Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfpreimaltf Structured version   Visualization version   GIF version

Theorem smfpreimaltf 46718
Description: Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval unbounded below is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
smfpreimaltf.x 𝑥𝐹
smfpreimaltf.s (𝜑𝑆 ∈ SAlg)
smfpreimaltf.f (𝜑𝐹 ∈ (SMblFn‘𝑆))
smfpreimaltf.d 𝐷 = dom 𝐹
smfpreimaltf.a (𝜑𝐴 ∈ ℝ)
Assertion
Ref Expression
smfpreimaltf (𝜑 → {𝑥𝐷 ∣ (𝐹𝑥) < 𝐴} ∈ (𝑆t 𝐷))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐷(𝑥)   𝑆(𝑥)   𝐹(𝑥)

Proof of Theorem smfpreimaltf
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 smfpreimaltf.a . 2 (𝜑𝐴 ∈ ℝ)
2 smfpreimaltf.f . . . 4 (𝜑𝐹 ∈ (SMblFn‘𝑆))
3 smfpreimaltf.x . . . . 5 𝑥𝐹
4 smfpreimaltf.s . . . . 5 (𝜑𝑆 ∈ SAlg)
5 smfpreimaltf.d . . . . 5 𝐷 = dom 𝐹
63, 4, 5issmff 46716 . . . 4 (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ↔ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐷))))
72, 6mpbid 232 . . 3 (𝜑 → (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐷)))
87simp3d 1144 . 2 (𝜑 → ∀𝑎 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐷))
9 breq2 5099 . . . . 5 (𝑎 = 𝐴 → ((𝐹𝑥) < 𝑎 ↔ (𝐹𝑥) < 𝐴))
109rabbidv 3404 . . . 4 (𝑎 = 𝐴 → {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} = {𝑥𝐷 ∣ (𝐹𝑥) < 𝐴})
1110eleq1d 2813 . . 3 (𝑎 = 𝐴 → ({𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐷) ↔ {𝑥𝐷 ∣ (𝐹𝑥) < 𝐴} ∈ (𝑆t 𝐷)))
1211rspcva 3577 . 2 ((𝐴 ∈ ℝ ∧ ∀𝑎 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐷)) → {𝑥𝐷 ∣ (𝐹𝑥) < 𝐴} ∈ (𝑆t 𝐷))
131, 8, 12syl2anc 584 1 (𝜑 → {𝑥𝐷 ∣ (𝐹𝑥) < 𝐴} ∈ (𝑆t 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  wnfc 2876  wral 3044  {crab 3396  wss 3905   cuni 4861   class class class wbr 5095  dom cdm 5623  wf 6482  cfv 6486  (class class class)co 7353  cr 11027   < clt 11168  t crest 17342  SAlgcsalg 46290  SMblFncsmblfn 46677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-pre-lttri 11102  ax-pre-lttrn 11103
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-po 5531  df-so 5532  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1st 7931  df-2nd 7932  df-er 8632  df-pm 8763  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-ioo 13270  df-ico 13272  df-smblfn 46678
This theorem is referenced by:  smfpimltmpt  46728  smfpimltxr  46729
  Copyright terms: Public domain W3C validator