Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngcsect Structured version   Visualization version   GIF version

Theorem rngcsect 45056
Description: A section in the category of non-unital rings, written out. (Contributed by AV, 28-Feb-2020.)
Hypotheses
Ref Expression
rngcsect.c 𝐶 = (RngCat‘𝑈)
rngcsect.b 𝐵 = (Base‘𝐶)
rngcsect.u (𝜑𝑈𝑉)
rngcsect.x (𝜑𝑋𝐵)
rngcsect.y (𝜑𝑌𝐵)
rngcsect.e 𝐸 = (Base‘𝑋)
rngcsect.n 𝑆 = (Sect‘𝐶)
Assertion
Ref Expression
rngcsect (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺 ↔ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋) ∧ (𝐺𝐹) = ( I ↾ 𝐸))))

Proof of Theorem rngcsect
StepHypRef Expression
1 rngcsect.b . . 3 𝐵 = (Base‘𝐶)
2 eqid 2738 . . 3 (Hom ‘𝐶) = (Hom ‘𝐶)
3 eqid 2738 . . 3 (comp‘𝐶) = (comp‘𝐶)
4 eqid 2738 . . 3 (Id‘𝐶) = (Id‘𝐶)
5 rngcsect.n . . 3 𝑆 = (Sect‘𝐶)
6 rngcsect.u . . . 4 (𝜑𝑈𝑉)
7 rngcsect.c . . . . 5 𝐶 = (RngCat‘𝑈)
87rngccat 45054 . . . 4 (𝑈𝑉𝐶 ∈ Cat)
96, 8syl 17 . . 3 (𝜑𝐶 ∈ Cat)
10 rngcsect.x . . 3 (𝜑𝑋𝐵)
11 rngcsect.y . . 3 (𝜑𝑌𝐵)
121, 2, 3, 4, 5, 9, 10, 11issect 17121 . 2 (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺 ↔ (𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋) ∧ (𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋))))
137, 1, 6, 2, 10, 11rngchom 45043 . . . . . . 7 (𝜑 → (𝑋(Hom ‘𝐶)𝑌) = (𝑋 RngHomo 𝑌))
1413eleq2d 2818 . . . . . 6 (𝜑 → (𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ↔ 𝐹 ∈ (𝑋 RngHomo 𝑌)))
157, 1, 6, 2, 11, 10rngchom 45043 . . . . . . 7 (𝜑 → (𝑌(Hom ‘𝐶)𝑋) = (𝑌 RngHomo 𝑋))
1615eleq2d 2818 . . . . . 6 (𝜑 → (𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋) ↔ 𝐺 ∈ (𝑌 RngHomo 𝑋)))
1714, 16anbi12d 634 . . . . 5 (𝜑 → ((𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋)) ↔ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋))))
1817anbi1d 633 . . . 4 (𝜑 → (((𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋)) ∧ (𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)) ↔ ((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋))))
196adantr 484 . . . . . . 7 ((𝜑 ∧ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋))) → 𝑈𝑉)
2010adantr 484 . . . . . . . 8 ((𝜑 ∧ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋))) → 𝑋𝐵)
217, 1, 6rngcbas 45041 . . . . . . . . . . 11 (𝜑𝐵 = (𝑈 ∩ Rng))
2221eleq2d 2818 . . . . . . . . . 10 (𝜑 → (𝑋𝐵𝑋 ∈ (𝑈 ∩ Rng)))
23 inss1 4117 . . . . . . . . . . . 12 (𝑈 ∩ Rng) ⊆ 𝑈
2423a1i 11 . . . . . . . . . . 11 (𝜑 → (𝑈 ∩ Rng) ⊆ 𝑈)
2524sseld 3874 . . . . . . . . . 10 (𝜑 → (𝑋 ∈ (𝑈 ∩ Rng) → 𝑋𝑈))
2622, 25sylbid 243 . . . . . . . . 9 (𝜑 → (𝑋𝐵𝑋𝑈))
2726adantr 484 . . . . . . . 8 ((𝜑 ∧ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋))) → (𝑋𝐵𝑋𝑈))
2820, 27mpd 15 . . . . . . 7 ((𝜑 ∧ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋))) → 𝑋𝑈)
2911adantr 484 . . . . . . . 8 ((𝜑 ∧ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋))) → 𝑌𝐵)
3021eleq2d 2818 . . . . . . . . . 10 (𝜑 → (𝑌𝐵𝑌 ∈ (𝑈 ∩ Rng)))
3124sseld 3874 . . . . . . . . . 10 (𝜑 → (𝑌 ∈ (𝑈 ∩ Rng) → 𝑌𝑈))
3230, 31sylbid 243 . . . . . . . . 9 (𝜑 → (𝑌𝐵𝑌𝑈))
3332adantr 484 . . . . . . . 8 ((𝜑 ∧ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋))) → (𝑌𝐵𝑌𝑈))
3429, 33mpd 15 . . . . . . 7 ((𝜑 ∧ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋))) → 𝑌𝑈)
35 eqid 2738 . . . . . . . . . 10 (Base‘𝑋) = (Base‘𝑋)
36 eqid 2738 . . . . . . . . . 10 (Base‘𝑌) = (Base‘𝑌)
3735, 36rnghmf 44975 . . . . . . . . 9 (𝐹 ∈ (𝑋 RngHomo 𝑌) → 𝐹:(Base‘𝑋)⟶(Base‘𝑌))
3837adantr 484 . . . . . . . 8 ((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) → 𝐹:(Base‘𝑋)⟶(Base‘𝑌))
3938adantl 485 . . . . . . 7 ((𝜑 ∧ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋))) → 𝐹:(Base‘𝑋)⟶(Base‘𝑌))
4036, 35rnghmf 44975 . . . . . . . . 9 (𝐺 ∈ (𝑌 RngHomo 𝑋) → 𝐺:(Base‘𝑌)⟶(Base‘𝑋))
4140adantl 485 . . . . . . . 8 ((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) → 𝐺:(Base‘𝑌)⟶(Base‘𝑋))
4241adantl 485 . . . . . . 7 ((𝜑 ∧ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋))) → 𝐺:(Base‘𝑌)⟶(Base‘𝑋))
437, 19, 3, 28, 34, 28, 39, 42rngcco 45047 . . . . . 6 ((𝜑 ∧ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋))) → (𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = (𝐺𝐹))
44 rngcsect.e . . . . . . . 8 𝐸 = (Base‘𝑋)
457, 1, 4, 6, 10, 44rngcid 45055 . . . . . . 7 (𝜑 → ((Id‘𝐶)‘𝑋) = ( I ↾ 𝐸))
4645adantr 484 . . . . . 6 ((𝜑 ∧ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋))) → ((Id‘𝐶)‘𝑋) = ( I ↾ 𝐸))
4743, 46eqeq12d 2754 . . . . 5 ((𝜑 ∧ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋))) → ((𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋) ↔ (𝐺𝐹) = ( I ↾ 𝐸)))
4847pm5.32da 582 . . . 4 (𝜑 → (((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)) ↔ ((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺𝐹) = ( I ↾ 𝐸))))
4918, 48bitrd 282 . . 3 (𝜑 → (((𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋)) ∧ (𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)) ↔ ((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺𝐹) = ( I ↾ 𝐸))))
50 df-3an 1090 . . 3 ((𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋) ∧ (𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)) ↔ ((𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋)) ∧ (𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)))
51 df-3an 1090 . . 3 ((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋) ∧ (𝐺𝐹) = ( I ↾ 𝐸)) ↔ ((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺𝐹) = ( I ↾ 𝐸)))
5249, 50, 513bitr4g 317 . 2 (𝜑 → ((𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋) ∧ (𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)) ↔ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋) ∧ (𝐺𝐹) = ( I ↾ 𝐸))))
5312, 52bitrd 282 1 (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺 ↔ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋) ∧ (𝐺𝐹) = ( I ↾ 𝐸))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1088   = wceq 1542  wcel 2113  cin 3840  wss 3841  cop 4519   class class class wbr 5027   I cid 5424  cres 5521  ccom 5523  wf 6329  cfv 6333  (class class class)co 7164  Basecbs 16579  Hom chom 16672  compcco 16673  Catccat 17031  Idccid 17032  Sectcsect 17112  Rngcrng 44950   RngHomo crngh 44961  RngCatcrngc 45033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-rep 5151  ax-sep 5164  ax-nul 5171  ax-pow 5229  ax-pr 5293  ax-un 7473  ax-cnex 10664  ax-resscn 10665  ax-1cn 10666  ax-icn 10667  ax-addcl 10668  ax-addrcl 10669  ax-mulcl 10670  ax-mulrcl 10671  ax-mulcom 10672  ax-addass 10673  ax-mulass 10674  ax-distr 10675  ax-i2m1 10676  ax-1ne0 10677  ax-1rid 10678  ax-rnegex 10679  ax-rrecex 10680  ax-cnre 10681  ax-pre-lttri 10682  ax-pre-lttrn 10683  ax-pre-ltadd 10684  ax-pre-mulgt0 10685
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3399  df-sbc 3680  df-csb 3789  df-dif 3844  df-un 3846  df-in 3848  df-ss 3858  df-pss 3860  df-nul 4210  df-if 4412  df-pw 4487  df-sn 4514  df-pr 4516  df-tp 4518  df-op 4520  df-uni 4794  df-iun 4880  df-br 5028  df-opab 5090  df-mpt 5108  df-tr 5134  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6123  df-ord 6169  df-on 6170  df-lim 6171  df-suc 6172  df-iota 6291  df-fun 6335  df-fn 6336  df-f 6337  df-f1 6338  df-fo 6339  df-f1o 6340  df-fv 6341  df-riota 7121  df-ov 7167  df-oprab 7168  df-mpo 7169  df-om 7594  df-1st 7707  df-2nd 7708  df-wrecs 7969  df-recs 8030  df-rdg 8068  df-1o 8124  df-er 8313  df-map 8432  df-pm 8433  df-ixp 8501  df-en 8549  df-dom 8550  df-sdom 8551  df-fin 8552  df-pnf 10748  df-mnf 10749  df-xr 10750  df-ltxr 10751  df-le 10752  df-sub 10943  df-neg 10944  df-nn 11710  df-2 11772  df-3 11773  df-4 11774  df-5 11775  df-6 11776  df-7 11777  df-8 11778  df-9 11779  df-n0 11970  df-z 12056  df-dec 12173  df-uz 12318  df-fz 12975  df-struct 16581  df-ndx 16582  df-slot 16583  df-base 16585  df-sets 16586  df-ress 16587  df-plusg 16674  df-hom 16685  df-cco 16686  df-0g 16811  df-cat 17035  df-cid 17036  df-homf 17037  df-sect 17115  df-ssc 17178  df-resc 17179  df-subc 17180  df-estrc 17482  df-mgm 17961  df-sgrp 18010  df-mnd 18021  df-mhm 18065  df-grp 18215  df-ghm 18467  df-abl 19020  df-mgp 19352  df-mgmhm 44851  df-rng0 44951  df-rnghomo 44963  df-rngc 45035
This theorem is referenced by:  rngcinv  45057
  Copyright terms: Public domain W3C validator