MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sltmul12ad Structured version   Visualization version   GIF version

Theorem sltmul12ad 28138
Description: Comparison of the product of two positive surreals. (Contributed by Scott Fenton, 17-Apr-2025.)
Hypotheses
Ref Expression
sltmul12ad.1 (𝜑𝐴 No )
sltmul12ad.2 (𝜑𝐵 No )
sltmul12ad.3 (𝜑𝐶 No )
sltmul12ad.4 (𝜑𝐷 No )
sltmul12ad.5 (𝜑 → 0s ≤s 𝐴)
sltmul12ad.6 (𝜑𝐴 <s 𝐵)
sltmul12ad.7 (𝜑 → 0s ≤s 𝐶)
sltmul12ad.8 (𝜑𝐶 <s 𝐷)
Assertion
Ref Expression
sltmul12ad (𝜑 → (𝐴 ·s 𝐶) <s (𝐵 ·s 𝐷))

Proof of Theorem sltmul12ad
StepHypRef Expression
1 sltmul12ad.1 . . 3 (𝜑𝐴 No )
2 sltmul12ad.3 . . 3 (𝜑𝐶 No )
31, 2mulscld 28090 . 2 (𝜑 → (𝐴 ·s 𝐶) ∈ No )
4 sltmul12ad.2 . . 3 (𝜑𝐵 No )
54, 2mulscld 28090 . 2 (𝜑 → (𝐵 ·s 𝐶) ∈ No )
6 sltmul12ad.4 . . 3 (𝜑𝐷 No )
74, 6mulscld 28090 . 2 (𝜑 → (𝐵 ·s 𝐷) ∈ No )
8 sltmul12ad.7 . . 3 (𝜑 → 0s ≤s 𝐶)
9 sltmul12ad.6 . . . 4 (𝜑𝐴 <s 𝐵)
101, 4, 9sltled 27733 . . 3 (𝜑𝐴 ≤s 𝐵)
111, 4, 2, 8, 10slemul1ad 28137 . 2 (𝜑 → (𝐴 ·s 𝐶) ≤s (𝐵 ·s 𝐶))
12 sltmul12ad.8 . . 3 (𝜑𝐶 <s 𝐷)
13 0sno 27790 . . . . . 6 0s No
1413a1i 11 . . . . 5 (𝜑 → 0s No )
15 sltmul12ad.5 . . . . 5 (𝜑 → 0s ≤s 𝐴)
1614, 1, 4, 15, 9slelttrd 27725 . . . 4 (𝜑 → 0s <s 𝐵)
172, 6, 4, 16sltmul2d 28127 . . 3 (𝜑 → (𝐶 <s 𝐷 ↔ (𝐵 ·s 𝐶) <s (𝐵 ·s 𝐷)))
1812, 17mpbid 232 . 2 (𝜑 → (𝐵 ·s 𝐶) <s (𝐵 ·s 𝐷))
193, 5, 7, 11, 18slelttrd 27725 1 (𝜑 → (𝐴 ·s 𝐶) <s (𝐵 ·s 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108   class class class wbr 5119  (class class class)co 7405   No csur 27603   <s cslt 27604   ≤s csle 27708   0s c0s 27786   ·s cmuls 28061
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-ot 4610  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-1o 8480  df-2o 8481  df-nadd 8678  df-no 27606  df-slt 27607  df-bday 27608  df-sle 27709  df-sslt 27745  df-scut 27747  df-0s 27788  df-made 27807  df-old 27808  df-left 27810  df-right 27811  df-norec 27897  df-norec2 27908  df-adds 27919  df-negs 27979  df-subs 27980  df-muls 28062
This theorem is referenced by:  remulscllem2  28404
  Copyright terms: Public domain W3C validator