MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  absslt Structured version   Visualization version   GIF version

Theorem absslt 28174
Description: Surreal absolute value and less-than relation. (Contributed by Scott Fenton, 16-Apr-2025.)
Assertion
Ref Expression
absslt ((𝐴 No 𝐵 No ) → ((abss𝐴) <s 𝐵 ↔ (( -us𝐵) <s 𝐴𝐴 <s 𝐵)))

Proof of Theorem absslt
StepHypRef Expression
1 negscl 27965 . . . . . . 7 (𝐴 No → ( -us𝐴) ∈ No )
21ad2antrr 726 . . . . . 6 (((𝐴 No 𝐵 No ) ∧ (abss𝐴) <s 𝐵) → ( -us𝐴) ∈ No )
3 absscl 28165 . . . . . . . 8 (( -us𝐴) ∈ No → (abss‘( -us𝐴)) ∈ No )
41, 3syl 17 . . . . . . 7 (𝐴 No → (abss‘( -us𝐴)) ∈ No )
54ad2antrr 726 . . . . . 6 (((𝐴 No 𝐵 No ) ∧ (abss𝐴) <s 𝐵) → (abss‘( -us𝐴)) ∈ No )
6 simplr 768 . . . . . 6 (((𝐴 No 𝐵 No ) ∧ (abss𝐴) <s 𝐵) → 𝐵 No )
7 sleabs 28173 . . . . . . . 8 (( -us𝐴) ∈ No → ( -us𝐴) ≤s (abss‘( -us𝐴)))
81, 7syl 17 . . . . . . 7 (𝐴 No → ( -us𝐴) ≤s (abss‘( -us𝐴)))
98ad2antrr 726 . . . . . 6 (((𝐴 No 𝐵 No ) ∧ (abss𝐴) <s 𝐵) → ( -us𝐴) ≤s (abss‘( -us𝐴)))
10 abssneg 28172 . . . . . . . . 9 (𝐴 No → (abss‘( -us𝐴)) = (abss𝐴))
1110adantr 480 . . . . . . . 8 ((𝐴 No 𝐵 No ) → (abss‘( -us𝐴)) = (abss𝐴))
1211breq1d 5105 . . . . . . 7 ((𝐴 No 𝐵 No ) → ((abss‘( -us𝐴)) <s 𝐵 ↔ (abss𝐴) <s 𝐵))
1312biimpar 477 . . . . . 6 (((𝐴 No 𝐵 No ) ∧ (abss𝐴) <s 𝐵) → (abss‘( -us𝐴)) <s 𝐵)
142, 5, 6, 9, 13slelttrd 27689 . . . . 5 (((𝐴 No 𝐵 No ) ∧ (abss𝐴) <s 𝐵) → ( -us𝐴) <s 𝐵)
15 simpll 766 . . . . . 6 (((𝐴 No 𝐵 No ) ∧ (abss𝐴) <s 𝐵) → 𝐴 No )
16 absscl 28165 . . . . . . 7 (𝐴 No → (abss𝐴) ∈ No )
1716ad2antrr 726 . . . . . 6 (((𝐴 No 𝐵 No ) ∧ (abss𝐴) <s 𝐵) → (abss𝐴) ∈ No )
18 sleabs 28173 . . . . . . 7 (𝐴 No 𝐴 ≤s (abss𝐴))
1918ad2antrr 726 . . . . . 6 (((𝐴 No 𝐵 No ) ∧ (abss𝐴) <s 𝐵) → 𝐴 ≤s (abss𝐴))
20 simpr 484 . . . . . 6 (((𝐴 No 𝐵 No ) ∧ (abss𝐴) <s 𝐵) → (abss𝐴) <s 𝐵)
2115, 17, 6, 19, 20slelttrd 27689 . . . . 5 (((𝐴 No 𝐵 No ) ∧ (abss𝐴) <s 𝐵) → 𝐴 <s 𝐵)
2214, 21jca 511 . . . 4 (((𝐴 No 𝐵 No ) ∧ (abss𝐴) <s 𝐵) → (( -us𝐴) <s 𝐵𝐴 <s 𝐵))
2322ex 412 . . 3 ((𝐴 No 𝐵 No ) → ((abss𝐴) <s 𝐵 → (( -us𝐴) <s 𝐵𝐴 <s 𝐵)))
24 abssor 28171 . . . . 5 (𝐴 No → ((abss𝐴) = 𝐴 ∨ (abss𝐴) = ( -us𝐴)))
2524adantr 480 . . . 4 ((𝐴 No 𝐵 No ) → ((abss𝐴) = 𝐴 ∨ (abss𝐴) = ( -us𝐴)))
26 breq1 5098 . . . . . . 7 ((abss𝐴) = 𝐴 → ((abss𝐴) <s 𝐵𝐴 <s 𝐵))
2726biimprd 248 . . . . . 6 ((abss𝐴) = 𝐴 → (𝐴 <s 𝐵 → (abss𝐴) <s 𝐵))
28 breq1 5098 . . . . . . 7 ((abss𝐴) = ( -us𝐴) → ((abss𝐴) <s 𝐵 ↔ ( -us𝐴) <s 𝐵))
2928biimprd 248 . . . . . 6 ((abss𝐴) = ( -us𝐴) → (( -us𝐴) <s 𝐵 → (abss𝐴) <s 𝐵))
3027, 29jaoa 957 . . . . 5 (((abss𝐴) = 𝐴 ∨ (abss𝐴) = ( -us𝐴)) → ((𝐴 <s 𝐵 ∧ ( -us𝐴) <s 𝐵) → (abss𝐴) <s 𝐵))
3130ancomsd 465 . . . 4 (((abss𝐴) = 𝐴 ∨ (abss𝐴) = ( -us𝐴)) → ((( -us𝐴) <s 𝐵𝐴 <s 𝐵) → (abss𝐴) <s 𝐵))
3225, 31syl 17 . . 3 ((𝐴 No 𝐵 No ) → ((( -us𝐴) <s 𝐵𝐴 <s 𝐵) → (abss𝐴) <s 𝐵))
3323, 32impbid 212 . 2 ((𝐴 No 𝐵 No ) → ((abss𝐴) <s 𝐵 ↔ (( -us𝐴) <s 𝐵𝐴 <s 𝐵)))
341adantr 480 . . . . 5 ((𝐴 No 𝐵 No ) → ( -us𝐴) ∈ No )
35 simpr 484 . . . . 5 ((𝐴 No 𝐵 No ) → 𝐵 No )
3634, 35sltnegd 27976 . . . 4 ((𝐴 No 𝐵 No ) → (( -us𝐴) <s 𝐵 ↔ ( -us𝐵) <s ( -us ‘( -us𝐴))))
37 negnegs 27973 . . . . . 6 (𝐴 No → ( -us ‘( -us𝐴)) = 𝐴)
3837adantr 480 . . . . 5 ((𝐴 No 𝐵 No ) → ( -us ‘( -us𝐴)) = 𝐴)
3938breq2d 5107 . . . 4 ((𝐴 No 𝐵 No ) → (( -us𝐵) <s ( -us ‘( -us𝐴)) ↔ ( -us𝐵) <s 𝐴))
4036, 39bitrd 279 . . 3 ((𝐴 No 𝐵 No ) → (( -us𝐴) <s 𝐵 ↔ ( -us𝐵) <s 𝐴))
4140anbi1d 631 . 2 ((𝐴 No 𝐵 No ) → ((( -us𝐴) <s 𝐵𝐴 <s 𝐵) ↔ (( -us𝐵) <s 𝐴𝐴 <s 𝐵)))
4233, 41bitrd 279 1 ((𝐴 No 𝐵 No ) → ((abss𝐴) <s 𝐵 ↔ (( -us𝐵) <s 𝐴𝐴 <s 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109   class class class wbr 5095  cfv 6486   No csur 27567   <s cslt 27568   ≤s csle 27672   -us cnegs 27948  absscabss 28162
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-ot 4588  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-1o 8395  df-2o 8396  df-nadd 8591  df-no 27570  df-slt 27571  df-bday 27572  df-sle 27673  df-sslt 27710  df-scut 27712  df-0s 27756  df-made 27775  df-old 27776  df-left 27778  df-right 27779  df-norec 27868  df-norec2 27879  df-adds 27890  df-negs 27950  df-abss 28163
This theorem is referenced by:  remulscllem2  28388
  Copyright terms: Public domain W3C validator