| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elrngchomALTV | Structured version Visualization version GIF version | ||
| Description: A morphism of non-unital rings is a function. (New usage is discouraged.) (Contributed by AV, 27-Feb-2020.) |
| Ref | Expression |
|---|---|
| rngcbasALTV.c | ⊢ 𝐶 = (RngCatALTV‘𝑈) |
| rngcbasALTV.b | ⊢ 𝐵 = (Base‘𝐶) |
| rngcbasALTV.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
| rngchomfvalALTV.h | ⊢ 𝐻 = (Hom ‘𝐶) |
| rngchomALTV.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| rngchomALTV.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| elrngchomALTV | ⊢ (𝜑 → (𝐹 ∈ (𝑋𝐻𝑌) → 𝐹:(Base‘𝑋)⟶(Base‘𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngcbasALTV.c | . . . 4 ⊢ 𝐶 = (RngCatALTV‘𝑈) | |
| 2 | rngcbasALTV.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
| 3 | rngcbasALTV.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
| 4 | rngchomfvalALTV.h | . . . 4 ⊢ 𝐻 = (Hom ‘𝐶) | |
| 5 | rngchomALTV.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 6 | rngchomALTV.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 7 | 1, 2, 3, 4, 5, 6 | rngchomALTV 47767 | . . 3 ⊢ (𝜑 → (𝑋𝐻𝑌) = (𝑋 RngHom 𝑌)) |
| 8 | 7 | eleq2d 2815 | . 2 ⊢ (𝜑 → (𝐹 ∈ (𝑋𝐻𝑌) ↔ 𝐹 ∈ (𝑋 RngHom 𝑌))) |
| 9 | eqid 2729 | . . 3 ⊢ (Base‘𝑋) = (Base‘𝑋) | |
| 10 | eqid 2729 | . . 3 ⊢ (Base‘𝑌) = (Base‘𝑌) | |
| 11 | 9, 10 | rnghmf 20442 | . 2 ⊢ (𝐹 ∈ (𝑋 RngHom 𝑌) → 𝐹:(Base‘𝑋)⟶(Base‘𝑌)) |
| 12 | 8, 11 | biimtrdi 252 | 1 ⊢ (𝜑 → (𝐹 ∈ (𝑋𝐻𝑌) → 𝐹:(Base‘𝑋)⟶(Base‘𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2100 ⟶wf 6552 ‘cfv 6556 (class class class)co 7427 Basecbs 17226 Hom chom 17290 RngHom crnghm 20428 RngCatALTVcrngcALTV 47762 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2102 ax-9 2110 ax-10 2133 ax-11 2150 ax-12 2170 ax-ext 2700 ax-rep 5291 ax-sep 5305 ax-nul 5312 ax-pow 5371 ax-pr 5435 ax-un 7748 ax-cnex 11215 ax-resscn 11216 ax-1cn 11217 ax-icn 11218 ax-addcl 11219 ax-addrcl 11220 ax-mulcl 11221 ax-mulrcl 11222 ax-mulcom 11223 ax-addass 11224 ax-mulass 11225 ax-distr 11226 ax-i2m1 11227 ax-1ne0 11228 ax-1rid 11229 ax-rnegex 11230 ax-rrecex 11231 ax-cnre 11232 ax-pre-lttri 11233 ax-pre-lttrn 11234 ax-pre-ltadd 11235 ax-pre-mulgt0 11236 |
| This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2062 df-mo 2532 df-eu 2561 df-clab 2707 df-cleq 2721 df-clel 2806 df-nfc 2881 df-ne 2934 df-nel 3040 df-ral 3055 df-rex 3064 df-reu 3374 df-rab 3429 df-v 3474 df-sbc 3788 df-csb 3904 df-dif 3961 df-un 3963 df-in 3965 df-ss 3975 df-pss 3978 df-nul 4334 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-tp 4639 df-op 4641 df-uni 4917 df-iun 5006 df-br 5155 df-opab 5217 df-mpt 5238 df-tr 5272 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5639 df-we 5641 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6315 df-ord 6381 df-on 6382 df-lim 6383 df-suc 6384 df-iota 6508 df-fun 6558 df-fn 6559 df-f 6560 df-f1 6561 df-fo 6562 df-f1o 6563 df-fv 6564 df-riota 7383 df-ov 7430 df-oprab 7431 df-mpo 7432 df-om 7882 df-1st 8008 df-2nd 8009 df-frecs 8300 df-wrecs 8331 df-recs 8405 df-rdg 8444 df-1o 8500 df-er 8738 df-map 8861 df-en 8979 df-dom 8980 df-sdom 8981 df-fin 8982 df-pnf 11301 df-mnf 11302 df-xr 11303 df-ltxr 11304 df-le 11305 df-sub 11497 df-neg 11498 df-nn 12269 df-2 12331 df-3 12332 df-4 12333 df-5 12334 df-6 12335 df-7 12336 df-8 12337 df-9 12338 df-n0 12529 df-z 12615 df-dec 12734 df-uz 12879 df-fz 13543 df-struct 17162 df-slot 17197 df-ndx 17209 df-base 17227 df-hom 17303 df-cco 17304 df-ghm 19221 df-abl 19793 df-rng 20148 df-rnghm 20430 df-rngcALTV 47763 |
| This theorem is referenced by: rngccatidALTV 47771 |
| Copyright terms: Public domain | W3C validator |