MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rngcsect Structured version   Visualization version   GIF version

Theorem rngcsect 20552
Description: A section in the category of non-unital rings, written out. (Contributed by AV, 28-Feb-2020.)
Hypotheses
Ref Expression
rngcsect.c 𝐶 = (RngCat‘𝑈)
rngcsect.b 𝐵 = (Base‘𝐶)
rngcsect.u (𝜑𝑈𝑉)
rngcsect.x (𝜑𝑋𝐵)
rngcsect.y (𝜑𝑌𝐵)
rngcsect.e 𝐸 = (Base‘𝑋)
rngcsect.n 𝑆 = (Sect‘𝐶)
Assertion
Ref Expression
rngcsect (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺 ↔ (𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋) ∧ (𝐺𝐹) = ( I ↾ 𝐸))))

Proof of Theorem rngcsect
StepHypRef Expression
1 rngcsect.b . . 3 𝐵 = (Base‘𝐶)
2 eqid 2730 . . 3 (Hom ‘𝐶) = (Hom ‘𝐶)
3 eqid 2730 . . 3 (comp‘𝐶) = (comp‘𝐶)
4 eqid 2730 . . 3 (Id‘𝐶) = (Id‘𝐶)
5 rngcsect.n . . 3 𝑆 = (Sect‘𝐶)
6 rngcsect.u . . . 4 (𝜑𝑈𝑉)
7 rngcsect.c . . . . 5 𝐶 = (RngCat‘𝑈)
87rngccat 20550 . . . 4 (𝑈𝑉𝐶 ∈ Cat)
96, 8syl 17 . . 3 (𝜑𝐶 ∈ Cat)
10 rngcsect.x . . 3 (𝜑𝑋𝐵)
11 rngcsect.y . . 3 (𝜑𝑌𝐵)
121, 2, 3, 4, 5, 9, 10, 11issect 17722 . 2 (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺 ↔ (𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋) ∧ (𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋))))
137, 1, 6, 2, 10, 11rngchom 20539 . . . . . . 7 (𝜑 → (𝑋(Hom ‘𝐶)𝑌) = (𝑋 RngHom 𝑌))
1413eleq2d 2815 . . . . . 6 (𝜑 → (𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ↔ 𝐹 ∈ (𝑋 RngHom 𝑌)))
157, 1, 6, 2, 11, 10rngchom 20539 . . . . . . 7 (𝜑 → (𝑌(Hom ‘𝐶)𝑋) = (𝑌 RngHom 𝑋))
1615eleq2d 2815 . . . . . 6 (𝜑 → (𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋) ↔ 𝐺 ∈ (𝑌 RngHom 𝑋)))
1714, 16anbi12d 632 . . . . 5 (𝜑 → ((𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋)) ↔ (𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋))))
1817anbi1d 631 . . . 4 (𝜑 → (((𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋)) ∧ (𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)) ↔ ((𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋)) ∧ (𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋))))
196adantr 480 . . . . . . 7 ((𝜑 ∧ (𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋))) → 𝑈𝑉)
2010adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋))) → 𝑋𝐵)
217, 1, 6rngcbas 20537 . . . . . . . . . . 11 (𝜑𝐵 = (𝑈 ∩ Rng))
2221eleq2d 2815 . . . . . . . . . 10 (𝜑 → (𝑋𝐵𝑋 ∈ (𝑈 ∩ Rng)))
23 inss1 4203 . . . . . . . . . . . 12 (𝑈 ∩ Rng) ⊆ 𝑈
2423a1i 11 . . . . . . . . . . 11 (𝜑 → (𝑈 ∩ Rng) ⊆ 𝑈)
2524sseld 3948 . . . . . . . . . 10 (𝜑 → (𝑋 ∈ (𝑈 ∩ Rng) → 𝑋𝑈))
2622, 25sylbid 240 . . . . . . . . 9 (𝜑 → (𝑋𝐵𝑋𝑈))
2726adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋))) → (𝑋𝐵𝑋𝑈))
2820, 27mpd 15 . . . . . . 7 ((𝜑 ∧ (𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋))) → 𝑋𝑈)
2911adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋))) → 𝑌𝐵)
3021eleq2d 2815 . . . . . . . . . 10 (𝜑 → (𝑌𝐵𝑌 ∈ (𝑈 ∩ Rng)))
3124sseld 3948 . . . . . . . . . 10 (𝜑 → (𝑌 ∈ (𝑈 ∩ Rng) → 𝑌𝑈))
3230, 31sylbid 240 . . . . . . . . 9 (𝜑 → (𝑌𝐵𝑌𝑈))
3332adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋))) → (𝑌𝐵𝑌𝑈))
3429, 33mpd 15 . . . . . . 7 ((𝜑 ∧ (𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋))) → 𝑌𝑈)
35 eqid 2730 . . . . . . . . . 10 (Base‘𝑋) = (Base‘𝑋)
36 eqid 2730 . . . . . . . . . 10 (Base‘𝑌) = (Base‘𝑌)
3735, 36rnghmf 20364 . . . . . . . . 9 (𝐹 ∈ (𝑋 RngHom 𝑌) → 𝐹:(Base‘𝑋)⟶(Base‘𝑌))
3837adantr 480 . . . . . . . 8 ((𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋)) → 𝐹:(Base‘𝑋)⟶(Base‘𝑌))
3938adantl 481 . . . . . . 7 ((𝜑 ∧ (𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋))) → 𝐹:(Base‘𝑋)⟶(Base‘𝑌))
4036, 35rnghmf 20364 . . . . . . . . 9 (𝐺 ∈ (𝑌 RngHom 𝑋) → 𝐺:(Base‘𝑌)⟶(Base‘𝑋))
4140adantl 481 . . . . . . . 8 ((𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋)) → 𝐺:(Base‘𝑌)⟶(Base‘𝑋))
4241adantl 481 . . . . . . 7 ((𝜑 ∧ (𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋))) → 𝐺:(Base‘𝑌)⟶(Base‘𝑋))
437, 19, 3, 28, 34, 28, 39, 42rngcco 20543 . . . . . 6 ((𝜑 ∧ (𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋))) → (𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = (𝐺𝐹))
44 rngcsect.e . . . . . . . 8 𝐸 = (Base‘𝑋)
457, 1, 4, 6, 10, 44rngcid 20551 . . . . . . 7 (𝜑 → ((Id‘𝐶)‘𝑋) = ( I ↾ 𝐸))
4645adantr 480 . . . . . 6 ((𝜑 ∧ (𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋))) → ((Id‘𝐶)‘𝑋) = ( I ↾ 𝐸))
4743, 46eqeq12d 2746 . . . . 5 ((𝜑 ∧ (𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋))) → ((𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋) ↔ (𝐺𝐹) = ( I ↾ 𝐸)))
4847pm5.32da 579 . . . 4 (𝜑 → (((𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋)) ∧ (𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)) ↔ ((𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋)) ∧ (𝐺𝐹) = ( I ↾ 𝐸))))
4918, 48bitrd 279 . . 3 (𝜑 → (((𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋)) ∧ (𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)) ↔ ((𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋)) ∧ (𝐺𝐹) = ( I ↾ 𝐸))))
50 df-3an 1088 . . 3 ((𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋) ∧ (𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)) ↔ ((𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋)) ∧ (𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)))
51 df-3an 1088 . . 3 ((𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋) ∧ (𝐺𝐹) = ( I ↾ 𝐸)) ↔ ((𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋)) ∧ (𝐺𝐹) = ( I ↾ 𝐸)))
5249, 50, 513bitr4g 314 . 2 (𝜑 → ((𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋) ∧ (𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)) ↔ (𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋) ∧ (𝐺𝐹) = ( I ↾ 𝐸))))
5312, 52bitrd 279 1 (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺 ↔ (𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋) ∧ (𝐺𝐹) = ( I ↾ 𝐸))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  cin 3916  wss 3917  cop 4598   class class class wbr 5110   I cid 5535  cres 5643  ccom 5645  wf 6510  cfv 6514  (class class class)co 7390  Basecbs 17186  Hom chom 17238  compcco 17239  Catccat 17632  Idccid 17633  Sectcsect 17713  Rngcrng 20068   RngHom crnghm 20350  RngCatcrngc 20532
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-fz 13476  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-hom 17251  df-cco 17252  df-0g 17411  df-cat 17636  df-cid 17637  df-homf 17638  df-sect 17716  df-ssc 17779  df-resc 17780  df-subc 17781  df-estrc 18091  df-mgm 18574  df-mgmhm 18626  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-grp 18875  df-ghm 19152  df-abl 19720  df-mgp 20057  df-rng 20069  df-rnghm 20352  df-rngc 20533
This theorem is referenced by:  rngcinv  20553
  Copyright terms: Public domain W3C validator