| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sn-00idlem2 | Structured version Visualization version GIF version | ||
| Description: Lemma for sn-00id 42411. (Contributed by SN, 25-Dec-2023.) |
| Ref | Expression |
|---|---|
| sn-00idlem2 | ⊢ ((0 −ℝ 0) ≠ 0 → (0 −ℝ 0) = 1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re 11242 | . . . . 5 ⊢ 0 ∈ ℝ | |
| 2 | rennncan2 42400 | . . . . 5 ⊢ ((0 ∈ ℝ ∧ 0 ∈ ℝ ∧ 0 ∈ ℝ) → ((0 −ℝ 0) −ℝ (0 −ℝ 0)) = (0 −ℝ 0)) | |
| 3 | 1, 1, 1, 2 | mp3an 1463 | . . . 4 ⊢ ((0 −ℝ 0) −ℝ (0 −ℝ 0)) = (0 −ℝ 0) |
| 4 | re1m1e0m0 42407 | . . . 4 ⊢ (1 −ℝ 1) = (0 −ℝ 0) | |
| 5 | 3, 4 | eqtr4i 2762 | . . 3 ⊢ ((0 −ℝ 0) −ℝ (0 −ℝ 0)) = (1 −ℝ 1) |
| 6 | rernegcl 42381 | . . . . 5 ⊢ (0 ∈ ℝ → (0 −ℝ 0) ∈ ℝ) | |
| 7 | 1, 6 | ax-mp 5 | . . . 4 ⊢ (0 −ℝ 0) ∈ ℝ |
| 8 | sn-00idlem1 42408 | . . . 4 ⊢ ((0 −ℝ 0) ∈ ℝ → ((0 −ℝ 0) · (0 −ℝ 0)) = ((0 −ℝ 0) −ℝ (0 −ℝ 0))) | |
| 9 | 7, 8 | ax-mp 5 | . . 3 ⊢ ((0 −ℝ 0) · (0 −ℝ 0)) = ((0 −ℝ 0) −ℝ (0 −ℝ 0)) |
| 10 | 1re 11240 | . . . 4 ⊢ 1 ∈ ℝ | |
| 11 | sn-00idlem1 42408 | . . . 4 ⊢ (1 ∈ ℝ → (1 · (0 −ℝ 0)) = (1 −ℝ 1)) | |
| 12 | 10, 11 | ax-mp 5 | . . 3 ⊢ (1 · (0 −ℝ 0)) = (1 −ℝ 1) |
| 13 | 5, 9, 12 | 3eqtr4i 2769 | . 2 ⊢ ((0 −ℝ 0) · (0 −ℝ 0)) = (1 · (0 −ℝ 0)) |
| 14 | 7 | a1i 11 | . . 3 ⊢ ((0 −ℝ 0) ≠ 0 → (0 −ℝ 0) ∈ ℝ) |
| 15 | 1red 11241 | . . 3 ⊢ ((0 −ℝ 0) ≠ 0 → 1 ∈ ℝ) | |
| 16 | id 22 | . . 3 ⊢ ((0 −ℝ 0) ≠ 0 → (0 −ℝ 0) ≠ 0) | |
| 17 | 14, 15, 14, 16 | remulcan2d 42275 | . 2 ⊢ ((0 −ℝ 0) ≠ 0 → (((0 −ℝ 0) · (0 −ℝ 0)) = (1 · (0 −ℝ 0)) ↔ (0 −ℝ 0) = 1)) |
| 18 | 13, 17 | mpbii 233 | 1 ⊢ ((0 −ℝ 0) ≠ 0 → (0 −ℝ 0) = 1) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 (class class class)co 7410 ℝcr 11133 0cc0 11134 1c1 11135 · cmul 11139 −ℝ cresub 42375 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-po 5566 df-so 5567 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-ltxr 11279 df-resub 42376 |
| This theorem is referenced by: sn-00id 42411 |
| Copyright terms: Public domain | W3C validator |