Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  repncan3 Structured version   Visualization version   GIF version

Theorem repncan3 42376
Description: Addition and subtraction of equals. Based on pncan3 11498. (Contributed by Steven Nguyen, 8-Jan-2023.)
Assertion
Ref Expression
repncan3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + (𝐵 𝐴)) = 𝐵)

Proof of Theorem repncan3
StepHypRef Expression
1 rersubcl 42371 . . 3 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 𝐴) ∈ ℝ)
2 eqid 2734 . . . 4 (𝐵 𝐴) = (𝐵 𝐴)
3 resubadd 42372 . . . 4 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ (𝐵 𝐴) ∈ ℝ) → ((𝐵 𝐴) = (𝐵 𝐴) ↔ (𝐴 + (𝐵 𝐴)) = 𝐵))
42, 3mpbii 233 . . 3 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ (𝐵 𝐴) ∈ ℝ) → (𝐴 + (𝐵 𝐴)) = 𝐵)
51, 4mpd3an3 1463 . 2 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐴 + (𝐵 𝐴)) = 𝐵)
65ancoms 458 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + (𝐵 𝐴)) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1539  wcel 2107  (class class class)co 7413  cr 11136   + caddc 11140   cresub 42358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-resscn 11194  ax-addrcl 11198  ax-addass 11202  ax-rnegex 11208  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-po 5572  df-so 5573  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-er 8727  df-en 8968  df-dom 8969  df-sdom 8970  df-pnf 11279  df-mnf 11280  df-ltxr 11282  df-resub 42359
This theorem is referenced by:  readdsub  42377  reltsub1  42379  resubcan2  42381  resubsub4  42382  rennncan2  42383  renpncan3  42384  resubdi  42389  re1m1e0m0  42390  renegneg  42404
  Copyright terms: Public domain W3C validator