Step | Hyp | Ref
| Expression |
1 | | negscl 27867 |
. . . . . . 7
âĒ (ðī â
No â ( -us âðī) â No
) |
2 | 1 | ad2antrr 723 |
. . . . . 6
âĒ (((ðī â
No â§ ðĩ â
No ) â§ (abssâðī) <s ðĩ) â ( -us âðī) â
No ) |
3 | | absscl 28053 |
. . . . . . . 8
âĒ ((
-us âðī)
â No â (abssâ(
-us âðī))
â No ) |
4 | 1, 3 | syl 17 |
. . . . . . 7
âĒ (ðī â
No â (abssâ( -us âðī)) â
No ) |
5 | 4 | ad2antrr 723 |
. . . . . 6
âĒ (((ðī â
No â§ ðĩ â
No ) â§ (abssâðī) <s ðĩ) â (abssâ(
-us âðī))
â No ) |
6 | | simplr 766 |
. . . . . 6
âĒ (((ðī â
No â§ ðĩ â
No ) â§ (abssâðī) <s ðĩ) â ðĩ â No
) |
7 | | sleabs 28061 |
. . . . . . . 8
âĒ ((
-us âðī)
â No â ( -us âðī) âĪs (abssâ(
-us âðī))) |
8 | 1, 7 | syl 17 |
. . . . . . 7
âĒ (ðī â
No â ( -us âðī) âĪs (abssâ(
-us âðī))) |
9 | 8 | ad2antrr 723 |
. . . . . 6
âĒ (((ðī â
No â§ ðĩ â
No ) â§ (abssâðī) <s ðĩ) â ( -us âðī) âĪs (abssâ(
-us âðī))) |
10 | | abssneg 28060 |
. . . . . . . . 9
âĒ (ðī â
No â (abssâ( -us âðī)) =
(abssâðī)) |
11 | 10 | adantr 480 |
. . . . . . . 8
âĒ ((ðī â
No â§ ðĩ â
No ) â (abssâ(
-us âðī)) =
(abssâðī)) |
12 | 11 | breq1d 5149 |
. . . . . . 7
âĒ ((ðī â
No â§ ðĩ â
No ) â ((abssâ(
-us âðī))
<s ðĩ â
(abssâðī)
<s ðĩ)) |
13 | 12 | biimpar 477 |
. . . . . 6
âĒ (((ðī â
No â§ ðĩ â
No ) â§ (abssâðī) <s ðĩ) â (abssâ(
-us âðī))
<s ðĩ) |
14 | 2, 5, 6, 9, 13 | slelttrd 27613 |
. . . . 5
âĒ (((ðī â
No â§ ðĩ â
No ) â§ (abssâðī) <s ðĩ) â ( -us âðī) <s ðĩ) |
15 | | simpll 764 |
. . . . . 6
âĒ (((ðī â
No â§ ðĩ â
No ) â§ (abssâðī) <s ðĩ) â ðī â No
) |
16 | | absscl 28053 |
. . . . . . 7
âĒ (ðī â
No â (abssâðī) â No
) |
17 | 16 | ad2antrr 723 |
. . . . . 6
âĒ (((ðī â
No â§ ðĩ â
No ) â§ (abssâðī) <s ðĩ) â (abssâðī) â
No ) |
18 | | sleabs 28061 |
. . . . . . 7
âĒ (ðī â
No â ðī âĪs
(abssâðī)) |
19 | 18 | ad2antrr 723 |
. . . . . 6
âĒ (((ðī â
No â§ ðĩ â
No ) â§ (abssâðī) <s ðĩ) â ðī âĪs (abssâðī)) |
20 | | simpr 484 |
. . . . . 6
âĒ (((ðī â
No â§ ðĩ â
No ) â§ (abssâðī) <s ðĩ) â (abssâðī) <s ðĩ) |
21 | 15, 17, 6, 19, 20 | slelttrd 27613 |
. . . . 5
âĒ (((ðī â
No â§ ðĩ â
No ) â§ (abssâðī) <s ðĩ) â ðī <s ðĩ) |
22 | 14, 21 | jca 511 |
. . . 4
âĒ (((ðī â
No â§ ðĩ â
No ) â§ (abssâðī) <s ðĩ) â (( -us âðī) <s ðĩ â§ ðī <s ðĩ)) |
23 | 22 | ex 412 |
. . 3
âĒ ((ðī â
No â§ ðĩ â
No ) â ((abssâðī) <s ðĩ â (( -us âðī) <s ðĩ â§ ðī <s ðĩ))) |
24 | | abssor 28059 |
. . . . 5
âĒ (ðī â
No â ((abssâðī) = ðī âĻ (abssâðī) = ( -us
âðī))) |
25 | 24 | adantr 480 |
. . . 4
âĒ ((ðī â
No â§ ðĩ â
No ) â ((abssâðī) = ðī âĻ (abssâðī) = ( -us
âðī))) |
26 | | breq1 5142 |
. . . . . . 7
âĒ
((abssâðī) = ðī â ((abssâðī) <s ðĩ â ðī <s ðĩ)) |
27 | 26 | biimprd 247 |
. . . . . 6
âĒ
((abssâðī) = ðī â (ðī <s ðĩ â (abssâðī) <s ðĩ)) |
28 | | breq1 5142 |
. . . . . . 7
âĒ
((abssâðī) = ( -us âðī) â
((abssâðī)
<s ðĩ â (
-us âðī)
<s ðĩ)) |
29 | 28 | biimprd 247 |
. . . . . 6
âĒ
((abssâðī) = ( -us âðī) â (( -us
âðī) <s ðĩ â
(abssâðī)
<s ðĩ)) |
30 | 27, 29 | jaoa 952 |
. . . . 5
âĒ
(((abssâðī) = ðī âĻ (abssâðī) = ( -us
âðī)) â ((ðī <s ðĩ â§ ( -us âðī) <s ðĩ) â (abssâðī) <s ðĩ)) |
31 | 30 | ancomsd 465 |
. . . 4
âĒ
(((abssâðī) = ðī âĻ (abssâðī) = ( -us
âðī)) â (((
-us âðī)
<s ðĩ â§ ðī <s ðĩ) â (abssâðī) <s ðĩ)) |
32 | 25, 31 | syl 17 |
. . 3
âĒ ((ðī â
No â§ ðĩ â
No ) â ((( -us âðī) <s ðĩ â§ ðī <s ðĩ) â (abssâðī) <s ðĩ)) |
33 | 23, 32 | impbid 211 |
. 2
âĒ ((ðī â
No â§ ðĩ â
No ) â ((abssâðī) <s ðĩ â (( -us âðī) <s ðĩ â§ ðī <s ðĩ))) |
34 | 1 | adantr 480 |
. . . . 5
âĒ ((ðī â
No â§ ðĩ â
No ) â ( -us âðī) â
No ) |
35 | | simpr 484 |
. . . . 5
âĒ ((ðī â
No â§ ðĩ â
No ) â ðĩ â No
) |
36 | 34, 35 | sltnegd 27878 |
. . . 4
âĒ ((ðī â
No â§ ðĩ â
No ) â (( -us âðī) <s ðĩ â ( -us âðĩ) <s ( -us
â( -us âðī)))) |
37 | | negnegs 27875 |
. . . . . 6
âĒ (ðī â
No â ( -us â( -us âðī)) = ðī) |
38 | 37 | adantr 480 |
. . . . 5
âĒ ((ðī â
No â§ ðĩ â
No ) â ( -us â(
-us âðī)) =
ðī) |
39 | 38 | breq2d 5151 |
. . . 4
âĒ ((ðī â
No â§ ðĩ â
No ) â (( -us âðĩ) <s ( -us
â( -us âðī)) â ( -us âðĩ) <s ðī)) |
40 | 36, 39 | bitrd 279 |
. . 3
âĒ ((ðī â
No â§ ðĩ â
No ) â (( -us âðī) <s ðĩ â ( -us âðĩ) <s ðī)) |
41 | 40 | anbi1d 629 |
. 2
âĒ ((ðī â
No â§ ðĩ â
No ) â ((( -us âðī) <s ðĩ â§ ðī <s ðĩ) â (( -us âðĩ) <s ðī â§ ðī <s ðĩ))) |
42 | 33, 41 | bitrd 279 |
1
âĒ ((ðī â
No â§ ðĩ â
No ) â ((abssâðī) <s ðĩ â (( -us âðĩ) <s ðī â§ ðī <s ðĩ))) |