MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexanuz2 Structured version   Visualization version   GIF version

Theorem rexanuz2 15368
Description: Combine two different upper integer properties into one. (Contributed by Mario Carneiro, 26-Dec-2013.)
Hypothesis
Ref Expression
rexuz3.1 𝑍 = (ℤ𝑀)
Assertion
Ref Expression
rexanuz2 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜑𝜓) ↔ (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜑 ∧ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜓))
Distinct variable groups:   𝑗,𝑀   𝜑,𝑗   𝑗,𝑘,𝑍   𝜓,𝑗
Allowed substitution hints:   𝜑(𝑘)   𝜓(𝑘)   𝑀(𝑘)

Proof of Theorem rexanuz2
StepHypRef Expression
1 eluzel2 12857 . . . . 5 (𝑗 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
2 rexuz3.1 . . . . 5 𝑍 = (ℤ𝑀)
31, 2eleq2s 2852 . . . 4 (𝑗𝑍𝑀 ∈ ℤ)
43a1d 25 . . 3 (𝑗𝑍 → (∀𝑘 ∈ (ℤ𝑗)(𝜑𝜓) → 𝑀 ∈ ℤ))
54rexlimiv 3134 . 2 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜑𝜓) → 𝑀 ∈ ℤ)
63a1d 25 . . . 4 (𝑗𝑍 → (∀𝑘 ∈ (ℤ𝑗)𝜑𝑀 ∈ ℤ))
76rexlimiv 3134 . . 3 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜑𝑀 ∈ ℤ)
87adantr 480 . 2 ((∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜑 ∧ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜓) → 𝑀 ∈ ℤ)
92rexuz3 15367 . . 3 (𝑀 ∈ ℤ → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜑𝜓) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝜑𝜓)))
10 rexanuz 15364 . . . 4 (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝜑𝜓) ↔ (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑 ∧ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜓))
112rexuz3 15367 . . . . 5 (𝑀 ∈ ℤ → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜑 ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑))
122rexuz3 15367 . . . . 5 (𝑀 ∈ ℤ → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜓 ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜓))
1311, 12anbi12d 632 . . . 4 (𝑀 ∈ ℤ → ((∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜑 ∧ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜓) ↔ (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑 ∧ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜓)))
1410, 13bitr4id 290 . . 3 (𝑀 ∈ ℤ → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝜑𝜓) ↔ (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜑 ∧ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜓)))
159, 14bitrd 279 . 2 (𝑀 ∈ ℤ → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜑𝜓) ↔ (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜑 ∧ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜓)))
165, 8, 15pm5.21nii 378 1 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜑𝜓) ↔ (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜑 ∧ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜓))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3051  wrex 3060  cfv 6531  cz 12588  cuz 12852
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-pre-lttri 11203  ax-pre-lttrn 11204
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-po 5561  df-so 5562  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-neg 11469  df-z 12589  df-uz 12853
This theorem is referenced by:  climuni  15568  2clim  15588  climcn2  15609  lmmo  23318  txlm  23586  cmetcaulem  25240  iscmet3lem2  25244  ulmdvlem3  26363  rexanuz3  45120  fnlimabslt  45708  liminflimsupclim  45836  liminflimsupxrre  45846  stoweidlem7  46036  smflimlem3  46802
  Copyright terms: Public domain W3C validator