MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rngcsect Structured version   Visualization version   GIF version

Theorem rngcsect 20549
Description: A section in the category of non-unital rings, written out. (Contributed by AV, 28-Feb-2020.)
Hypotheses
Ref Expression
rngcsect.c 𝐶 = (RngCat‘𝑈)
rngcsect.b 𝐵 = (Base‘𝐶)
rngcsect.u (𝜑𝑈𝑉)
rngcsect.x (𝜑𝑋𝐵)
rngcsect.y (𝜑𝑌𝐵)
rngcsect.e 𝐸 = (Base‘𝑋)
rngcsect.n 𝑆 = (Sect‘𝐶)
Assertion
Ref Expression
rngcsect (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺 ↔ (𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋) ∧ (𝐺𝐹) = ( I ↾ 𝐸))))

Proof of Theorem rngcsect
StepHypRef Expression
1 rngcsect.b . . 3 𝐵 = (Base‘𝐶)
2 eqid 2731 . . 3 (Hom ‘𝐶) = (Hom ‘𝐶)
3 eqid 2731 . . 3 (comp‘𝐶) = (comp‘𝐶)
4 eqid 2731 . . 3 (Id‘𝐶) = (Id‘𝐶)
5 rngcsect.n . . 3 𝑆 = (Sect‘𝐶)
6 rngcsect.u . . . 4 (𝜑𝑈𝑉)
7 rngcsect.c . . . . 5 𝐶 = (RngCat‘𝑈)
87rngccat 20547 . . . 4 (𝑈𝑉𝐶 ∈ Cat)
96, 8syl 17 . . 3 (𝜑𝐶 ∈ Cat)
10 rngcsect.x . . 3 (𝜑𝑋𝐵)
11 rngcsect.y . . 3 (𝜑𝑌𝐵)
121, 2, 3, 4, 5, 9, 10, 11issect 17657 . 2 (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺 ↔ (𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋) ∧ (𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋))))
137, 1, 6, 2, 10, 11rngchom 20536 . . . . . . 7 (𝜑 → (𝑋(Hom ‘𝐶)𝑌) = (𝑋 RngHom 𝑌))
1413eleq2d 2817 . . . . . 6 (𝜑 → (𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ↔ 𝐹 ∈ (𝑋 RngHom 𝑌)))
157, 1, 6, 2, 11, 10rngchom 20536 . . . . . . 7 (𝜑 → (𝑌(Hom ‘𝐶)𝑋) = (𝑌 RngHom 𝑋))
1615eleq2d 2817 . . . . . 6 (𝜑 → (𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋) ↔ 𝐺 ∈ (𝑌 RngHom 𝑋)))
1714, 16anbi12d 632 . . . . 5 (𝜑 → ((𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋)) ↔ (𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋))))
1817anbi1d 631 . . . 4 (𝜑 → (((𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋)) ∧ (𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)) ↔ ((𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋)) ∧ (𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋))))
196adantr 480 . . . . . . 7 ((𝜑 ∧ (𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋))) → 𝑈𝑉)
2010adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋))) → 𝑋𝐵)
217, 1, 6rngcbas 20534 . . . . . . . . . . 11 (𝜑𝐵 = (𝑈 ∩ Rng))
2221eleq2d 2817 . . . . . . . . . 10 (𝜑 → (𝑋𝐵𝑋 ∈ (𝑈 ∩ Rng)))
23 inss1 4187 . . . . . . . . . . . 12 (𝑈 ∩ Rng) ⊆ 𝑈
2423a1i 11 . . . . . . . . . . 11 (𝜑 → (𝑈 ∩ Rng) ⊆ 𝑈)
2524sseld 3933 . . . . . . . . . 10 (𝜑 → (𝑋 ∈ (𝑈 ∩ Rng) → 𝑋𝑈))
2622, 25sylbid 240 . . . . . . . . 9 (𝜑 → (𝑋𝐵𝑋𝑈))
2726adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋))) → (𝑋𝐵𝑋𝑈))
2820, 27mpd 15 . . . . . . 7 ((𝜑 ∧ (𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋))) → 𝑋𝑈)
2911adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋))) → 𝑌𝐵)
3021eleq2d 2817 . . . . . . . . . 10 (𝜑 → (𝑌𝐵𝑌 ∈ (𝑈 ∩ Rng)))
3124sseld 3933 . . . . . . . . . 10 (𝜑 → (𝑌 ∈ (𝑈 ∩ Rng) → 𝑌𝑈))
3230, 31sylbid 240 . . . . . . . . 9 (𝜑 → (𝑌𝐵𝑌𝑈))
3332adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋))) → (𝑌𝐵𝑌𝑈))
3429, 33mpd 15 . . . . . . 7 ((𝜑 ∧ (𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋))) → 𝑌𝑈)
35 eqid 2731 . . . . . . . . . 10 (Base‘𝑋) = (Base‘𝑋)
36 eqid 2731 . . . . . . . . . 10 (Base‘𝑌) = (Base‘𝑌)
3735, 36rnghmf 20364 . . . . . . . . 9 (𝐹 ∈ (𝑋 RngHom 𝑌) → 𝐹:(Base‘𝑋)⟶(Base‘𝑌))
3837adantr 480 . . . . . . . 8 ((𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋)) → 𝐹:(Base‘𝑋)⟶(Base‘𝑌))
3938adantl 481 . . . . . . 7 ((𝜑 ∧ (𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋))) → 𝐹:(Base‘𝑋)⟶(Base‘𝑌))
4036, 35rnghmf 20364 . . . . . . . . 9 (𝐺 ∈ (𝑌 RngHom 𝑋) → 𝐺:(Base‘𝑌)⟶(Base‘𝑋))
4140adantl 481 . . . . . . . 8 ((𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋)) → 𝐺:(Base‘𝑌)⟶(Base‘𝑋))
4241adantl 481 . . . . . . 7 ((𝜑 ∧ (𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋))) → 𝐺:(Base‘𝑌)⟶(Base‘𝑋))
437, 19, 3, 28, 34, 28, 39, 42rngcco 20540 . . . . . 6 ((𝜑 ∧ (𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋))) → (𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = (𝐺𝐹))
44 rngcsect.e . . . . . . . 8 𝐸 = (Base‘𝑋)
457, 1, 4, 6, 10, 44rngcid 20548 . . . . . . 7 (𝜑 → ((Id‘𝐶)‘𝑋) = ( I ↾ 𝐸))
4645adantr 480 . . . . . 6 ((𝜑 ∧ (𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋))) → ((Id‘𝐶)‘𝑋) = ( I ↾ 𝐸))
4743, 46eqeq12d 2747 . . . . 5 ((𝜑 ∧ (𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋))) → ((𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋) ↔ (𝐺𝐹) = ( I ↾ 𝐸)))
4847pm5.32da 579 . . . 4 (𝜑 → (((𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋)) ∧ (𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)) ↔ ((𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋)) ∧ (𝐺𝐹) = ( I ↾ 𝐸))))
4918, 48bitrd 279 . . 3 (𝜑 → (((𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋)) ∧ (𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)) ↔ ((𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋)) ∧ (𝐺𝐹) = ( I ↾ 𝐸))))
50 df-3an 1088 . . 3 ((𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋) ∧ (𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)) ↔ ((𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋)) ∧ (𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)))
51 df-3an 1088 . . 3 ((𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋) ∧ (𝐺𝐹) = ( I ↾ 𝐸)) ↔ ((𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋)) ∧ (𝐺𝐹) = ( I ↾ 𝐸)))
5249, 50, 513bitr4g 314 . 2 (𝜑 → ((𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋) ∧ (𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)) ↔ (𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋) ∧ (𝐺𝐹) = ( I ↾ 𝐸))))
5312, 52bitrd 279 1 (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺 ↔ (𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋) ∧ (𝐺𝐹) = ( I ↾ 𝐸))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  cin 3901  wss 3902  cop 4582   class class class wbr 5091   I cid 5510  cres 5618  ccom 5620  wf 6477  cfv 6481  (class class class)co 7346  Basecbs 17117  Hom chom 17169  compcco 17170  Catccat 17567  Idccid 17568  Sectcsect 17648  Rngcrng 20068   RngHom crnghm 20350  RngCatcrngc 20529
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-nn 12123  df-2 12185  df-3 12186  df-4 12187  df-5 12188  df-6 12189  df-7 12190  df-8 12191  df-9 12192  df-n0 12379  df-z 12466  df-dec 12586  df-uz 12730  df-fz 13405  df-struct 17055  df-sets 17072  df-slot 17090  df-ndx 17102  df-base 17118  df-ress 17139  df-plusg 17171  df-hom 17182  df-cco 17183  df-0g 17342  df-cat 17571  df-cid 17572  df-homf 17573  df-sect 17651  df-ssc 17714  df-resc 17715  df-subc 17716  df-estrc 18026  df-mgm 18545  df-mgmhm 18597  df-sgrp 18624  df-mnd 18640  df-mhm 18688  df-grp 18846  df-ghm 19123  df-abl 19693  df-mgp 20057  df-rng 20069  df-rnghm 20352  df-rngc 20530
This theorem is referenced by:  rngcinv  20550
  Copyright terms: Public domain W3C validator