| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexanuz2 | Structured version Visualization version GIF version | ||
| Description: Combine two different upper integer properties into one. (Contributed by Mario Carneiro, 26-Dec-2013.) |
| Ref | Expression |
|---|---|
| rexuz3.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| Ref | Expression |
|---|---|
| rexanuz2 | ⊢ (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜑 ∧ 𝜓) ↔ (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑 ∧ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluzel2 12747 | . . . . 5 ⊢ (𝑗 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) | |
| 2 | rexuz3.1 | . . . . 5 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 3 | 1, 2 | eleq2s 2851 | . . . 4 ⊢ (𝑗 ∈ 𝑍 → 𝑀 ∈ ℤ) |
| 4 | 3 | a1d 25 | . . 3 ⊢ (𝑗 ∈ 𝑍 → (∀𝑘 ∈ (ℤ≥‘𝑗)(𝜑 ∧ 𝜓) → 𝑀 ∈ ℤ)) |
| 5 | 4 | rexlimiv 3127 | . 2 ⊢ (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜑 ∧ 𝜓) → 𝑀 ∈ ℤ) |
| 6 | 3 | a1d 25 | . . . 4 ⊢ (𝑗 ∈ 𝑍 → (∀𝑘 ∈ (ℤ≥‘𝑗)𝜑 → 𝑀 ∈ ℤ)) |
| 7 | 6 | rexlimiv 3127 | . . 3 ⊢ (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑 → 𝑀 ∈ ℤ) |
| 8 | 7 | adantr 480 | . 2 ⊢ ((∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑 ∧ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜓) → 𝑀 ∈ ℤ) |
| 9 | 2 | rexuz3 15263 | . . 3 ⊢ (𝑀 ∈ ℤ → (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜑 ∧ 𝜓) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜑 ∧ 𝜓))) |
| 10 | rexanuz 15260 | . . . 4 ⊢ (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜑 ∧ 𝜓) ↔ (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑 ∧ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜓)) | |
| 11 | 2 | rexuz3 15263 | . . . . 5 ⊢ (𝑀 ∈ ℤ → (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑 ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑)) |
| 12 | 2 | rexuz3 15263 | . . . . 5 ⊢ (𝑀 ∈ ℤ → (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜓 ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜓)) |
| 13 | 11, 12 | anbi12d 632 | . . . 4 ⊢ (𝑀 ∈ ℤ → ((∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑 ∧ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜓) ↔ (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑 ∧ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜓))) |
| 14 | 10, 13 | bitr4id 290 | . . 3 ⊢ (𝑀 ∈ ℤ → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜑 ∧ 𝜓) ↔ (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑 ∧ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜓))) |
| 15 | 9, 14 | bitrd 279 | . 2 ⊢ (𝑀 ∈ ℤ → (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜑 ∧ 𝜓) ↔ (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑 ∧ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜓))) |
| 16 | 5, 8, 15 | pm5.21nii 378 | 1 ⊢ (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜑 ∧ 𝜓) ↔ (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑 ∧ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∀wral 3048 ∃wrex 3057 ‘cfv 6489 ℤcz 12479 ℤ≥cuz 12742 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-pre-lttri 11091 ax-pre-lttrn 11092 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-po 5529 df-so 5530 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-ov 7358 df-er 8631 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-neg 11358 df-z 12480 df-uz 12743 |
| This theorem is referenced by: climuni 15466 2clim 15486 climcn2 15507 lmmo 23315 txlm 23583 cmetcaulem 25235 iscmet3lem2 25239 ulmdvlem3 26358 rexanuz3 45256 fnlimabslt 45839 liminflimsupclim 45967 liminflimsupxrre 45977 stoweidlem7 46167 smflimlem3 46933 |
| Copyright terms: Public domain | W3C validator |