| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cvmliftlem14 | Structured version Visualization version GIF version | ||
| Description: Lemma for cvmlift 35286. Putting the results of cvmliftlem11 35282, cvmliftlem13 35283 and cvmliftmo 35271 together, we have that 𝐾 is a continuous function, satisfies 𝐹 ∘ 𝐾 = 𝐺 and 𝐾(0) = 𝑃, and is equal to any other function which also has these properties, so it follows that 𝐾 is the unique lift of 𝐺. (Contributed by Mario Carneiro, 16-Feb-2015.) |
| Ref | Expression |
|---|---|
| cvmliftlem.1 | ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) |
| cvmliftlem.b | ⊢ 𝐵 = ∪ 𝐶 |
| cvmliftlem.x | ⊢ 𝑋 = ∪ 𝐽 |
| cvmliftlem.f | ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) |
| cvmliftlem.g | ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) |
| cvmliftlem.p | ⊢ (𝜑 → 𝑃 ∈ 𝐵) |
| cvmliftlem.e | ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘0)) |
| cvmliftlem.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| cvmliftlem.t | ⊢ (𝜑 → 𝑇:(1...𝑁)⟶∪ 𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗))) |
| cvmliftlem.a | ⊢ (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇‘𝑘))) |
| cvmliftlem.l | ⊢ 𝐿 = (topGen‘ran (,)) |
| cvmliftlem.q | ⊢ 𝑄 = seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘𝑧)))), (( I ↾ ℕ) ∪ {〈0, {〈0, 𝑃〉}〉})) |
| cvmliftlem.k | ⊢ 𝐾 = ∪ 𝑘 ∈ (1...𝑁)(𝑄‘𝑘) |
| Ref | Expression |
|---|---|
| cvmliftlem14 | ⊢ (𝜑 → ∃!𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cvmliftlem.1 | . . . . 5 ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) | |
| 2 | cvmliftlem.b | . . . . 5 ⊢ 𝐵 = ∪ 𝐶 | |
| 3 | cvmliftlem.x | . . . . 5 ⊢ 𝑋 = ∪ 𝐽 | |
| 4 | cvmliftlem.f | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) | |
| 5 | cvmliftlem.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) | |
| 6 | cvmliftlem.p | . . . . 5 ⊢ (𝜑 → 𝑃 ∈ 𝐵) | |
| 7 | cvmliftlem.e | . . . . 5 ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘0)) | |
| 8 | cvmliftlem.n | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
| 9 | cvmliftlem.t | . . . . 5 ⊢ (𝜑 → 𝑇:(1...𝑁)⟶∪ 𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗))) | |
| 10 | cvmliftlem.a | . . . . 5 ⊢ (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇‘𝑘))) | |
| 11 | cvmliftlem.l | . . . . 5 ⊢ 𝐿 = (topGen‘ran (,)) | |
| 12 | cvmliftlem.q | . . . . 5 ⊢ 𝑄 = seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘𝑧)))), (( I ↾ ℕ) ∪ {〈0, {〈0, 𝑃〉}〉})) | |
| 13 | cvmliftlem.k | . . . . 5 ⊢ 𝐾 = ∪ 𝑘 ∈ (1...𝑁)(𝑄‘𝑘) | |
| 14 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 | cvmliftlem11 35282 | . . . 4 ⊢ (𝜑 → (𝐾 ∈ (II Cn 𝐶) ∧ (𝐹 ∘ 𝐾) = 𝐺)) |
| 15 | 14 | simpld 494 | . . 3 ⊢ (𝜑 → 𝐾 ∈ (II Cn 𝐶)) |
| 16 | 14 | simprd 495 | . . 3 ⊢ (𝜑 → (𝐹 ∘ 𝐾) = 𝐺) |
| 17 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 | cvmliftlem13 35283 | . . 3 ⊢ (𝜑 → (𝐾‘0) = 𝑃) |
| 18 | coeq2 5822 | . . . . . 6 ⊢ (𝑓 = 𝐾 → (𝐹 ∘ 𝑓) = (𝐹 ∘ 𝐾)) | |
| 19 | 18 | eqeq1d 2731 | . . . . 5 ⊢ (𝑓 = 𝐾 → ((𝐹 ∘ 𝑓) = 𝐺 ↔ (𝐹 ∘ 𝐾) = 𝐺)) |
| 20 | fveq1 6857 | . . . . . 6 ⊢ (𝑓 = 𝐾 → (𝑓‘0) = (𝐾‘0)) | |
| 21 | 20 | eqeq1d 2731 | . . . . 5 ⊢ (𝑓 = 𝐾 → ((𝑓‘0) = 𝑃 ↔ (𝐾‘0) = 𝑃)) |
| 22 | 19, 21 | anbi12d 632 | . . . 4 ⊢ (𝑓 = 𝐾 → (((𝐹 ∘ 𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃) ↔ ((𝐹 ∘ 𝐾) = 𝐺 ∧ (𝐾‘0) = 𝑃))) |
| 23 | 22 | rspcev 3588 | . . 3 ⊢ ((𝐾 ∈ (II Cn 𝐶) ∧ ((𝐹 ∘ 𝐾) = 𝐺 ∧ (𝐾‘0) = 𝑃)) → ∃𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃)) |
| 24 | 15, 16, 17, 23 | syl12anc 836 | . 2 ⊢ (𝜑 → ∃𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃)) |
| 25 | iiuni 24774 | . . 3 ⊢ (0[,]1) = ∪ II | |
| 26 | iiconn 24780 | . . . 4 ⊢ II ∈ Conn | |
| 27 | 26 | a1i 11 | . . 3 ⊢ (𝜑 → II ∈ Conn) |
| 28 | iinllyconn 35241 | . . . 4 ⊢ II ∈ 𝑛-Locally Conn | |
| 29 | 28 | a1i 11 | . . 3 ⊢ (𝜑 → II ∈ 𝑛-Locally Conn) |
| 30 | 0elunit 13430 | . . . 4 ⊢ 0 ∈ (0[,]1) | |
| 31 | 30 | a1i 11 | . . 3 ⊢ (𝜑 → 0 ∈ (0[,]1)) |
| 32 | 2, 25, 4, 27, 29, 31, 5, 6, 7 | cvmliftmo 35271 | . 2 ⊢ (𝜑 → ∃*𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃)) |
| 33 | reu5 3356 | . 2 ⊢ (∃!𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃) ↔ (∃𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃) ∧ ∃*𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃))) | |
| 34 | 24, 32, 33 | sylanbrc 583 | 1 ⊢ (𝜑 → ∃!𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 ∃!wreu 3352 ∃*wrmo 3353 {crab 3405 Vcvv 3447 ∖ cdif 3911 ∪ cun 3912 ∩ cin 3913 ⊆ wss 3914 ∅c0 4296 𝒫 cpw 4563 {csn 4589 〈cop 4595 ∪ cuni 4871 ∪ ciun 4955 ↦ cmpt 5188 I cid 5532 × cxp 5636 ◡ccnv 5637 ran crn 5639 ↾ cres 5640 “ cima 5641 ∘ ccom 5642 ⟶wf 6507 ‘cfv 6511 ℩crio 7343 (class class class)co 7387 ∈ cmpo 7389 1st c1st 7966 2nd c2nd 7967 0cc0 11068 1c1 11069 − cmin 11405 / cdiv 11835 ℕcn 12186 (,)cioo 13306 [,]cicc 13309 ...cfz 13468 seqcseq 13966 ↾t crest 17383 topGenctg 17400 Cn ccn 23111 Conncconn 23298 𝑛-Locally cnlly 23352 Homeochmeo 23640 IIcii 24768 CovMap ccvm 35242 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 ax-addf 11147 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-om 7843 df-1st 7968 df-2nd 7969 df-supp 8140 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-er 8671 df-map 8801 df-ixp 8871 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-fsupp 9313 df-fi 9362 df-sup 9393 df-inf 9394 df-oi 9463 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-q 12908 df-rp 12952 df-xneg 13072 df-xadd 13073 df-xmul 13074 df-ioo 13310 df-ico 13312 df-icc 13313 df-fz 13469 df-fzo 13616 df-seq 13967 df-exp 14027 df-hash 14296 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-starv 17235 df-sca 17236 df-vsca 17237 df-ip 17238 df-tset 17239 df-ple 17240 df-ds 17242 df-unif 17243 df-hom 17244 df-cco 17245 df-rest 17385 df-topn 17386 df-0g 17404 df-gsum 17405 df-topgen 17406 df-pt 17407 df-prds 17410 df-xrs 17465 df-qtop 17470 df-imas 17471 df-xps 17473 df-mre 17547 df-mrc 17548 df-acs 17550 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-submnd 18711 df-mulg 19000 df-cntz 19249 df-cmn 19712 df-psmet 21256 df-xmet 21257 df-met 21258 df-bl 21259 df-mopn 21260 df-cnfld 21265 df-top 22781 df-topon 22798 df-topsp 22820 df-bases 22833 df-cld 22906 df-nei 22985 df-cn 23114 df-cnp 23115 df-conn 23299 df-lly 23353 df-nlly 23354 df-tx 23449 df-hmeo 23642 df-xms 24208 df-ms 24209 df-tms 24210 df-ii 24770 df-cncf 24771 df-htpy 24869 df-phtpy 24870 df-phtpc 24891 df-pconn 35208 df-sconn 35209 df-cvm 35243 |
| This theorem is referenced by: cvmliftlem15 35285 |
| Copyright terms: Public domain | W3C validator |