Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  repncan3 Structured version   Visualization version   GIF version

Theorem repncan3 41860
Description: Addition and subtraction of equals. Based on pncan3 11490. (Contributed by Steven Nguyen, 8-Jan-2023.)
Assertion
Ref Expression
repncan3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + (𝐵 𝐴)) = 𝐵)

Proof of Theorem repncan3
StepHypRef Expression
1 rersubcl 41855 . . 3 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 𝐴) ∈ ℝ)
2 eqid 2727 . . . 4 (𝐵 𝐴) = (𝐵 𝐴)
3 resubadd 41856 . . . 4 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ (𝐵 𝐴) ∈ ℝ) → ((𝐵 𝐴) = (𝐵 𝐴) ↔ (𝐴 + (𝐵 𝐴)) = 𝐵))
42, 3mpbii 232 . . 3 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ (𝐵 𝐴) ∈ ℝ) → (𝐴 + (𝐵 𝐴)) = 𝐵)
51, 4mpd3an3 1459 . 2 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐴 + (𝐵 𝐴)) = 𝐵)
65ancoms 458 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + (𝐵 𝐴)) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1534  wcel 2099  (class class class)co 7414  cr 11129   + caddc 11133   cresub 41842
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-resscn 11187  ax-addrcl 11191  ax-addass 11195  ax-rnegex 11201  ax-pre-lttri 11204  ax-pre-lttrn 11205  ax-pre-ltadd 11206
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-po 5584  df-so 5585  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-er 8718  df-en 8956  df-dom 8957  df-sdom 8958  df-pnf 11272  df-mnf 11273  df-ltxr 11275  df-resub 41843
This theorem is referenced by:  readdsub  41861  reltsub1  41863  resubcan2  41865  resubsub4  41866  rennncan2  41867  renpncan3  41868  resubdi  41873  re1m1e0m0  41874  renegneg  41888
  Copyright terms: Public domain W3C validator