MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  spllen Structured version   Visualization version   GIF version

Theorem spllen 14111
Description: The length of a splice. (Contributed by Stefan O'Rear, 23-Aug-2015.) (Proof shortened by AV, 15-Oct-2022.)
Hypotheses
Ref Expression
spllen.s (𝜑𝑆 ∈ Word 𝐴)
spllen.f (𝜑𝐹 ∈ (0...𝑇))
spllen.t (𝜑𝑇 ∈ (0...(♯‘𝑆)))
spllen.r (𝜑𝑅 ∈ Word 𝐴)
Assertion
Ref Expression
spllen (𝜑 → (♯‘(𝑆 splice ⟨𝐹, 𝑇, 𝑅⟩)) = ((♯‘𝑆) + ((♯‘𝑅) − (𝑇𝐹))))

Proof of Theorem spllen
StepHypRef Expression
1 spllen.s . . . 4 (𝜑𝑆 ∈ Word 𝐴)
2 spllen.f . . . 4 (𝜑𝐹 ∈ (0...𝑇))
3 spllen.t . . . 4 (𝜑𝑇 ∈ (0...(♯‘𝑆)))
4 spllen.r . . . 4 (𝜑𝑅 ∈ Word 𝐴)
5 splval 14108 . . . 4 ((𝑆 ∈ Word 𝐴 ∧ (𝐹 ∈ (0...𝑇) ∧ 𝑇 ∈ (0...(♯‘𝑆)) ∧ 𝑅 ∈ Word 𝐴)) → (𝑆 splice ⟨𝐹, 𝑇, 𝑅⟩) = (((𝑆 prefix 𝐹) ++ 𝑅) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩)))
61, 2, 3, 4, 5syl13anc 1369 . . 3 (𝜑 → (𝑆 splice ⟨𝐹, 𝑇, 𝑅⟩) = (((𝑆 prefix 𝐹) ++ 𝑅) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩)))
76fveq2d 6653 . 2 (𝜑 → (♯‘(𝑆 splice ⟨𝐹, 𝑇, 𝑅⟩)) = (♯‘(((𝑆 prefix 𝐹) ++ 𝑅) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))))
8 pfxcl 14034 . . . . 5 (𝑆 ∈ Word 𝐴 → (𝑆 prefix 𝐹) ∈ Word 𝐴)
91, 8syl 17 . . . 4 (𝜑 → (𝑆 prefix 𝐹) ∈ Word 𝐴)
10 ccatcl 13921 . . . 4 (((𝑆 prefix 𝐹) ∈ Word 𝐴𝑅 ∈ Word 𝐴) → ((𝑆 prefix 𝐹) ++ 𝑅) ∈ Word 𝐴)
119, 4, 10syl2anc 587 . . 3 (𝜑 → ((𝑆 prefix 𝐹) ++ 𝑅) ∈ Word 𝐴)
12 swrdcl 14002 . . . 4 (𝑆 ∈ Word 𝐴 → (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩) ∈ Word 𝐴)
131, 12syl 17 . . 3 (𝜑 → (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩) ∈ Word 𝐴)
14 ccatlen 13922 . . 3 ((((𝑆 prefix 𝐹) ++ 𝑅) ∈ Word 𝐴 ∧ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩) ∈ Word 𝐴) → (♯‘(((𝑆 prefix 𝐹) ++ 𝑅) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))) = ((♯‘((𝑆 prefix 𝐹) ++ 𝑅)) + (♯‘(𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))))
1511, 13, 14syl2anc 587 . 2 (𝜑 → (♯‘(((𝑆 prefix 𝐹) ++ 𝑅) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))) = ((♯‘((𝑆 prefix 𝐹) ++ 𝑅)) + (♯‘(𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))))
16 lencl 13880 . . . . . . 7 (𝑅 ∈ Word 𝐴 → (♯‘𝑅) ∈ ℕ0)
1716nn0cnd 11949 . . . . . 6 (𝑅 ∈ Word 𝐴 → (♯‘𝑅) ∈ ℂ)
184, 17syl 17 . . . . 5 (𝜑 → (♯‘𝑅) ∈ ℂ)
19 elfzelz 12906 . . . . . . 7 (𝐹 ∈ (0...𝑇) → 𝐹 ∈ ℤ)
2019zcnd 12080 . . . . . 6 (𝐹 ∈ (0...𝑇) → 𝐹 ∈ ℂ)
212, 20syl 17 . . . . 5 (𝜑𝐹 ∈ ℂ)
2218, 21addcld 10653 . . . 4 (𝜑 → ((♯‘𝑅) + 𝐹) ∈ ℂ)
23 elfzel2 12904 . . . . . 6 (𝑇 ∈ (0...(♯‘𝑆)) → (♯‘𝑆) ∈ ℤ)
2423zcnd 12080 . . . . 5 (𝑇 ∈ (0...(♯‘𝑆)) → (♯‘𝑆) ∈ ℂ)
253, 24syl 17 . . . 4 (𝜑 → (♯‘𝑆) ∈ ℂ)
26 elfzelz 12906 . . . . . 6 (𝑇 ∈ (0...(♯‘𝑆)) → 𝑇 ∈ ℤ)
2726zcnd 12080 . . . . 5 (𝑇 ∈ (0...(♯‘𝑆)) → 𝑇 ∈ ℂ)
283, 27syl 17 . . . 4 (𝜑𝑇 ∈ ℂ)
2922, 25, 28addsub12d 11013 . . 3 (𝜑 → (((♯‘𝑅) + 𝐹) + ((♯‘𝑆) − 𝑇)) = ((♯‘𝑆) + (((♯‘𝑅) + 𝐹) − 𝑇)))
30 ccatlen 13922 . . . . . 6 (((𝑆 prefix 𝐹) ∈ Word 𝐴𝑅 ∈ Word 𝐴) → (♯‘((𝑆 prefix 𝐹) ++ 𝑅)) = ((♯‘(𝑆 prefix 𝐹)) + (♯‘𝑅)))
319, 4, 30syl2anc 587 . . . . 5 (𝜑 → (♯‘((𝑆 prefix 𝐹) ++ 𝑅)) = ((♯‘(𝑆 prefix 𝐹)) + (♯‘𝑅)))
32 elfzuz 12902 . . . . . . . . 9 (𝐹 ∈ (0...𝑇) → 𝐹 ∈ (ℤ‘0))
332, 32syl 17 . . . . . . . 8 (𝜑𝐹 ∈ (ℤ‘0))
34 elfzuz3 12903 . . . . . . . . . 10 (𝑇 ∈ (0...(♯‘𝑆)) → (♯‘𝑆) ∈ (ℤ𝑇))
353, 34syl 17 . . . . . . . . 9 (𝜑 → (♯‘𝑆) ∈ (ℤ𝑇))
36 elfzuz3 12903 . . . . . . . . . 10 (𝐹 ∈ (0...𝑇) → 𝑇 ∈ (ℤ𝐹))
372, 36syl 17 . . . . . . . . 9 (𝜑𝑇 ∈ (ℤ𝐹))
38 uztrn 12253 . . . . . . . . 9 (((♯‘𝑆) ∈ (ℤ𝑇) ∧ 𝑇 ∈ (ℤ𝐹)) → (♯‘𝑆) ∈ (ℤ𝐹))
3935, 37, 38syl2anc 587 . . . . . . . 8 (𝜑 → (♯‘𝑆) ∈ (ℤ𝐹))
40 elfzuzb 12900 . . . . . . . 8 (𝐹 ∈ (0...(♯‘𝑆)) ↔ (𝐹 ∈ (ℤ‘0) ∧ (♯‘𝑆) ∈ (ℤ𝐹)))
4133, 39, 40sylanbrc 586 . . . . . . 7 (𝜑𝐹 ∈ (0...(♯‘𝑆)))
42 pfxlen 14040 . . . . . . 7 ((𝑆 ∈ Word 𝐴𝐹 ∈ (0...(♯‘𝑆))) → (♯‘(𝑆 prefix 𝐹)) = 𝐹)
431, 41, 42syl2anc 587 . . . . . 6 (𝜑 → (♯‘(𝑆 prefix 𝐹)) = 𝐹)
4443oveq1d 7154 . . . . 5 (𝜑 → ((♯‘(𝑆 prefix 𝐹)) + (♯‘𝑅)) = (𝐹 + (♯‘𝑅)))
4521, 18addcomd 10835 . . . . 5 (𝜑 → (𝐹 + (♯‘𝑅)) = ((♯‘𝑅) + 𝐹))
4631, 44, 453eqtrd 2840 . . . 4 (𝜑 → (♯‘((𝑆 prefix 𝐹) ++ 𝑅)) = ((♯‘𝑅) + 𝐹))
47 elfzuz2 12911 . . . . . 6 (𝑇 ∈ (0...(♯‘𝑆)) → (♯‘𝑆) ∈ (ℤ‘0))
48 eluzfz2 12914 . . . . . 6 ((♯‘𝑆) ∈ (ℤ‘0) → (♯‘𝑆) ∈ (0...(♯‘𝑆)))
493, 47, 483syl 18 . . . . 5 (𝜑 → (♯‘𝑆) ∈ (0...(♯‘𝑆)))
50 swrdlen 14004 . . . . 5 ((𝑆 ∈ Word 𝐴𝑇 ∈ (0...(♯‘𝑆)) ∧ (♯‘𝑆) ∈ (0...(♯‘𝑆))) → (♯‘(𝑆 substr ⟨𝑇, (♯‘𝑆)⟩)) = ((♯‘𝑆) − 𝑇))
511, 3, 49, 50syl3anc 1368 . . . 4 (𝜑 → (♯‘(𝑆 substr ⟨𝑇, (♯‘𝑆)⟩)) = ((♯‘𝑆) − 𝑇))
5246, 51oveq12d 7157 . . 3 (𝜑 → ((♯‘((𝑆 prefix 𝐹) ++ 𝑅)) + (♯‘(𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))) = (((♯‘𝑅) + 𝐹) + ((♯‘𝑆) − 𝑇)))
5318, 28, 21subsub3d 11020 . . . 4 (𝜑 → ((♯‘𝑅) − (𝑇𝐹)) = (((♯‘𝑅) + 𝐹) − 𝑇))
5453oveq2d 7155 . . 3 (𝜑 → ((♯‘𝑆) + ((♯‘𝑅) − (𝑇𝐹))) = ((♯‘𝑆) + (((♯‘𝑅) + 𝐹) − 𝑇)))
5529, 52, 543eqtr4d 2846 . 2 (𝜑 → ((♯‘((𝑆 prefix 𝐹) ++ 𝑅)) + (♯‘(𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))) = ((♯‘𝑆) + ((♯‘𝑅) − (𝑇𝐹))))
567, 15, 553eqtrd 2840 1 (𝜑 → (♯‘(𝑆 splice ⟨𝐹, 𝑇, 𝑅⟩)) = ((♯‘𝑆) + ((♯‘𝑅) − (𝑇𝐹))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wcel 2112  cop 4534  cotp 4536  cfv 6328  (class class class)co 7139  cc 10528  0cc0 10530   + caddc 10533  cmin 10863  cuz 12235  ...cfz 12889  chash 13690  Word cword 13861   ++ cconcat 13917   substr csubstr 13997   prefix cpfx 14027   splice csplice 14106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-ot 4537  df-uni 4804  df-int 4842  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-card 9356  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11630  df-n0 11890  df-z 11974  df-uz 12236  df-fz 12890  df-fzo 13033  df-hash 13691  df-word 13862  df-concat 13918  df-substr 13998  df-pfx 14028  df-splice 14107
This theorem is referenced by:  psgnunilem2  18619  efgtlen  18848
  Copyright terms: Public domain W3C validator