version   GIF version

Theorem r19.2uz 15294
Description: A version of r19.2z 4454 for upper integer quantifiers. (Contributed by Mario Carneiro, 15-Feb-2014.)
Hypothesis
Ref Expression
rexuz3.1 𝑍 = (ℤ𝑀)
Assertion
Ref Expression
r19.2uz (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜑 → ∃𝑘𝑍 𝜑)
Distinct variable groups:   𝑗,𝑀   𝜑,𝑗   𝑗,𝑘,𝑍
Allowed substitution hints:   𝜑(𝑘)   𝑀(𝑘)

Proof of Theorem r19.2uz
StepHypRef Expression
1 eluzelz 12779 . . . . . 6 (𝑗 ∈ (ℤ𝑀) → 𝑗 ∈ ℤ)
2 uzid 12784 . . . . . 6 (𝑗 ∈ ℤ → 𝑗 ∈ (ℤ𝑗))
3 ne0i 4300 . . . . . 6 (𝑗 ∈ (ℤ𝑗) → (ℤ𝑗) ≠ ∅)
41, 2, 33syl 18 . . . . 5 (𝑗 ∈ (ℤ𝑀) → (ℤ𝑗) ≠ ∅)
5 rexuz3.1 . . . . 5 𝑍 = (ℤ𝑀)
64, 5eleq2s 2846 . . . 4 (𝑗𝑍 → (ℤ𝑗) ≠ ∅)
7 r19.2z 4454 . . . 4 (((ℤ𝑗) ≠ ∅ ∧ ∀𝑘 ∈ (ℤ𝑗)𝜑) → ∃𝑘 ∈ (ℤ𝑗)𝜑)
86, 7sylan 580 . . 3 ((𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)𝜑) → ∃𝑘 ∈ (ℤ𝑗)𝜑)
95uztrn2 12788 . . . . . . 7 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
109ex 412 . . . . . 6 (𝑗𝑍 → (𝑘 ∈ (ℤ𝑗) → 𝑘𝑍))
1110anim1d 611 . . . . 5 (𝑗𝑍 → ((𝑘 ∈ (ℤ𝑗) ∧ 𝜑) → (𝑘𝑍𝜑)))
1211reximdv2 3143 . . . 4 (𝑗𝑍 → (∃𝑘 ∈ (ℤ𝑗)𝜑 → ∃𝑘𝑍 𝜑))
1312imp 406 . . 3 ((𝑗𝑍 ∧ ∃𝑘 ∈ (ℤ𝑗)𝜑) → ∃𝑘𝑍 𝜑)
148, 13syldan 591 . 2 ((𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)𝜑) → ∃𝑘𝑍 𝜑)
1514rexlimiva 3126 1 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜑 → ∃𝑘𝑍 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  c0 4292  cfv 6499  cz 12505  cuz 12769
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-pre-lttri 11118  ax-pre-lttrn 11119
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-neg 11384  df-z 12506  df-uz 12770
This theorem is referenced by:  lmcls  23165  1stccnp  23325  iscmet3lem1  25167  iscmet3lem2  25168  uniioombllem6  25465  ulmcau  26280  ulmbdd  26283  ulmcn  26284  ulmdvlem3  26287  iblulm  26292
  Copyright terms: Public domain W3C validator