| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > repncan3 | Structured version Visualization version GIF version | ||
| Description: Addition and subtraction of equals. Based on pncan3 11498. (Contributed by Steven Nguyen, 8-Jan-2023.) |
| Ref | Expression |
|---|---|
| repncan3 | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + (𝐵 −ℝ 𝐴)) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rersubcl 42371 | . . 3 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 −ℝ 𝐴) ∈ ℝ) | |
| 2 | eqid 2734 | . . . 4 ⊢ (𝐵 −ℝ 𝐴) = (𝐵 −ℝ 𝐴) | |
| 3 | resubadd 42372 | . . . 4 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ (𝐵 −ℝ 𝐴) ∈ ℝ) → ((𝐵 −ℝ 𝐴) = (𝐵 −ℝ 𝐴) ↔ (𝐴 + (𝐵 −ℝ 𝐴)) = 𝐵)) | |
| 4 | 2, 3 | mpbii 233 | . . 3 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ (𝐵 −ℝ 𝐴) ∈ ℝ) → (𝐴 + (𝐵 −ℝ 𝐴)) = 𝐵) |
| 5 | 1, 4 | mpd3an3 1463 | . 2 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐴 + (𝐵 −ℝ 𝐴)) = 𝐵) |
| 6 | 5 | ancoms 458 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + (𝐵 −ℝ 𝐴)) = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 (class class class)co 7413 ℝcr 11136 + caddc 11140 −ℝ cresub 42358 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-resscn 11194 ax-addrcl 11198 ax-addass 11202 ax-rnegex 11208 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-po 5572 df-so 5573 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-er 8727 df-en 8968 df-dom 8969 df-sdom 8970 df-pnf 11279 df-mnf 11280 df-ltxr 11282 df-resub 42359 |
| This theorem is referenced by: readdsub 42377 reltsub1 42379 resubcan2 42381 resubsub4 42382 rennncan2 42383 renpncan3 42384 resubdi 42389 re1m1e0m0 42390 renegneg 42404 |
| Copyright terms: Public domain | W3C validator |