MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  absslt Structured version   Visualization version   GIF version

Theorem absslt 28117
Description: Surreal absolute value and less-than relation. (Contributed by Scott Fenton, 16-Apr-2025.)
Assertion
Ref Expression
absslt ((𝐴 No 𝐵 No ) → ((abss𝐴) <s 𝐵 ↔ (( -us𝐵) <s 𝐴𝐴 <s 𝐵)))

Proof of Theorem absslt
StepHypRef Expression
1 negscl 27922 . . . . . . 7 (𝐴 No → ( -us𝐴) ∈ No )
21ad2antrr 725 . . . . . 6 (((𝐴 No 𝐵 No ) ∧ (abss𝐴) <s 𝐵) → ( -us𝐴) ∈ No )
3 absscl 28108 . . . . . . . 8 (( -us𝐴) ∈ No → (abss‘( -us𝐴)) ∈ No )
41, 3syl 17 . . . . . . 7 (𝐴 No → (abss‘( -us𝐴)) ∈ No )
54ad2antrr 725 . . . . . 6 (((𝐴 No 𝐵 No ) ∧ (abss𝐴) <s 𝐵) → (abss‘( -us𝐴)) ∈ No )
6 simplr 768 . . . . . 6 (((𝐴 No 𝐵 No ) ∧ (abss𝐴) <s 𝐵) → 𝐵 No )
7 sleabs 28116 . . . . . . . 8 (( -us𝐴) ∈ No → ( -us𝐴) ≤s (abss‘( -us𝐴)))
81, 7syl 17 . . . . . . 7 (𝐴 No → ( -us𝐴) ≤s (abss‘( -us𝐴)))
98ad2antrr 725 . . . . . 6 (((𝐴 No 𝐵 No ) ∧ (abss𝐴) <s 𝐵) → ( -us𝐴) ≤s (abss‘( -us𝐴)))
10 abssneg 28115 . . . . . . . . 9 (𝐴 No → (abss‘( -us𝐴)) = (abss𝐴))
1110adantr 480 . . . . . . . 8 ((𝐴 No 𝐵 No ) → (abss‘( -us𝐴)) = (abss𝐴))
1211breq1d 5152 . . . . . . 7 ((𝐴 No 𝐵 No ) → ((abss‘( -us𝐴)) <s 𝐵 ↔ (abss𝐴) <s 𝐵))
1312biimpar 477 . . . . . 6 (((𝐴 No 𝐵 No ) ∧ (abss𝐴) <s 𝐵) → (abss‘( -us𝐴)) <s 𝐵)
142, 5, 6, 9, 13slelttrd 27668 . . . . 5 (((𝐴 No 𝐵 No ) ∧ (abss𝐴) <s 𝐵) → ( -us𝐴) <s 𝐵)
15 simpll 766 . . . . . 6 (((𝐴 No 𝐵 No ) ∧ (abss𝐴) <s 𝐵) → 𝐴 No )
16 absscl 28108 . . . . . . 7 (𝐴 No → (abss𝐴) ∈ No )
1716ad2antrr 725 . . . . . 6 (((𝐴 No 𝐵 No ) ∧ (abss𝐴) <s 𝐵) → (abss𝐴) ∈ No )
18 sleabs 28116 . . . . . . 7 (𝐴 No 𝐴 ≤s (abss𝐴))
1918ad2antrr 725 . . . . . 6 (((𝐴 No 𝐵 No ) ∧ (abss𝐴) <s 𝐵) → 𝐴 ≤s (abss𝐴))
20 simpr 484 . . . . . 6 (((𝐴 No 𝐵 No ) ∧ (abss𝐴) <s 𝐵) → (abss𝐴) <s 𝐵)
2115, 17, 6, 19, 20slelttrd 27668 . . . . 5 (((𝐴 No 𝐵 No ) ∧ (abss𝐴) <s 𝐵) → 𝐴 <s 𝐵)
2214, 21jca 511 . . . 4 (((𝐴 No 𝐵 No ) ∧ (abss𝐴) <s 𝐵) → (( -us𝐴) <s 𝐵𝐴 <s 𝐵))
2322ex 412 . . 3 ((𝐴 No 𝐵 No ) → ((abss𝐴) <s 𝐵 → (( -us𝐴) <s 𝐵𝐴 <s 𝐵)))
24 abssor 28114 . . . . 5 (𝐴 No → ((abss𝐴) = 𝐴 ∨ (abss𝐴) = ( -us𝐴)))
2524adantr 480 . . . 4 ((𝐴 No 𝐵 No ) → ((abss𝐴) = 𝐴 ∨ (abss𝐴) = ( -us𝐴)))
26 breq1 5145 . . . . . . 7 ((abss𝐴) = 𝐴 → ((abss𝐴) <s 𝐵𝐴 <s 𝐵))
2726biimprd 247 . . . . . 6 ((abss𝐴) = 𝐴 → (𝐴 <s 𝐵 → (abss𝐴) <s 𝐵))
28 breq1 5145 . . . . . . 7 ((abss𝐴) = ( -us𝐴) → ((abss𝐴) <s 𝐵 ↔ ( -us𝐴) <s 𝐵))
2928biimprd 247 . . . . . 6 ((abss𝐴) = ( -us𝐴) → (( -us𝐴) <s 𝐵 → (abss𝐴) <s 𝐵))
3027, 29jaoa 954 . . . . 5 (((abss𝐴) = 𝐴 ∨ (abss𝐴) = ( -us𝐴)) → ((𝐴 <s 𝐵 ∧ ( -us𝐴) <s 𝐵) → (abss𝐴) <s 𝐵))
3130ancomsd 465 . . . 4 (((abss𝐴) = 𝐴 ∨ (abss𝐴) = ( -us𝐴)) → ((( -us𝐴) <s 𝐵𝐴 <s 𝐵) → (abss𝐴) <s 𝐵))
3225, 31syl 17 . . 3 ((𝐴 No 𝐵 No ) → ((( -us𝐴) <s 𝐵𝐴 <s 𝐵) → (abss𝐴) <s 𝐵))
3323, 32impbid 211 . 2 ((𝐴 No 𝐵 No ) → ((abss𝐴) <s 𝐵 ↔ (( -us𝐴) <s 𝐵𝐴 <s 𝐵)))
341adantr 480 . . . . 5 ((𝐴 No 𝐵 No ) → ( -us𝐴) ∈ No )
35 simpr 484 . . . . 5 ((𝐴 No 𝐵 No ) → 𝐵 No )
3634, 35sltnegd 27933 . . . 4 ((𝐴 No 𝐵 No ) → (( -us𝐴) <s 𝐵 ↔ ( -us𝐵) <s ( -us ‘( -us𝐴))))
37 negnegs 27930 . . . . . 6 (𝐴 No → ( -us ‘( -us𝐴)) = 𝐴)
3837adantr 480 . . . . 5 ((𝐴 No 𝐵 No ) → ( -us ‘( -us𝐴)) = 𝐴)
3938breq2d 5154 . . . 4 ((𝐴 No 𝐵 No ) → (( -us𝐵) <s ( -us ‘( -us𝐴)) ↔ ( -us𝐵) <s 𝐴))
4036, 39bitrd 279 . . 3 ((𝐴 No 𝐵 No ) → (( -us𝐴) <s 𝐵 ↔ ( -us𝐵) <s 𝐴))
4140anbi1d 629 . 2 ((𝐴 No 𝐵 No ) → ((( -us𝐴) <s 𝐵𝐴 <s 𝐵) ↔ (( -us𝐵) <s 𝐴𝐴 <s 𝐵)))
4233, 41bitrd 279 1 ((𝐴 No 𝐵 No ) → ((abss𝐴) <s 𝐵 ↔ (( -us𝐵) <s 𝐴𝐴 <s 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wo 846   = wceq 1534  wcel 2099   class class class wbr 5142  cfv 6542   No csur 27547   <s cslt 27548   ≤s csle 27651   -us cnegs 27906  absscabss 28105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7732
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-ot 4633  df-uni 4904  df-int 4945  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-1st 7985  df-2nd 7986  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-1o 8478  df-2o 8479  df-nadd 8678  df-no 27550  df-slt 27551  df-bday 27552  df-sle 27652  df-sslt 27688  df-scut 27690  df-0s 27731  df-made 27748  df-old 27749  df-left 27751  df-right 27752  df-norec 27829  df-norec2 27840  df-adds 27851  df-negs 27908  df-abss 28106
This theorem is referenced by:  remulscllem2  28203
  Copyright terms: Public domain W3C validator