![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sn-00idlem2 | Structured version Visualization version GIF version |
Description: Lemma for sn-00id 41577. (Contributed by SN, 25-Dec-2023.) |
Ref | Expression |
---|---|
sn-00idlem2 | ⊢ ((0 −ℝ 0) ≠ 0 → (0 −ℝ 0) = 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 11221 | . . . . 5 ⊢ 0 ∈ ℝ | |
2 | rennncan2 41566 | . . . . 5 ⊢ ((0 ∈ ℝ ∧ 0 ∈ ℝ ∧ 0 ∈ ℝ) → ((0 −ℝ 0) −ℝ (0 −ℝ 0)) = (0 −ℝ 0)) | |
3 | 1, 1, 1, 2 | mp3an 1460 | . . . 4 ⊢ ((0 −ℝ 0) −ℝ (0 −ℝ 0)) = (0 −ℝ 0) |
4 | re1m1e0m0 41573 | . . . 4 ⊢ (1 −ℝ 1) = (0 −ℝ 0) | |
5 | 3, 4 | eqtr4i 2762 | . . 3 ⊢ ((0 −ℝ 0) −ℝ (0 −ℝ 0)) = (1 −ℝ 1) |
6 | rernegcl 41547 | . . . . 5 ⊢ (0 ∈ ℝ → (0 −ℝ 0) ∈ ℝ) | |
7 | 1, 6 | ax-mp 5 | . . . 4 ⊢ (0 −ℝ 0) ∈ ℝ |
8 | sn-00idlem1 41574 | . . . 4 ⊢ ((0 −ℝ 0) ∈ ℝ → ((0 −ℝ 0) · (0 −ℝ 0)) = ((0 −ℝ 0) −ℝ (0 −ℝ 0))) | |
9 | 7, 8 | ax-mp 5 | . . 3 ⊢ ((0 −ℝ 0) · (0 −ℝ 0)) = ((0 −ℝ 0) −ℝ (0 −ℝ 0)) |
10 | 1re 11219 | . . . 4 ⊢ 1 ∈ ℝ | |
11 | sn-00idlem1 41574 | . . . 4 ⊢ (1 ∈ ℝ → (1 · (0 −ℝ 0)) = (1 −ℝ 1)) | |
12 | 10, 11 | ax-mp 5 | . . 3 ⊢ (1 · (0 −ℝ 0)) = (1 −ℝ 1) |
13 | 5, 9, 12 | 3eqtr4i 2769 | . 2 ⊢ ((0 −ℝ 0) · (0 −ℝ 0)) = (1 · (0 −ℝ 0)) |
14 | 7 | a1i 11 | . . 3 ⊢ ((0 −ℝ 0) ≠ 0 → (0 −ℝ 0) ∈ ℝ) |
15 | 1red 11220 | . . 3 ⊢ ((0 −ℝ 0) ≠ 0 → 1 ∈ ℝ) | |
16 | id 22 | . . 3 ⊢ ((0 −ℝ 0) ≠ 0 → (0 −ℝ 0) ≠ 0) | |
17 | 14, 15, 14, 16 | remulcan2d 41480 | . 2 ⊢ ((0 −ℝ 0) ≠ 0 → (((0 −ℝ 0) · (0 −ℝ 0)) = (1 · (0 −ℝ 0)) ↔ (0 −ℝ 0) = 1)) |
18 | 13, 17 | mpbii 232 | 1 ⊢ ((0 −ℝ 0) ≠ 0 → (0 −ℝ 0) = 1) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 ≠ wne 2939 (class class class)co 7412 ℝcr 11112 0cc0 11113 1c1 11114 · cmul 11118 −ℝ cresub 41541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7728 ax-resscn 11170 ax-1cn 11171 ax-icn 11172 ax-addcl 11173 ax-addrcl 11174 ax-mulcl 11175 ax-mulrcl 11176 ax-addass 11178 ax-mulass 11179 ax-distr 11180 ax-i2m1 11181 ax-1ne0 11182 ax-1rid 11183 ax-rnegex 11184 ax-rrecex 11185 ax-cnre 11186 ax-pre-lttri 11187 ax-pre-lttrn 11188 ax-pre-ltadd 11189 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-po 5589 df-so 5590 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-er 8706 df-en 8943 df-dom 8944 df-sdom 8945 df-pnf 11255 df-mnf 11256 df-ltxr 11258 df-resub 41542 |
This theorem is referenced by: sn-00id 41577 |
Copyright terms: Public domain | W3C validator |