MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sltmul12ad Structured version   Visualization version   GIF version

Theorem sltmul12ad 28120
Description: Comparison of the product of two positive surreals. (Contributed by Scott Fenton, 17-Apr-2025.)
Hypotheses
Ref Expression
sltmul12ad.1 (𝜑𝐴 No )
sltmul12ad.2 (𝜑𝐵 No )
sltmul12ad.3 (𝜑𝐶 No )
sltmul12ad.4 (𝜑𝐷 No )
sltmul12ad.5 (𝜑 → 0s ≤s 𝐴)
sltmul12ad.6 (𝜑𝐴 <s 𝐵)
sltmul12ad.7 (𝜑 → 0s ≤s 𝐶)
sltmul12ad.8 (𝜑𝐶 <s 𝐷)
Assertion
Ref Expression
sltmul12ad (𝜑 → (𝐴 ·s 𝐶) <s (𝐵 ·s 𝐷))

Proof of Theorem sltmul12ad
StepHypRef Expression
1 sltmul12ad.1 . . 3 (𝜑𝐴 No )
2 sltmul12ad.3 . . 3 (𝜑𝐶 No )
31, 2mulscld 28072 . 2 (𝜑 → (𝐴 ·s 𝐶) ∈ No )
4 sltmul12ad.2 . . 3 (𝜑𝐵 No )
54, 2mulscld 28072 . 2 (𝜑 → (𝐵 ·s 𝐶) ∈ No )
6 sltmul12ad.4 . . 3 (𝜑𝐷 No )
74, 6mulscld 28072 . 2 (𝜑 → (𝐵 ·s 𝐷) ∈ No )
8 sltmul12ad.7 . . 3 (𝜑 → 0s ≤s 𝐶)
9 sltmul12ad.6 . . . 4 (𝜑𝐴 <s 𝐵)
101, 4, 9sltled 27706 . . 3 (𝜑𝐴 ≤s 𝐵)
111, 4, 2, 8, 10slemul1ad 28119 . 2 (𝜑 → (𝐴 ·s 𝐶) ≤s (𝐵 ·s 𝐶))
12 sltmul12ad.8 . . 3 (𝜑𝐶 <s 𝐷)
13 0sno 27768 . . . . . 6 0s No
1413a1i 11 . . . . 5 (𝜑 → 0s No )
15 sltmul12ad.5 . . . . 5 (𝜑 → 0s ≤s 𝐴)
1614, 1, 4, 15, 9slelttrd 27698 . . . 4 (𝜑 → 0s <s 𝐵)
172, 6, 4, 16sltmul2d 28109 . . 3 (𝜑 → (𝐶 <s 𝐷 ↔ (𝐵 ·s 𝐶) <s (𝐵 ·s 𝐷)))
1812, 17mpbid 232 . 2 (𝜑 → (𝐵 ·s 𝐶) <s (𝐵 ·s 𝐷))
193, 5, 7, 11, 18slelttrd 27698 1 (𝜑 → (𝐴 ·s 𝐶) <s (𝐵 ·s 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2111   class class class wbr 5091  (class class class)co 7346   No csur 27576   <s cslt 27577   ≤s csle 27681   0s c0s 27764   ·s cmuls 28043
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-ot 4585  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-1o 8385  df-2o 8386  df-nadd 8581  df-no 27579  df-slt 27580  df-bday 27581  df-sle 27682  df-sslt 27719  df-scut 27721  df-0s 27766  df-made 27786  df-old 27787  df-left 27789  df-right 27790  df-norec 27879  df-norec2 27890  df-adds 27901  df-negs 27961  df-subs 27962  df-muls 28044
This theorem is referenced by:  remulscllem2  28401
  Copyright terms: Public domain W3C validator