![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cvmliftlem14 | Structured version Visualization version GIF version |
Description: Lemma for cvmlift 34589. Putting the results of cvmliftlem11 34585, cvmliftlem13 34586 and cvmliftmo 34574 together, we have that πΎ is a continuous function, satisfies πΉ β πΎ = πΊ and πΎ(0) = π, and is equal to any other function which also has these properties, so it follows that πΎ is the unique lift of πΊ. (Contributed by Mario Carneiro, 16-Feb-2015.) |
Ref | Expression |
---|---|
cvmliftlem.1 | β’ π = (π β π½ β¦ {π β (π« πΆ β {β }) β£ (βͺ π = (β‘πΉ β π) β§ βπ’ β π (βπ£ β (π β {π’})(π’ β© π£) = β β§ (πΉ βΎ π’) β ((πΆ βΎt π’)Homeo(π½ βΎt π))))}) |
cvmliftlem.b | β’ π΅ = βͺ πΆ |
cvmliftlem.x | β’ π = βͺ π½ |
cvmliftlem.f | β’ (π β πΉ β (πΆ CovMap π½)) |
cvmliftlem.g | β’ (π β πΊ β (II Cn π½)) |
cvmliftlem.p | β’ (π β π β π΅) |
cvmliftlem.e | β’ (π β (πΉβπ) = (πΊβ0)) |
cvmliftlem.n | β’ (π β π β β) |
cvmliftlem.t | β’ (π β π:(1...π)βΆβͺ π β π½ ({π} Γ (πβπ))) |
cvmliftlem.a | β’ (π β βπ β (1...π)(πΊ β (((π β 1) / π)[,](π / π))) β (1st β(πβπ))) |
cvmliftlem.l | β’ πΏ = (topGenβran (,)) |
cvmliftlem.q | β’ π = seq0((π₯ β V, π β β β¦ (π§ β (((π β 1) / π)[,](π / π)) β¦ (β‘(πΉ βΎ (β©π β (2nd β(πβπ))(π₯β((π β 1) / π)) β π))β(πΊβπ§)))), (( I βΎ β) βͺ {β¨0, {β¨0, πβ©}β©})) |
cvmliftlem.k | β’ πΎ = βͺ π β (1...π)(πβπ) |
Ref | Expression |
---|---|
cvmliftlem14 | β’ (π β β!π β (II Cn πΆ)((πΉ β π) = πΊ β§ (πβ0) = π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cvmliftlem.1 | . . . . 5 β’ π = (π β π½ β¦ {π β (π« πΆ β {β }) β£ (βͺ π = (β‘πΉ β π) β§ βπ’ β π (βπ£ β (π β {π’})(π’ β© π£) = β β§ (πΉ βΎ π’) β ((πΆ βΎt π’)Homeo(π½ βΎt π))))}) | |
2 | cvmliftlem.b | . . . . 5 β’ π΅ = βͺ πΆ | |
3 | cvmliftlem.x | . . . . 5 β’ π = βͺ π½ | |
4 | cvmliftlem.f | . . . . 5 β’ (π β πΉ β (πΆ CovMap π½)) | |
5 | cvmliftlem.g | . . . . 5 β’ (π β πΊ β (II Cn π½)) | |
6 | cvmliftlem.p | . . . . 5 β’ (π β π β π΅) | |
7 | cvmliftlem.e | . . . . 5 β’ (π β (πΉβπ) = (πΊβ0)) | |
8 | cvmliftlem.n | . . . . 5 β’ (π β π β β) | |
9 | cvmliftlem.t | . . . . 5 β’ (π β π:(1...π)βΆβͺ π β π½ ({π} Γ (πβπ))) | |
10 | cvmliftlem.a | . . . . 5 β’ (π β βπ β (1...π)(πΊ β (((π β 1) / π)[,](π / π))) β (1st β(πβπ))) | |
11 | cvmliftlem.l | . . . . 5 β’ πΏ = (topGenβran (,)) | |
12 | cvmliftlem.q | . . . . 5 β’ π = seq0((π₯ β V, π β β β¦ (π§ β (((π β 1) / π)[,](π / π)) β¦ (β‘(πΉ βΎ (β©π β (2nd β(πβπ))(π₯β((π β 1) / π)) β π))β(πΊβπ§)))), (( I βΎ β) βͺ {β¨0, {β¨0, πβ©}β©})) | |
13 | cvmliftlem.k | . . . . 5 β’ πΎ = βͺ π β (1...π)(πβπ) | |
14 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 | cvmliftlem11 34585 | . . . 4 β’ (π β (πΎ β (II Cn πΆ) β§ (πΉ β πΎ) = πΊ)) |
15 | 14 | simpld 494 | . . 3 β’ (π β πΎ β (II Cn πΆ)) |
16 | 14 | simprd 495 | . . 3 β’ (π β (πΉ β πΎ) = πΊ) |
17 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 | cvmliftlem13 34586 | . . 3 β’ (π β (πΎβ0) = π) |
18 | coeq2 5858 | . . . . . 6 β’ (π = πΎ β (πΉ β π) = (πΉ β πΎ)) | |
19 | 18 | eqeq1d 2733 | . . . . 5 β’ (π = πΎ β ((πΉ β π) = πΊ β (πΉ β πΎ) = πΊ)) |
20 | fveq1 6890 | . . . . . 6 β’ (π = πΎ β (πβ0) = (πΎβ0)) | |
21 | 20 | eqeq1d 2733 | . . . . 5 β’ (π = πΎ β ((πβ0) = π β (πΎβ0) = π)) |
22 | 19, 21 | anbi12d 630 | . . . 4 β’ (π = πΎ β (((πΉ β π) = πΊ β§ (πβ0) = π) β ((πΉ β πΎ) = πΊ β§ (πΎβ0) = π))) |
23 | 22 | rspcev 3612 | . . 3 β’ ((πΎ β (II Cn πΆ) β§ ((πΉ β πΎ) = πΊ β§ (πΎβ0) = π)) β βπ β (II Cn πΆ)((πΉ β π) = πΊ β§ (πβ0) = π)) |
24 | 15, 16, 17, 23 | syl12anc 834 | . 2 β’ (π β βπ β (II Cn πΆ)((πΉ β π) = πΊ β§ (πβ0) = π)) |
25 | iiuni 24622 | . . 3 β’ (0[,]1) = βͺ II | |
26 | iiconn 24628 | . . . 4 β’ II β Conn | |
27 | 26 | a1i 11 | . . 3 β’ (π β II β Conn) |
28 | iinllyconn 34544 | . . . 4 β’ II β π-Locally Conn | |
29 | 28 | a1i 11 | . . 3 β’ (π β II β π-Locally Conn) |
30 | 0elunit 13451 | . . . 4 β’ 0 β (0[,]1) | |
31 | 30 | a1i 11 | . . 3 β’ (π β 0 β (0[,]1)) |
32 | 2, 25, 4, 27, 29, 31, 5, 6, 7 | cvmliftmo 34574 | . 2 β’ (π β β*π β (II Cn πΆ)((πΉ β π) = πΊ β§ (πβ0) = π)) |
33 | reu5 3377 | . 2 β’ (β!π β (II Cn πΆ)((πΉ β π) = πΊ β§ (πβ0) = π) β (βπ β (II Cn πΆ)((πΉ β π) = πΊ β§ (πβ0) = π) β§ β*π β (II Cn πΆ)((πΉ β π) = πΊ β§ (πβ0) = π))) | |
34 | 24, 32, 33 | sylanbrc 582 | 1 β’ (π β β!π β (II Cn πΆ)((πΉ β π) = πΊ β§ (πβ0) = π)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1540 β wcel 2105 βwral 3060 βwrex 3069 β!wreu 3373 β*wrmo 3374 {crab 3431 Vcvv 3473 β cdif 3945 βͺ cun 3946 β© cin 3947 β wss 3948 β c0 4322 π« cpw 4602 {csn 4628 β¨cop 4634 βͺ cuni 4908 βͺ ciun 4997 β¦ cmpt 5231 I cid 5573 Γ cxp 5674 β‘ccnv 5675 ran crn 5677 βΎ cres 5678 β cima 5679 β ccom 5680 βΆwf 6539 βcfv 6543 β©crio 7367 (class class class)co 7412 β cmpo 7414 1st c1st 7977 2nd c2nd 7978 0cc0 11114 1c1 11115 β cmin 11449 / cdiv 11876 βcn 12217 (,)cioo 13329 [,]cicc 13332 ...cfz 13489 seqcseq 13971 βΎt crest 17371 topGenctg 17388 Cn ccn 22949 Conncconn 23136 π-Locally cnlly 23190 Homeochmeo 23478 IIcii 24616 CovMap ccvm 34545 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 ax-pre-sup 11192 ax-addf 11193 ax-mulf 11194 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-of 7674 df-om 7860 df-1st 7979 df-2nd 7980 df-supp 8151 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-1o 8470 df-2o 8471 df-er 8707 df-map 8826 df-ixp 8896 df-en 8944 df-dom 8945 df-sdom 8946 df-fin 8947 df-fsupp 9366 df-fi 9410 df-sup 9441 df-inf 9442 df-oi 9509 df-card 9938 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-div 11877 df-nn 12218 df-2 12280 df-3 12281 df-4 12282 df-5 12283 df-6 12284 df-7 12285 df-8 12286 df-9 12287 df-n0 12478 df-z 12564 df-dec 12683 df-uz 12828 df-q 12938 df-rp 12980 df-xneg 13097 df-xadd 13098 df-xmul 13099 df-ioo 13333 df-ico 13335 df-icc 13336 df-fz 13490 df-fzo 13633 df-seq 13972 df-exp 14033 df-hash 14296 df-cj 15051 df-re 15052 df-im 15053 df-sqrt 15187 df-abs 15188 df-struct 17085 df-sets 17102 df-slot 17120 df-ndx 17132 df-base 17150 df-ress 17179 df-plusg 17215 df-mulr 17216 df-starv 17217 df-sca 17218 df-vsca 17219 df-ip 17220 df-tset 17221 df-ple 17222 df-ds 17224 df-unif 17225 df-hom 17226 df-cco 17227 df-rest 17373 df-topn 17374 df-0g 17392 df-gsum 17393 df-topgen 17394 df-pt 17395 df-prds 17398 df-xrs 17453 df-qtop 17458 df-imas 17459 df-xps 17461 df-mre 17535 df-mrc 17536 df-acs 17538 df-mgm 18566 df-sgrp 18645 df-mnd 18661 df-submnd 18707 df-mulg 18988 df-cntz 19223 df-cmn 19692 df-psmet 21137 df-xmet 21138 df-met 21139 df-bl 21140 df-mopn 21141 df-cnfld 21146 df-top 22617 df-topon 22634 df-topsp 22656 df-bases 22670 df-cld 22744 df-nei 22823 df-cn 22952 df-cnp 22953 df-conn 23137 df-lly 23191 df-nlly 23192 df-tx 23287 df-hmeo 23480 df-xms 24047 df-ms 24048 df-tms 24049 df-ii 24618 df-htpy 24717 df-phtpy 24718 df-phtpc 24739 df-pconn 34511 df-sconn 34512 df-cvm 34546 |
This theorem is referenced by: cvmliftlem15 34588 |
Copyright terms: Public domain | W3C validator |