MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  spllen Structured version   Visualization version   GIF version

Theorem spllen 14802
Description: The length of a splice. (Contributed by Stefan O'Rear, 23-Aug-2015.) (Proof shortened by AV, 15-Oct-2022.)
Hypotheses
Ref Expression
spllen.s (𝜑𝑆 ∈ Word 𝐴)
spllen.f (𝜑𝐹 ∈ (0...𝑇))
spllen.t (𝜑𝑇 ∈ (0...(♯‘𝑆)))
spllen.r (𝜑𝑅 ∈ Word 𝐴)
Assertion
Ref Expression
spllen (𝜑 → (♯‘(𝑆 splice ⟨𝐹, 𝑇, 𝑅⟩)) = ((♯‘𝑆) + ((♯‘𝑅) − (𝑇𝐹))))

Proof of Theorem spllen
StepHypRef Expression
1 spllen.s . . . 4 (𝜑𝑆 ∈ Word 𝐴)
2 spllen.f . . . 4 (𝜑𝐹 ∈ (0...𝑇))
3 spllen.t . . . 4 (𝜑𝑇 ∈ (0...(♯‘𝑆)))
4 spllen.r . . . 4 (𝜑𝑅 ∈ Word 𝐴)
5 splval 14799 . . . 4 ((𝑆 ∈ Word 𝐴 ∧ (𝐹 ∈ (0...𝑇) ∧ 𝑇 ∈ (0...(♯‘𝑆)) ∧ 𝑅 ∈ Word 𝐴)) → (𝑆 splice ⟨𝐹, 𝑇, 𝑅⟩) = (((𝑆 prefix 𝐹) ++ 𝑅) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩)))
61, 2, 3, 4, 5syl13anc 1372 . . 3 (𝜑 → (𝑆 splice ⟨𝐹, 𝑇, 𝑅⟩) = (((𝑆 prefix 𝐹) ++ 𝑅) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩)))
76fveq2d 6924 . 2 (𝜑 → (♯‘(𝑆 splice ⟨𝐹, 𝑇, 𝑅⟩)) = (♯‘(((𝑆 prefix 𝐹) ++ 𝑅) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))))
8 pfxcl 14725 . . . . 5 (𝑆 ∈ Word 𝐴 → (𝑆 prefix 𝐹) ∈ Word 𝐴)
91, 8syl 17 . . . 4 (𝜑 → (𝑆 prefix 𝐹) ∈ Word 𝐴)
10 ccatcl 14622 . . . 4 (((𝑆 prefix 𝐹) ∈ Word 𝐴𝑅 ∈ Word 𝐴) → ((𝑆 prefix 𝐹) ++ 𝑅) ∈ Word 𝐴)
119, 4, 10syl2anc 583 . . 3 (𝜑 → ((𝑆 prefix 𝐹) ++ 𝑅) ∈ Word 𝐴)
12 swrdcl 14693 . . . 4 (𝑆 ∈ Word 𝐴 → (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩) ∈ Word 𝐴)
131, 12syl 17 . . 3 (𝜑 → (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩) ∈ Word 𝐴)
14 ccatlen 14623 . . 3 ((((𝑆 prefix 𝐹) ++ 𝑅) ∈ Word 𝐴 ∧ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩) ∈ Word 𝐴) → (♯‘(((𝑆 prefix 𝐹) ++ 𝑅) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))) = ((♯‘((𝑆 prefix 𝐹) ++ 𝑅)) + (♯‘(𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))))
1511, 13, 14syl2anc 583 . 2 (𝜑 → (♯‘(((𝑆 prefix 𝐹) ++ 𝑅) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))) = ((♯‘((𝑆 prefix 𝐹) ++ 𝑅)) + (♯‘(𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))))
16 lencl 14581 . . . . . . 7 (𝑅 ∈ Word 𝐴 → (♯‘𝑅) ∈ ℕ0)
1716nn0cnd 12615 . . . . . 6 (𝑅 ∈ Word 𝐴 → (♯‘𝑅) ∈ ℂ)
184, 17syl 17 . . . . 5 (𝜑 → (♯‘𝑅) ∈ ℂ)
19 elfzelz 13584 . . . . . . 7 (𝐹 ∈ (0...𝑇) → 𝐹 ∈ ℤ)
2019zcnd 12748 . . . . . 6 (𝐹 ∈ (0...𝑇) → 𝐹 ∈ ℂ)
212, 20syl 17 . . . . 5 (𝜑𝐹 ∈ ℂ)
2218, 21addcld 11309 . . . 4 (𝜑 → ((♯‘𝑅) + 𝐹) ∈ ℂ)
23 elfzel2 13582 . . . . . 6 (𝑇 ∈ (0...(♯‘𝑆)) → (♯‘𝑆) ∈ ℤ)
2423zcnd 12748 . . . . 5 (𝑇 ∈ (0...(♯‘𝑆)) → (♯‘𝑆) ∈ ℂ)
253, 24syl 17 . . . 4 (𝜑 → (♯‘𝑆) ∈ ℂ)
26 elfzelz 13584 . . . . . 6 (𝑇 ∈ (0...(♯‘𝑆)) → 𝑇 ∈ ℤ)
2726zcnd 12748 . . . . 5 (𝑇 ∈ (0...(♯‘𝑆)) → 𝑇 ∈ ℂ)
283, 27syl 17 . . . 4 (𝜑𝑇 ∈ ℂ)
2922, 25, 28addsub12d 11670 . . 3 (𝜑 → (((♯‘𝑅) + 𝐹) + ((♯‘𝑆) − 𝑇)) = ((♯‘𝑆) + (((♯‘𝑅) + 𝐹) − 𝑇)))
30 ccatlen 14623 . . . . . 6 (((𝑆 prefix 𝐹) ∈ Word 𝐴𝑅 ∈ Word 𝐴) → (♯‘((𝑆 prefix 𝐹) ++ 𝑅)) = ((♯‘(𝑆 prefix 𝐹)) + (♯‘𝑅)))
319, 4, 30syl2anc 583 . . . . 5 (𝜑 → (♯‘((𝑆 prefix 𝐹) ++ 𝑅)) = ((♯‘(𝑆 prefix 𝐹)) + (♯‘𝑅)))
32 elfzuz 13580 . . . . . . . . 9 (𝐹 ∈ (0...𝑇) → 𝐹 ∈ (ℤ‘0))
332, 32syl 17 . . . . . . . 8 (𝜑𝐹 ∈ (ℤ‘0))
34 elfzuz3 13581 . . . . . . . . . 10 (𝑇 ∈ (0...(♯‘𝑆)) → (♯‘𝑆) ∈ (ℤ𝑇))
353, 34syl 17 . . . . . . . . 9 (𝜑 → (♯‘𝑆) ∈ (ℤ𝑇))
36 elfzuz3 13581 . . . . . . . . . 10 (𝐹 ∈ (0...𝑇) → 𝑇 ∈ (ℤ𝐹))
372, 36syl 17 . . . . . . . . 9 (𝜑𝑇 ∈ (ℤ𝐹))
38 uztrn 12921 . . . . . . . . 9 (((♯‘𝑆) ∈ (ℤ𝑇) ∧ 𝑇 ∈ (ℤ𝐹)) → (♯‘𝑆) ∈ (ℤ𝐹))
3935, 37, 38syl2anc 583 . . . . . . . 8 (𝜑 → (♯‘𝑆) ∈ (ℤ𝐹))
40 elfzuzb 13578 . . . . . . . 8 (𝐹 ∈ (0...(♯‘𝑆)) ↔ (𝐹 ∈ (ℤ‘0) ∧ (♯‘𝑆) ∈ (ℤ𝐹)))
4133, 39, 40sylanbrc 582 . . . . . . 7 (𝜑𝐹 ∈ (0...(♯‘𝑆)))
42 pfxlen 14731 . . . . . . 7 ((𝑆 ∈ Word 𝐴𝐹 ∈ (0...(♯‘𝑆))) → (♯‘(𝑆 prefix 𝐹)) = 𝐹)
431, 41, 42syl2anc 583 . . . . . 6 (𝜑 → (♯‘(𝑆 prefix 𝐹)) = 𝐹)
4443oveq1d 7463 . . . . 5 (𝜑 → ((♯‘(𝑆 prefix 𝐹)) + (♯‘𝑅)) = (𝐹 + (♯‘𝑅)))
4521, 18addcomd 11492 . . . . 5 (𝜑 → (𝐹 + (♯‘𝑅)) = ((♯‘𝑅) + 𝐹))
4631, 44, 453eqtrd 2784 . . . 4 (𝜑 → (♯‘((𝑆 prefix 𝐹) ++ 𝑅)) = ((♯‘𝑅) + 𝐹))
47 elfzuz2 13589 . . . . . 6 (𝑇 ∈ (0...(♯‘𝑆)) → (♯‘𝑆) ∈ (ℤ‘0))
48 eluzfz2 13592 . . . . . 6 ((♯‘𝑆) ∈ (ℤ‘0) → (♯‘𝑆) ∈ (0...(♯‘𝑆)))
493, 47, 483syl 18 . . . . 5 (𝜑 → (♯‘𝑆) ∈ (0...(♯‘𝑆)))
50 swrdlen 14695 . . . . 5 ((𝑆 ∈ Word 𝐴𝑇 ∈ (0...(♯‘𝑆)) ∧ (♯‘𝑆) ∈ (0...(♯‘𝑆))) → (♯‘(𝑆 substr ⟨𝑇, (♯‘𝑆)⟩)) = ((♯‘𝑆) − 𝑇))
511, 3, 49, 50syl3anc 1371 . . . 4 (𝜑 → (♯‘(𝑆 substr ⟨𝑇, (♯‘𝑆)⟩)) = ((♯‘𝑆) − 𝑇))
5246, 51oveq12d 7466 . . 3 (𝜑 → ((♯‘((𝑆 prefix 𝐹) ++ 𝑅)) + (♯‘(𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))) = (((♯‘𝑅) + 𝐹) + ((♯‘𝑆) − 𝑇)))
5318, 28, 21subsub3d 11677 . . . 4 (𝜑 → ((♯‘𝑅) − (𝑇𝐹)) = (((♯‘𝑅) + 𝐹) − 𝑇))
5453oveq2d 7464 . . 3 (𝜑 → ((♯‘𝑆) + ((♯‘𝑅) − (𝑇𝐹))) = ((♯‘𝑆) + (((♯‘𝑅) + 𝐹) − 𝑇)))
5529, 52, 543eqtr4d 2790 . 2 (𝜑 → ((♯‘((𝑆 prefix 𝐹) ++ 𝑅)) + (♯‘(𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))) = ((♯‘𝑆) + ((♯‘𝑅) − (𝑇𝐹))))
567, 15, 553eqtrd 2784 1 (𝜑 → (♯‘(𝑆 splice ⟨𝐹, 𝑇, 𝑅⟩)) = ((♯‘𝑆) + ((♯‘𝑅) − (𝑇𝐹))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  cop 4654  cotp 4656  cfv 6573  (class class class)co 7448  cc 11182  0cc0 11184   + caddc 11187  cmin 11520  cuz 12903  ...cfz 13567  chash 14379  Word cword 14562   ++ cconcat 14618   substr csubstr 14688   prefix cpfx 14718   splice csplice 14797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-ot 4657  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-fzo 13712  df-hash 14380  df-word 14563  df-concat 14619  df-substr 14689  df-pfx 14719  df-splice 14798
This theorem is referenced by:  psgnunilem2  19537  efgtlen  19768
  Copyright terms: Public domain W3C validator