| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexanuz2 | Structured version Visualization version GIF version | ||
| Description: Combine two different upper integer properties into one. (Contributed by Mario Carneiro, 26-Dec-2013.) |
| Ref | Expression |
|---|---|
| rexuz3.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| Ref | Expression |
|---|---|
| rexanuz2 | ⊢ (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜑 ∧ 𝜓) ↔ (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑 ∧ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluzel2 12774 | . . . . 5 ⊢ (𝑗 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) | |
| 2 | rexuz3.1 | . . . . 5 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 3 | 1, 2 | eleq2s 2846 | . . . 4 ⊢ (𝑗 ∈ 𝑍 → 𝑀 ∈ ℤ) |
| 4 | 3 | a1d 25 | . . 3 ⊢ (𝑗 ∈ 𝑍 → (∀𝑘 ∈ (ℤ≥‘𝑗)(𝜑 ∧ 𝜓) → 𝑀 ∈ ℤ)) |
| 5 | 4 | rexlimiv 3127 | . 2 ⊢ (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜑 ∧ 𝜓) → 𝑀 ∈ ℤ) |
| 6 | 3 | a1d 25 | . . . 4 ⊢ (𝑗 ∈ 𝑍 → (∀𝑘 ∈ (ℤ≥‘𝑗)𝜑 → 𝑀 ∈ ℤ)) |
| 7 | 6 | rexlimiv 3127 | . . 3 ⊢ (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑 → 𝑀 ∈ ℤ) |
| 8 | 7 | adantr 480 | . 2 ⊢ ((∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑 ∧ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜓) → 𝑀 ∈ ℤ) |
| 9 | 2 | rexuz3 15291 | . . 3 ⊢ (𝑀 ∈ ℤ → (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜑 ∧ 𝜓) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜑 ∧ 𝜓))) |
| 10 | rexanuz 15288 | . . . 4 ⊢ (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜑 ∧ 𝜓) ↔ (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑 ∧ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜓)) | |
| 11 | 2 | rexuz3 15291 | . . . . 5 ⊢ (𝑀 ∈ ℤ → (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑 ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑)) |
| 12 | 2 | rexuz3 15291 | . . . . 5 ⊢ (𝑀 ∈ ℤ → (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜓 ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜓)) |
| 13 | 11, 12 | anbi12d 632 | . . . 4 ⊢ (𝑀 ∈ ℤ → ((∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑 ∧ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜓) ↔ (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑 ∧ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜓))) |
| 14 | 10, 13 | bitr4id 290 | . . 3 ⊢ (𝑀 ∈ ℤ → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜑 ∧ 𝜓) ↔ (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑 ∧ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜓))) |
| 15 | 9, 14 | bitrd 279 | . 2 ⊢ (𝑀 ∈ ℤ → (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜑 ∧ 𝜓) ↔ (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑 ∧ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜓))) |
| 16 | 5, 8, 15 | pm5.21nii 378 | 1 ⊢ (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜑 ∧ 𝜓) ↔ (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑 ∧ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 ‘cfv 6499 ℤcz 12505 ℤ≥cuz 12769 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-pre-lttri 11118 ax-pre-lttrn 11119 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-po 5539 df-so 5540 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-neg 11384 df-z 12506 df-uz 12770 |
| This theorem is referenced by: climuni 15494 2clim 15514 climcn2 15535 lmmo 23243 txlm 23511 cmetcaulem 25164 iscmet3lem2 25168 ulmdvlem3 26287 rexanuz3 45063 fnlimabslt 45650 liminflimsupclim 45778 liminflimsupxrre 45788 stoweidlem7 45978 smflimlem3 46744 |
| Copyright terms: Public domain | W3C validator |