| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rennncan2 | Structured version Visualization version GIF version | ||
| Description: Cancellation law for real subtraction. Compare nnncan2 11398. (Contributed by Steven Nguyen, 14-Jan-2023.) |
| Ref | Expression |
|---|---|
| rennncan2 | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 −ℝ 𝐶) −ℝ (𝐵 −ℝ 𝐶)) = (𝐴 −ℝ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐴 ∈ ℝ) | |
| 2 | simp3 1138 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐶 ∈ ℝ) | |
| 3 | simp2 1137 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐵 ∈ ℝ) | |
| 4 | rersubcl 42481 | . . . 4 ⊢ ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 −ℝ 𝐶) ∈ ℝ) | |
| 5 | 3, 2, 4 | syl2anc 584 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 −ℝ 𝐶) ∈ ℝ) |
| 6 | resubsub4 42492 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ (𝐵 −ℝ 𝐶) ∈ ℝ) → ((𝐴 −ℝ 𝐶) −ℝ (𝐵 −ℝ 𝐶)) = (𝐴 −ℝ (𝐶 + (𝐵 −ℝ 𝐶)))) | |
| 7 | 1, 2, 5, 6 | syl3anc 1373 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 −ℝ 𝐶) −ℝ (𝐵 −ℝ 𝐶)) = (𝐴 −ℝ (𝐶 + (𝐵 −ℝ 𝐶)))) |
| 8 | repncan3 42486 | . . . 4 ⊢ ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 + (𝐵 −ℝ 𝐶)) = 𝐵) | |
| 9 | 2, 3, 8 | syl2anc 584 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 + (𝐵 −ℝ 𝐶)) = 𝐵) |
| 10 | 9 | oveq2d 7362 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 −ℝ (𝐶 + (𝐵 −ℝ 𝐶))) = (𝐴 −ℝ 𝐵)) |
| 11 | 7, 10 | eqtrd 2766 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 −ℝ 𝐶) −ℝ (𝐵 −ℝ 𝐶)) = (𝐴 −ℝ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 (class class class)co 7346 ℝcr 11005 + caddc 11009 −ℝ cresub 42468 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-resscn 11063 ax-addrcl 11067 ax-addass 11071 ax-rnegex 11077 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-po 5522 df-so 5523 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-ltxr 11151 df-resub 42469 |
| This theorem is referenced by: sn-00idlem2 42502 |
| Copyright terms: Public domain | W3C validator |