![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sn-00idlem2 | Structured version Visualization version GIF version |
Description: Lemma for sn-00id 42096. (Contributed by SN, 25-Dec-2023.) |
Ref | Expression |
---|---|
sn-00idlem2 | ⊢ ((0 −ℝ 0) ≠ 0 → (0 −ℝ 0) = 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 11253 | . . . . 5 ⊢ 0 ∈ ℝ | |
2 | rennncan2 42085 | . . . . 5 ⊢ ((0 ∈ ℝ ∧ 0 ∈ ℝ ∧ 0 ∈ ℝ) → ((0 −ℝ 0) −ℝ (0 −ℝ 0)) = (0 −ℝ 0)) | |
3 | 1, 1, 1, 2 | mp3an 1457 | . . . 4 ⊢ ((0 −ℝ 0) −ℝ (0 −ℝ 0)) = (0 −ℝ 0) |
4 | re1m1e0m0 42092 | . . . 4 ⊢ (1 −ℝ 1) = (0 −ℝ 0) | |
5 | 3, 4 | eqtr4i 2756 | . . 3 ⊢ ((0 −ℝ 0) −ℝ (0 −ℝ 0)) = (1 −ℝ 1) |
6 | rernegcl 42066 | . . . . 5 ⊢ (0 ∈ ℝ → (0 −ℝ 0) ∈ ℝ) | |
7 | 1, 6 | ax-mp 5 | . . . 4 ⊢ (0 −ℝ 0) ∈ ℝ |
8 | sn-00idlem1 42093 | . . . 4 ⊢ ((0 −ℝ 0) ∈ ℝ → ((0 −ℝ 0) · (0 −ℝ 0)) = ((0 −ℝ 0) −ℝ (0 −ℝ 0))) | |
9 | 7, 8 | ax-mp 5 | . . 3 ⊢ ((0 −ℝ 0) · (0 −ℝ 0)) = ((0 −ℝ 0) −ℝ (0 −ℝ 0)) |
10 | 1re 11251 | . . . 4 ⊢ 1 ∈ ℝ | |
11 | sn-00idlem1 42093 | . . . 4 ⊢ (1 ∈ ℝ → (1 · (0 −ℝ 0)) = (1 −ℝ 1)) | |
12 | 10, 11 | ax-mp 5 | . . 3 ⊢ (1 · (0 −ℝ 0)) = (1 −ℝ 1) |
13 | 5, 9, 12 | 3eqtr4i 2763 | . 2 ⊢ ((0 −ℝ 0) · (0 −ℝ 0)) = (1 · (0 −ℝ 0)) |
14 | 7 | a1i 11 | . . 3 ⊢ ((0 −ℝ 0) ≠ 0 → (0 −ℝ 0) ∈ ℝ) |
15 | 1red 11252 | . . 3 ⊢ ((0 −ℝ 0) ≠ 0 → 1 ∈ ℝ) | |
16 | id 22 | . . 3 ⊢ ((0 −ℝ 0) ≠ 0 → (0 −ℝ 0) ≠ 0) | |
17 | 14, 15, 14, 16 | remulcan2d 41992 | . 2 ⊢ ((0 −ℝ 0) ≠ 0 → (((0 −ℝ 0) · (0 −ℝ 0)) = (1 · (0 −ℝ 0)) ↔ (0 −ℝ 0) = 1)) |
18 | 13, 17 | mpbii 232 | 1 ⊢ ((0 −ℝ 0) ≠ 0 → (0 −ℝ 0) = 1) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 ≠ wne 2929 (class class class)co 7419 ℝcr 11144 0cc0 11145 1c1 11146 · cmul 11150 −ℝ cresub 42060 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-resscn 11202 ax-1cn 11203 ax-icn 11204 ax-addcl 11205 ax-addrcl 11206 ax-mulcl 11207 ax-mulrcl 11208 ax-addass 11210 ax-mulass 11211 ax-distr 11212 ax-i2m1 11213 ax-1ne0 11214 ax-1rid 11215 ax-rnegex 11216 ax-rrecex 11217 ax-cnre 11218 ax-pre-lttri 11219 ax-pre-lttrn 11220 ax-pre-ltadd 11221 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5576 df-po 5590 df-so 5591 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11287 df-mnf 11288 df-ltxr 11290 df-resub 42061 |
This theorem is referenced by: sn-00id 42096 |
Copyright terms: Public domain | W3C validator |