![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > noreceuw | Structured version Visualization version GIF version |
Description: If a surreal has a reciprocal, then it has unique division. (Contributed by Scott Fenton, 12-Mar-2025.) |
Ref | Expression |
---|---|
noreceuw | ⊢ (((𝐴 ∈ No ∧ 𝐴 ≠ 0s ∧ 𝐵 ∈ No ) ∧ ∃𝑥 ∈ No (𝐴 ·s 𝑥) = 1s ) → ∃!𝑦 ∈ No (𝐴 ·s 𝑦) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | norecdiv 28077 | . 2 ⊢ (((𝐴 ∈ No ∧ 𝐴 ≠ 0s ∧ 𝐵 ∈ No ) ∧ ∃𝑥 ∈ No (𝐴 ·s 𝑥) = 1s ) → ∃𝑦 ∈ No (𝐴 ·s 𝑦) = 𝐵) | |
2 | divsmo 28071 | . . . 4 ⊢ ((𝐴 ∈ No ∧ 𝐴 ≠ 0s ) → ∃*𝑦 ∈ No (𝐴 ·s 𝑦) = 𝐵) | |
3 | 2 | 3adant3 1130 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐴 ≠ 0s ∧ 𝐵 ∈ No ) → ∃*𝑦 ∈ No (𝐴 ·s 𝑦) = 𝐵) |
4 | 3 | adantr 480 | . 2 ⊢ (((𝐴 ∈ No ∧ 𝐴 ≠ 0s ∧ 𝐵 ∈ No ) ∧ ∃𝑥 ∈ No (𝐴 ·s 𝑥) = 1s ) → ∃*𝑦 ∈ No (𝐴 ·s 𝑦) = 𝐵) |
5 | reu5 3373 | . 2 ⊢ (∃!𝑦 ∈ No (𝐴 ·s 𝑦) = 𝐵 ↔ (∃𝑦 ∈ No (𝐴 ·s 𝑦) = 𝐵 ∧ ∃*𝑦 ∈ No (𝐴 ·s 𝑦) = 𝐵)) | |
6 | 1, 4, 5 | sylanbrc 582 | 1 ⊢ (((𝐴 ∈ No ∧ 𝐴 ≠ 0s ∧ 𝐵 ∈ No ) ∧ ∃𝑥 ∈ No (𝐴 ·s 𝑥) = 1s ) → ∃!𝑦 ∈ No (𝐴 ·s 𝑦) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 ≠ wne 2935 ∃wrex 3065 ∃!wreu 3369 ∃*wrmo 3370 (class class class)co 7414 No csur 27560 0s c0s 27742 1s c1s 27743 ·s cmuls 27993 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-ot 4633 df-uni 4904 df-int 4945 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-se 5628 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-1st 7987 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-1o 8480 df-2o 8481 df-nadd 8680 df-no 27563 df-slt 27564 df-bday 27565 df-sle 27665 df-sslt 27701 df-scut 27703 df-0s 27744 df-1s 27745 df-made 27761 df-old 27762 df-left 27764 df-right 27765 df-norec 27842 df-norec2 27853 df-adds 27864 df-negs 27921 df-subs 27922 df-muls 27994 |
This theorem is referenced by: divsmulw 28079 divsclw 28081 |
Copyright terms: Public domain | W3C validator |