| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r19.2uz | Structured version Visualization version GIF version | ||
| Description: A version of r19.2z 4448 for upper integer quantifiers. (Contributed by Mario Carneiro, 15-Feb-2014.) |
| Ref | Expression |
|---|---|
| rexuz3.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| Ref | Expression |
|---|---|
| r19.2uz | ⊢ (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑 → ∃𝑘 ∈ 𝑍 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluzelz 12763 | . . . . . 6 ⊢ (𝑗 ∈ (ℤ≥‘𝑀) → 𝑗 ∈ ℤ) | |
| 2 | uzid 12768 | . . . . . 6 ⊢ (𝑗 ∈ ℤ → 𝑗 ∈ (ℤ≥‘𝑗)) | |
| 3 | ne0i 4294 | . . . . . 6 ⊢ (𝑗 ∈ (ℤ≥‘𝑗) → (ℤ≥‘𝑗) ≠ ∅) | |
| 4 | 1, 2, 3 | 3syl 18 | . . . . 5 ⊢ (𝑗 ∈ (ℤ≥‘𝑀) → (ℤ≥‘𝑗) ≠ ∅) |
| 5 | rexuz3.1 | . . . . 5 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 6 | 4, 5 | eleq2s 2846 | . . . 4 ⊢ (𝑗 ∈ 𝑍 → (ℤ≥‘𝑗) ≠ ∅) |
| 7 | r19.2z 4448 | . . . 4 ⊢ (((ℤ≥‘𝑗) ≠ ∅ ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑) → ∃𝑘 ∈ (ℤ≥‘𝑗)𝜑) | |
| 8 | 6, 7 | sylan 580 | . . 3 ⊢ ((𝑗 ∈ 𝑍 ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑) → ∃𝑘 ∈ (ℤ≥‘𝑗)𝜑) |
| 9 | 5 | uztrn2 12772 | . . . . . . 7 ⊢ ((𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝑘 ∈ 𝑍) |
| 10 | 9 | ex 412 | . . . . . 6 ⊢ (𝑗 ∈ 𝑍 → (𝑘 ∈ (ℤ≥‘𝑗) → 𝑘 ∈ 𝑍)) |
| 11 | 10 | anim1d 611 | . . . . 5 ⊢ (𝑗 ∈ 𝑍 → ((𝑘 ∈ (ℤ≥‘𝑗) ∧ 𝜑) → (𝑘 ∈ 𝑍 ∧ 𝜑))) |
| 12 | 11 | reximdv2 3139 | . . . 4 ⊢ (𝑗 ∈ 𝑍 → (∃𝑘 ∈ (ℤ≥‘𝑗)𝜑 → ∃𝑘 ∈ 𝑍 𝜑)) |
| 13 | 12 | imp 406 | . . 3 ⊢ ((𝑗 ∈ 𝑍 ∧ ∃𝑘 ∈ (ℤ≥‘𝑗)𝜑) → ∃𝑘 ∈ 𝑍 𝜑) |
| 14 | 8, 13 | syldan 591 | . 2 ⊢ ((𝑗 ∈ 𝑍 ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑) → ∃𝑘 ∈ 𝑍 𝜑) |
| 15 | 14 | rexlimiva 3122 | 1 ⊢ (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑 → ∃𝑘 ∈ 𝑍 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ∃wrex 3053 ∅c0 4286 ‘cfv 6486 ℤcz 12489 ℤ≥cuz 12753 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-pre-lttri 11102 ax-pre-lttrn 11103 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-neg 11368 df-z 12490 df-uz 12754 |
| This theorem is referenced by: lmcls 23205 1stccnp 23365 iscmet3lem1 25207 iscmet3lem2 25208 uniioombllem6 25505 ulmcau 26320 ulmbdd 26323 ulmcn 26324 ulmdvlem3 26327 iblulm 26332 |
| Copyright terms: Public domain | W3C validator |