MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexanuz2 Structured version   Visualization version   GIF version

Theorem rexanuz2 15296
Description: Combine two different upper integer properties into one. (Contributed by Mario Carneiro, 26-Dec-2013.)
Hypothesis
Ref Expression
rexuz3.1 𝑍 = (ℤ𝑀)
Assertion
Ref Expression
rexanuz2 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜑𝜓) ↔ (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜑 ∧ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜓))
Distinct variable groups:   𝑗,𝑀   𝜑,𝑗   𝑗,𝑘,𝑍   𝜓,𝑗
Allowed substitution hints:   𝜑(𝑘)   𝜓(𝑘)   𝑀(𝑘)

Proof of Theorem rexanuz2
StepHypRef Expression
1 eluzel2 12827 . . . . 5 (𝑗 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
2 rexuz3.1 . . . . 5 𝑍 = (ℤ𝑀)
31, 2eleq2s 2852 . . . 4 (𝑗𝑍𝑀 ∈ ℤ)
43a1d 25 . . 3 (𝑗𝑍 → (∀𝑘 ∈ (ℤ𝑗)(𝜑𝜓) → 𝑀 ∈ ℤ))
54rexlimiv 3149 . 2 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜑𝜓) → 𝑀 ∈ ℤ)
63a1d 25 . . . 4 (𝑗𝑍 → (∀𝑘 ∈ (ℤ𝑗)𝜑𝑀 ∈ ℤ))
76rexlimiv 3149 . . 3 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜑𝑀 ∈ ℤ)
87adantr 482 . 2 ((∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜑 ∧ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜓) → 𝑀 ∈ ℤ)
92rexuz3 15295 . . 3 (𝑀 ∈ ℤ → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜑𝜓) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝜑𝜓)))
10 rexanuz 15292 . . . 4 (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝜑𝜓) ↔ (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑 ∧ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜓))
112rexuz3 15295 . . . . 5 (𝑀 ∈ ℤ → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜑 ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑))
122rexuz3 15295 . . . . 5 (𝑀 ∈ ℤ → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜓 ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜓))
1311, 12anbi12d 632 . . . 4 (𝑀 ∈ ℤ → ((∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜑 ∧ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜓) ↔ (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑 ∧ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜓)))
1410, 13bitr4id 290 . . 3 (𝑀 ∈ ℤ → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝜑𝜓) ↔ (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜑 ∧ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜓)))
159, 14bitrd 279 . 2 (𝑀 ∈ ℤ → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜑𝜓) ↔ (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜑 ∧ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜓)))
165, 8, 15pm5.21nii 380 1 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜑𝜓) ↔ (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜑 ∧ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜓))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 397   = wceq 1542  wcel 2107  wral 3062  wrex 3071  cfv 6544  cz 12558  cuz 12822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-pre-lttri 11184  ax-pre-lttrn 11185
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-po 5589  df-so 5590  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7412  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-neg 11447  df-z 12559  df-uz 12823
This theorem is referenced by:  climuni  15496  2clim  15516  climcn2  15537  lmmo  22884  txlm  23152  cmetcaulem  24805  iscmet3lem2  24809  ulmdvlem3  25914  rexanuz3  43785  fnlimabslt  44395  liminflimsupclim  44523  liminflimsupxrre  44533  stoweidlem7  44723  smflimlem3  45489
  Copyright terms: Public domain W3C validator