![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > r19.2uz | Structured version Visualization version GIF version |
Description: A version of r19.2z 4499 for upper integer quantifiers. (Contributed by Mario Carneiro, 15-Feb-2014.) |
Ref | Expression |
---|---|
rexuz3.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
Ref | Expression |
---|---|
r19.2uz | ⊢ (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑 → ∃𝑘 ∈ 𝑍 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluzelz 12884 | . . . . . 6 ⊢ (𝑗 ∈ (ℤ≥‘𝑀) → 𝑗 ∈ ℤ) | |
2 | uzid 12889 | . . . . . 6 ⊢ (𝑗 ∈ ℤ → 𝑗 ∈ (ℤ≥‘𝑗)) | |
3 | ne0i 4337 | . . . . . 6 ⊢ (𝑗 ∈ (ℤ≥‘𝑗) → (ℤ≥‘𝑗) ≠ ∅) | |
4 | 1, 2, 3 | 3syl 18 | . . . . 5 ⊢ (𝑗 ∈ (ℤ≥‘𝑀) → (ℤ≥‘𝑗) ≠ ∅) |
5 | rexuz3.1 | . . . . 5 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
6 | 4, 5 | eleq2s 2844 | . . . 4 ⊢ (𝑗 ∈ 𝑍 → (ℤ≥‘𝑗) ≠ ∅) |
7 | r19.2z 4499 | . . . 4 ⊢ (((ℤ≥‘𝑗) ≠ ∅ ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑) → ∃𝑘 ∈ (ℤ≥‘𝑗)𝜑) | |
8 | 6, 7 | sylan 578 | . . 3 ⊢ ((𝑗 ∈ 𝑍 ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑) → ∃𝑘 ∈ (ℤ≥‘𝑗)𝜑) |
9 | 5 | uztrn2 12893 | . . . . . . 7 ⊢ ((𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝑘 ∈ 𝑍) |
10 | 9 | ex 411 | . . . . . 6 ⊢ (𝑗 ∈ 𝑍 → (𝑘 ∈ (ℤ≥‘𝑗) → 𝑘 ∈ 𝑍)) |
11 | 10 | anim1d 609 | . . . . 5 ⊢ (𝑗 ∈ 𝑍 → ((𝑘 ∈ (ℤ≥‘𝑗) ∧ 𝜑) → (𝑘 ∈ 𝑍 ∧ 𝜑))) |
12 | 11 | reximdv2 3154 | . . . 4 ⊢ (𝑗 ∈ 𝑍 → (∃𝑘 ∈ (ℤ≥‘𝑗)𝜑 → ∃𝑘 ∈ 𝑍 𝜑)) |
13 | 12 | imp 405 | . . 3 ⊢ ((𝑗 ∈ 𝑍 ∧ ∃𝑘 ∈ (ℤ≥‘𝑗)𝜑) → ∃𝑘 ∈ 𝑍 𝜑) |
14 | 8, 13 | syldan 589 | . 2 ⊢ ((𝑗 ∈ 𝑍 ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑) → ∃𝑘 ∈ 𝑍 𝜑) |
15 | 14 | rexlimiva 3137 | 1 ⊢ (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑 → ∃𝑘 ∈ 𝑍 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 ≠ wne 2930 ∀wral 3051 ∃wrex 3060 ∅c0 4325 ‘cfv 6554 ℤcz 12610 ℤ≥cuz 12874 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11214 ax-resscn 11215 ax-pre-lttri 11232 ax-pre-lttrn 11233 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-br 5154 df-opab 5216 df-mpt 5237 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-ov 7427 df-er 8734 df-en 8975 df-dom 8976 df-sdom 8977 df-pnf 11300 df-mnf 11301 df-xr 11302 df-ltxr 11303 df-le 11304 df-neg 11497 df-z 12611 df-uz 12875 |
This theorem is referenced by: lmcls 23297 1stccnp 23457 iscmet3lem1 25310 iscmet3lem2 25311 uniioombllem6 25608 ulmcau 26424 ulmbdd 26427 ulmcn 26428 ulmdvlem3 26431 iblulm 26436 |
Copyright terms: Public domain | W3C validator |