| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sltmul12ad | Structured version Visualization version GIF version | ||
| Description: Comparison of the product of two positive surreals. (Contributed by Scott Fenton, 17-Apr-2025.) |
| Ref | Expression |
|---|---|
| sltmul12ad.1 | ⊢ (𝜑 → 𝐴 ∈ No ) |
| sltmul12ad.2 | ⊢ (𝜑 → 𝐵 ∈ No ) |
| sltmul12ad.3 | ⊢ (𝜑 → 𝐶 ∈ No ) |
| sltmul12ad.4 | ⊢ (𝜑 → 𝐷 ∈ No ) |
| sltmul12ad.5 | ⊢ (𝜑 → 0s ≤s 𝐴) |
| sltmul12ad.6 | ⊢ (𝜑 → 𝐴 <s 𝐵) |
| sltmul12ad.7 | ⊢ (𝜑 → 0s ≤s 𝐶) |
| sltmul12ad.8 | ⊢ (𝜑 → 𝐶 <s 𝐷) |
| Ref | Expression |
|---|---|
| sltmul12ad | ⊢ (𝜑 → (𝐴 ·s 𝐶) <s (𝐵 ·s 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sltmul12ad.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ No ) | |
| 2 | sltmul12ad.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ No ) | |
| 3 | 1, 2 | mulscld 28038 | . 2 ⊢ (𝜑 → (𝐴 ·s 𝐶) ∈ No ) |
| 4 | sltmul12ad.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ No ) | |
| 5 | 4, 2 | mulscld 28038 | . 2 ⊢ (𝜑 → (𝐵 ·s 𝐶) ∈ No ) |
| 6 | sltmul12ad.4 | . . 3 ⊢ (𝜑 → 𝐷 ∈ No ) | |
| 7 | 4, 6 | mulscld 28038 | . 2 ⊢ (𝜑 → (𝐵 ·s 𝐷) ∈ No ) |
| 8 | sltmul12ad.7 | . . 3 ⊢ (𝜑 → 0s ≤s 𝐶) | |
| 9 | sltmul12ad.6 | . . . 4 ⊢ (𝜑 → 𝐴 <s 𝐵) | |
| 10 | 1, 4, 9 | sltled 27681 | . . 3 ⊢ (𝜑 → 𝐴 ≤s 𝐵) |
| 11 | 1, 4, 2, 8, 10 | slemul1ad 28085 | . 2 ⊢ (𝜑 → (𝐴 ·s 𝐶) ≤s (𝐵 ·s 𝐶)) |
| 12 | sltmul12ad.8 | . . 3 ⊢ (𝜑 → 𝐶 <s 𝐷) | |
| 13 | 0sno 27738 | . . . . . 6 ⊢ 0s ∈ No | |
| 14 | 13 | a1i 11 | . . . . 5 ⊢ (𝜑 → 0s ∈ No ) |
| 15 | sltmul12ad.5 | . . . . 5 ⊢ (𝜑 → 0s ≤s 𝐴) | |
| 16 | 14, 1, 4, 15, 9 | slelttrd 27673 | . . . 4 ⊢ (𝜑 → 0s <s 𝐵) |
| 17 | 2, 6, 4, 16 | sltmul2d 28075 | . . 3 ⊢ (𝜑 → (𝐶 <s 𝐷 ↔ (𝐵 ·s 𝐶) <s (𝐵 ·s 𝐷))) |
| 18 | 12, 17 | mpbid 232 | . 2 ⊢ (𝜑 → (𝐵 ·s 𝐶) <s (𝐵 ·s 𝐷)) |
| 19 | 3, 5, 7, 11, 18 | slelttrd 27673 | 1 ⊢ (𝜑 → (𝐴 ·s 𝐶) <s (𝐵 ·s 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 class class class wbr 5107 (class class class)co 7387 No csur 27551 <s cslt 27552 ≤s csle 27656 0s c0s 27734 ·s cmuls 28009 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-ot 4598 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-1o 8434 df-2o 8435 df-nadd 8630 df-no 27554 df-slt 27555 df-bday 27556 df-sle 27657 df-sslt 27693 df-scut 27695 df-0s 27736 df-made 27755 df-old 27756 df-left 27758 df-right 27759 df-norec 27845 df-norec2 27856 df-adds 27867 df-negs 27927 df-subs 27928 df-muls 28010 |
| This theorem is referenced by: remulscllem2 28352 |
| Copyright terms: Public domain | W3C validator |