Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sn-00idlem2 Structured version   Visualization version   GIF version

Theorem sn-00idlem2 42434
Description: Lemma for sn-00id 42436. (Contributed by SN, 25-Dec-2023.)
Assertion
Ref Expression
sn-00idlem2 ((0 − 0) ≠ 0 → (0 − 0) = 1)

Proof of Theorem sn-00idlem2
StepHypRef Expression
1 0re 11264 . . . . 5 0 ∈ ℝ
2 rennncan2 42425 . . . . 5 ((0 ∈ ℝ ∧ 0 ∈ ℝ ∧ 0 ∈ ℝ) → ((0 − 0) − (0 − 0)) = (0 − 0))
31, 1, 1, 2mp3an 1462 . . . 4 ((0 − 0) − (0 − 0)) = (0 − 0)
4 re1m1e0m0 42432 . . . 4 (1 − 1) = (0 − 0)
53, 4eqtr4i 2767 . . 3 ((0 − 0) − (0 − 0)) = (1 − 1)
6 rernegcl 42406 . . . . 5 (0 ∈ ℝ → (0 − 0) ∈ ℝ)
71, 6ax-mp 5 . . . 4 (0 − 0) ∈ ℝ
8 sn-00idlem1 42433 . . . 4 ((0 − 0) ∈ ℝ → ((0 − 0) · (0 − 0)) = ((0 − 0) − (0 − 0)))
97, 8ax-mp 5 . . 3 ((0 − 0) · (0 − 0)) = ((0 − 0) − (0 − 0))
10 1re 11262 . . . 4 1 ∈ ℝ
11 sn-00idlem1 42433 . . . 4 (1 ∈ ℝ → (1 · (0 − 0)) = (1 − 1))
1210, 11ax-mp 5 . . 3 (1 · (0 − 0)) = (1 − 1)
135, 9, 123eqtr4i 2774 . 2 ((0 − 0) · (0 − 0)) = (1 · (0 − 0))
147a1i 11 . . 3 ((0 − 0) ≠ 0 → (0 − 0) ∈ ℝ)
15 1red 11263 . . 3 ((0 − 0) ≠ 0 → 1 ∈ ℝ)
16 id 22 . . 3 ((0 − 0) ≠ 0 → (0 − 0) ≠ 0)
1714, 15, 14, 16remulcan2d 42298 . 2 ((0 − 0) ≠ 0 → (((0 − 0) · (0 − 0)) = (1 · (0 − 0)) ↔ (0 − 0) = 1))
1813, 17mpbii 233 1 ((0 − 0) ≠ 0 → (0 − 0) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  wne 2939  (class class class)co 7432  cr 11155  0cc0 11156  1c1 11157   · cmul 11161   cresub 42400
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-po 5591  df-so 5592  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-er 8746  df-en 8987  df-dom 8988  df-sdom 8989  df-pnf 11298  df-mnf 11299  df-ltxr 11301  df-resub 42401
This theorem is referenced by:  sn-00id  42436
  Copyright terms: Public domain W3C validator