Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > smfpreimaltf | Structured version Visualization version GIF version |
Description: Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval unbounded below is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
smfpreimaltf.x | ⊢ Ⅎ𝑥𝐹 |
smfpreimaltf.s | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
smfpreimaltf.f | ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) |
smfpreimaltf.d | ⊢ 𝐷 = dom 𝐹 |
smfpreimaltf.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
Ref | Expression |
---|---|
smfpreimaltf | ⊢ (𝜑 → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝐴} ∈ (𝑆 ↾t 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | smfpreimaltf.a | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | smfpreimaltf.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) | |
3 | smfpreimaltf.x | . . . . 5 ⊢ Ⅎ𝑥𝐹 | |
4 | smfpreimaltf.s | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
5 | smfpreimaltf.d | . . . . 5 ⊢ 𝐷 = dom 𝐹 | |
6 | 3, 4, 5 | issmff 43831 | . . . 4 ⊢ (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ↔ (𝐷 ⊆ ∪ 𝑆 ∧ 𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t 𝐷)))) |
7 | 2, 6 | mpbid 235 | . . 3 ⊢ (𝜑 → (𝐷 ⊆ ∪ 𝑆 ∧ 𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t 𝐷))) |
8 | 7 | simp3d 1145 | . 2 ⊢ (𝜑 → ∀𝑎 ∈ ℝ {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t 𝐷)) |
9 | breq2 5034 | . . . . 5 ⊢ (𝑎 = 𝐴 → ((𝐹‘𝑥) < 𝑎 ↔ (𝐹‘𝑥) < 𝐴)) | |
10 | 9 | rabbidv 3381 | . . . 4 ⊢ (𝑎 = 𝐴 → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑎} = {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝐴}) |
11 | 10 | eleq1d 2817 | . . 3 ⊢ (𝑎 = 𝐴 → ({𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t 𝐷) ↔ {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝐴} ∈ (𝑆 ↾t 𝐷))) |
12 | 11 | rspcva 3524 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ ∀𝑎 ∈ ℝ {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t 𝐷)) → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝐴} ∈ (𝑆 ↾t 𝐷)) |
13 | 1, 8, 12 | syl2anc 587 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝐴} ∈ (𝑆 ↾t 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1088 = wceq 1542 ∈ wcel 2114 Ⅎwnfc 2879 ∀wral 3053 {crab 3057 ⊆ wss 3843 ∪ cuni 4796 class class class wbr 5030 dom cdm 5525 ⟶wf 6335 ‘cfv 6339 (class class class)co 7172 ℝcr 10616 < clt 10755 ↾t crest 16799 SAlgcsalg 43413 SMblFncsmblfn 43797 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7481 ax-cnex 10673 ax-resscn 10674 ax-pre-lttri 10691 ax-pre-lttrn 10692 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-op 4523 df-uni 4797 df-iun 4883 df-br 5031 df-opab 5093 df-mpt 5111 df-id 5429 df-po 5442 df-so 5443 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-ov 7175 df-oprab 7176 df-mpo 7177 df-1st 7716 df-2nd 7717 df-er 8322 df-pm 8442 df-en 8558 df-dom 8559 df-sdom 8560 df-pnf 10757 df-mnf 10758 df-xr 10759 df-ltxr 10760 df-le 10761 df-ioo 12827 df-ico 12829 df-smblfn 43798 |
This theorem is referenced by: smfpimltmpt 43843 smfpimltxr 43844 |
Copyright terms: Public domain | W3C validator |