MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.2uz Structured version   Visualization version   GIF version

Theorem r19.2uz 15074
Description: A version of r19.2z 4431 for upper integer quantifiers. (Contributed by Mario Carneiro, 15-Feb-2014.)
Hypothesis
Ref Expression
rexuz3.1 𝑍 = (ℤ𝑀)
Assertion
Ref Expression
r19.2uz (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜑 → ∃𝑘𝑍 𝜑)
Distinct variable groups:   𝑗,𝑀   𝜑,𝑗   𝑗,𝑘,𝑍
Allowed substitution hints:   𝜑(𝑘)   𝑀(𝑘)

Proof of Theorem r19.2uz
StepHypRef Expression
1 eluzelz 12603 . . . . . 6 (𝑗 ∈ (ℤ𝑀) → 𝑗 ∈ ℤ)
2 uzid 12608 . . . . . 6 (𝑗 ∈ ℤ → 𝑗 ∈ (ℤ𝑗))
3 ne0i 4274 . . . . . 6 (𝑗 ∈ (ℤ𝑗) → (ℤ𝑗) ≠ ∅)
41, 2, 33syl 18 . . . . 5 (𝑗 ∈ (ℤ𝑀) → (ℤ𝑗) ≠ ∅)
5 rexuz3.1 . . . . 5 𝑍 = (ℤ𝑀)
64, 5eleq2s 2859 . . . 4 (𝑗𝑍 → (ℤ𝑗) ≠ ∅)
7 r19.2z 4431 . . . 4 (((ℤ𝑗) ≠ ∅ ∧ ∀𝑘 ∈ (ℤ𝑗)𝜑) → ∃𝑘 ∈ (ℤ𝑗)𝜑)
86, 7sylan 580 . . 3 ((𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)𝜑) → ∃𝑘 ∈ (ℤ𝑗)𝜑)
95uztrn2 12612 . . . . . . 7 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
109ex 413 . . . . . 6 (𝑗𝑍 → (𝑘 ∈ (ℤ𝑗) → 𝑘𝑍))
1110anim1d 611 . . . . 5 (𝑗𝑍 → ((𝑘 ∈ (ℤ𝑗) ∧ 𝜑) → (𝑘𝑍𝜑)))
1211reximdv2 3201 . . . 4 (𝑗𝑍 → (∃𝑘 ∈ (ℤ𝑗)𝜑 → ∃𝑘𝑍 𝜑))
1312imp 407 . . 3 ((𝑗𝑍 ∧ ∃𝑘 ∈ (ℤ𝑗)𝜑) → ∃𝑘𝑍 𝜑)
148, 13syldan 591 . 2 ((𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)𝜑) → ∃𝑘𝑍 𝜑)
1514rexlimiva 3212 1 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜑 → ∃𝑘𝑍 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2110  wne 2945  wral 3066  wrex 3067  c0 4262  cfv 6432  cz 12330  cuz 12593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7583  ax-cnex 10938  ax-resscn 10939  ax-pre-lttri 10956  ax-pre-lttrn 10957
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-br 5080  df-opab 5142  df-mpt 5163  df-id 5490  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-ov 7275  df-er 8490  df-en 8726  df-dom 8727  df-sdom 8728  df-pnf 11022  df-mnf 11023  df-xr 11024  df-ltxr 11025  df-le 11026  df-neg 11219  df-z 12331  df-uz 12594
This theorem is referenced by:  lmcls  22464  1stccnp  22624  iscmet3lem1  24466  iscmet3lem2  24467  uniioombllem6  24763  ulmcau  25565  ulmbdd  25568  ulmcn  25569  ulmdvlem3  25572  iblulm  25577
  Copyright terms: Public domain W3C validator