Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmliftlem14 Structured version   Visualization version   GIF version

Theorem cvmliftlem14 31788
Description: Lemma for cvmlift 31790. Putting the results of cvmliftlem11 31786, cvmliftlem13 31787 and cvmliftmo 31775 together, we have that 𝐾 is a continuous function, satisfies 𝐹𝐾 = 𝐺 and 𝐾(0) = 𝑃, and is equal to any other function which also has these properties, so it follows that 𝐾 is the unique lift of 𝐺. (Contributed by Mario Carneiro, 16-Feb-2015.)
Hypotheses
Ref Expression
cvmliftlem.1 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
cvmliftlem.b 𝐵 = 𝐶
cvmliftlem.x 𝑋 = 𝐽
cvmliftlem.f (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
cvmliftlem.g (𝜑𝐺 ∈ (II Cn 𝐽))
cvmliftlem.p (𝜑𝑃𝐵)
cvmliftlem.e (𝜑 → (𝐹𝑃) = (𝐺‘0))
cvmliftlem.n (𝜑𝑁 ∈ ℕ)
cvmliftlem.t (𝜑𝑇:(1...𝑁)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)))
cvmliftlem.a (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇𝑘)))
cvmliftlem.l 𝐿 = (topGen‘ran (,))
cvmliftlem.q 𝑄 = seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧)))), (( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩}))
cvmliftlem.k 𝐾 = 𝑘 ∈ (1...𝑁)(𝑄𝑘)
Assertion
Ref Expression
cvmliftlem14 (𝜑 → ∃!𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃))
Distinct variable groups:   𝑣,𝑏,𝑧,𝐵   𝑓,𝑏,𝑗,𝑘,𝑚,𝑠,𝑢,𝑥,𝐹,𝑣,𝑧   𝑧,𝐿   𝑓,𝐾   𝑃,𝑏,𝑓,𝑘,𝑚,𝑢,𝑣,𝑥,𝑧   𝐶,𝑏,𝑓,𝑗,𝑘,𝑠,𝑢,𝑣,𝑧   𝜑,𝑓,𝑗,𝑠,𝑥,𝑧   𝑁,𝑏,𝑘,𝑚,𝑢,𝑣,𝑥,𝑧   𝑆,𝑏,𝑓,𝑗,𝑘,𝑠,𝑢,𝑣,𝑥,𝑧   𝑗,𝑋   𝐺,𝑏,𝑓,𝑗,𝑘,𝑚,𝑠,𝑢,𝑣,𝑥,𝑧   𝑇,𝑏,𝑗,𝑘,𝑚,𝑠,𝑢,𝑣,𝑥,𝑧   𝐽,𝑏,𝑓,𝑗,𝑘,𝑠,𝑢,𝑣,𝑥,𝑧   𝑄,𝑏,𝑘,𝑚,𝑢,𝑣,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑣,𝑢,𝑘,𝑚,𝑏)   𝐵(𝑥,𝑢,𝑓,𝑗,𝑘,𝑚,𝑠)   𝐶(𝑥,𝑚)   𝑃(𝑗,𝑠)   𝑄(𝑓,𝑗,𝑠)   𝑆(𝑚)   𝑇(𝑓)   𝐽(𝑚)   𝐾(𝑥,𝑧,𝑣,𝑢,𝑗,𝑘,𝑚,𝑠,𝑏)   𝐿(𝑥,𝑣,𝑢,𝑓,𝑗,𝑘,𝑚,𝑠,𝑏)   𝑁(𝑓,𝑗,𝑠)   𝑋(𝑥,𝑧,𝑣,𝑢,𝑓,𝑘,𝑚,𝑠,𝑏)

Proof of Theorem cvmliftlem14
StepHypRef Expression
1 cvmliftlem.1 . . . . 5 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
2 cvmliftlem.b . . . . 5 𝐵 = 𝐶
3 cvmliftlem.x . . . . 5 𝑋 = 𝐽
4 cvmliftlem.f . . . . 5 (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
5 cvmliftlem.g . . . . 5 (𝜑𝐺 ∈ (II Cn 𝐽))
6 cvmliftlem.p . . . . 5 (𝜑𝑃𝐵)
7 cvmliftlem.e . . . . 5 (𝜑 → (𝐹𝑃) = (𝐺‘0))
8 cvmliftlem.n . . . . 5 (𝜑𝑁 ∈ ℕ)
9 cvmliftlem.t . . . . 5 (𝜑𝑇:(1...𝑁)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)))
10 cvmliftlem.a . . . . 5 (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇𝑘)))
11 cvmliftlem.l . . . . 5 𝐿 = (topGen‘ran (,))
12 cvmliftlem.q . . . . 5 𝑄 = seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧)))), (( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩}))
13 cvmliftlem.k . . . . 5 𝐾 = 𝑘 ∈ (1...𝑁)(𝑄𝑘)
141, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13cvmliftlem11 31786 . . . 4 (𝜑 → (𝐾 ∈ (II Cn 𝐶) ∧ (𝐹𝐾) = 𝐺))
1514simpld 489 . . 3 (𝜑𝐾 ∈ (II Cn 𝐶))
1614simprd 490 . . 3 (𝜑 → (𝐹𝐾) = 𝐺)
171, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13cvmliftlem13 31787 . . 3 (𝜑 → (𝐾‘0) = 𝑃)
18 coeq2 5482 . . . . . 6 (𝑓 = 𝐾 → (𝐹𝑓) = (𝐹𝐾))
1918eqeq1d 2799 . . . . 5 (𝑓 = 𝐾 → ((𝐹𝑓) = 𝐺 ↔ (𝐹𝐾) = 𝐺))
20 fveq1 6408 . . . . . 6 (𝑓 = 𝐾 → (𝑓‘0) = (𝐾‘0))
2120eqeq1d 2799 . . . . 5 (𝑓 = 𝐾 → ((𝑓‘0) = 𝑃 ↔ (𝐾‘0) = 𝑃))
2219, 21anbi12d 625 . . . 4 (𝑓 = 𝐾 → (((𝐹𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃) ↔ ((𝐹𝐾) = 𝐺 ∧ (𝐾‘0) = 𝑃)))
2322rspcev 3495 . . 3 ((𝐾 ∈ (II Cn 𝐶) ∧ ((𝐹𝐾) = 𝐺 ∧ (𝐾‘0) = 𝑃)) → ∃𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃))
2415, 16, 17, 23syl12anc 866 . 2 (𝜑 → ∃𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃))
25 iiuni 23009 . . 3 (0[,]1) = II
26 iiconn 23015 . . . 4 II ∈ Conn
2726a1i 11 . . 3 (𝜑 → II ∈ Conn)
28 iinllyconn 31745 . . . 4 II ∈ 𝑛-Locally Conn
2928a1i 11 . . 3 (𝜑 → II ∈ 𝑛-Locally Conn)
30 0elunit 12538 . . . 4 0 ∈ (0[,]1)
3130a1i 11 . . 3 (𝜑 → 0 ∈ (0[,]1))
322, 25, 4, 27, 29, 31, 5, 6, 7cvmliftmo 31775 . 2 (𝜑 → ∃*𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃))
33 reu5 3340 . 2 (∃!𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃) ↔ (∃𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃) ∧ ∃*𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃)))
3424, 32, 33sylanbrc 579 1 (𝜑 → ∃!𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 385   = wceq 1653  wcel 2157  wral 3087  wrex 3088  ∃!wreu 3089  ∃*wrmo 3090  {crab 3091  Vcvv 3383  cdif 3764  cun 3765  cin 3766  wss 3767  c0 4113  𝒫 cpw 4347  {csn 4366  cop 4372   cuni 4626   ciun 4708  cmpt 4920   I cid 5217   × cxp 5308  ccnv 5309  ran crn 5311  cres 5312  cima 5313  ccom 5314  wf 6095  cfv 6099  crio 6836  (class class class)co 6876  cmpt2 6878  1st c1st 7397  2nd c2nd 7398  0cc0 10222  1c1 10223  cmin 10554   / cdiv 10974  cn 11310  (,)cioo 12420  [,]cicc 12423  ...cfz 12576  seqcseq 13051  t crest 16393  topGenctg 16410   Cn ccn 21354  Conncconn 21540  𝑛-Locally cnlly 21594  Homeochmeo 21882  IIcii 23003   CovMap ccvm 31746
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2354  ax-ext 2775  ax-rep 4962  ax-sep 4973  ax-nul 4981  ax-pow 5033  ax-pr 5095  ax-un 7181  ax-inf2 8786  ax-cnex 10278  ax-resscn 10279  ax-1cn 10280  ax-icn 10281  ax-addcl 10282  ax-addrcl 10283  ax-mulcl 10284  ax-mulrcl 10285  ax-mulcom 10286  ax-addass 10287  ax-mulass 10288  ax-distr 10289  ax-i2m1 10290  ax-1ne0 10291  ax-1rid 10292  ax-rnegex 10293  ax-rrecex 10294  ax-cnre 10295  ax-pre-lttri 10296  ax-pre-lttrn 10297  ax-pre-ltadd 10298  ax-pre-mulgt0 10299  ax-pre-sup 10300  ax-addf 10301  ax-mulf 10302
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2590  df-eu 2607  df-clab 2784  df-cleq 2790  df-clel 2793  df-nfc 2928  df-ne 2970  df-nel 3073  df-ral 3092  df-rex 3093  df-reu 3094  df-rmo 3095  df-rab 3096  df-v 3385  df-sbc 3632  df-csb 3727  df-dif 3770  df-un 3772  df-in 3774  df-ss 3781  df-pss 3783  df-nul 4114  df-if 4276  df-pw 4349  df-sn 4367  df-pr 4369  df-tp 4371  df-op 4373  df-uni 4627  df-int 4666  df-iun 4710  df-iin 4711  df-br 4842  df-opab 4904  df-mpt 4921  df-tr 4944  df-id 5218  df-eprel 5223  df-po 5231  df-so 5232  df-fr 5269  df-se 5270  df-we 5271  df-xp 5316  df-rel 5317  df-cnv 5318  df-co 5319  df-dm 5320  df-rn 5321  df-res 5322  df-ima 5323  df-pred 5896  df-ord 5942  df-on 5943  df-lim 5944  df-suc 5945  df-iota 6062  df-fun 6101  df-fn 6102  df-f 6103  df-f1 6104  df-fo 6105  df-f1o 6106  df-fv 6107  df-isom 6108  df-riota 6837  df-ov 6879  df-oprab 6880  df-mpt2 6881  df-of 7129  df-om 7298  df-1st 7399  df-2nd 7400  df-supp 7531  df-wrecs 7643  df-recs 7705  df-rdg 7743  df-1o 7797  df-2o 7798  df-oadd 7801  df-er 7980  df-map 8095  df-ixp 8147  df-en 8194  df-dom 8195  df-sdom 8196  df-fin 8197  df-fsupp 8516  df-fi 8557  df-sup 8588  df-inf 8589  df-oi 8655  df-card 9049  df-cda 9276  df-pnf 10363  df-mnf 10364  df-xr 10365  df-ltxr 10366  df-le 10367  df-sub 10556  df-neg 10557  df-div 10975  df-nn 11311  df-2 11372  df-3 11373  df-4 11374  df-5 11375  df-6 11376  df-7 11377  df-8 11378  df-9 11379  df-n0 11577  df-z 11663  df-dec 11780  df-uz 11927  df-q 12030  df-rp 12071  df-xneg 12189  df-xadd 12190  df-xmul 12191  df-ioo 12424  df-ico 12426  df-icc 12427  df-fz 12577  df-fzo 12717  df-seq 13052  df-exp 13111  df-hash 13367  df-cj 14177  df-re 14178  df-im 14179  df-sqrt 14313  df-abs 14314  df-struct 16183  df-ndx 16184  df-slot 16185  df-base 16187  df-sets 16188  df-ress 16189  df-plusg 16277  df-mulr 16278  df-starv 16279  df-sca 16280  df-vsca 16281  df-ip 16282  df-tset 16283  df-ple 16284  df-ds 16286  df-unif 16287  df-hom 16288  df-cco 16289  df-rest 16395  df-topn 16396  df-0g 16414  df-gsum 16415  df-topgen 16416  df-pt 16417  df-prds 16420  df-xrs 16474  df-qtop 16479  df-imas 16480  df-xps 16482  df-mre 16558  df-mrc 16559  df-acs 16561  df-mgm 17554  df-sgrp 17596  df-mnd 17607  df-submnd 17648  df-mulg 17854  df-cntz 18059  df-cmn 18507  df-psmet 20057  df-xmet 20058  df-met 20059  df-bl 20060  df-mopn 20061  df-cnfld 20066  df-top 21024  df-topon 21041  df-topsp 21063  df-bases 21076  df-cld 21149  df-nei 21228  df-cn 21357  df-cnp 21358  df-conn 21541  df-lly 21595  df-nlly 21596  df-tx 21691  df-hmeo 21884  df-xms 22450  df-ms 22451  df-tms 22452  df-ii 23005  df-htpy 23094  df-phtpy 23095  df-phtpc 23116  df-pconn 31712  df-sconn 31713  df-cvm 31747
This theorem is referenced by:  cvmliftlem15  31789
  Copyright terms: Public domain W3C validator