MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  spllen Structured version   Visualization version   GIF version

Theorem spllen 14726
Description: The length of a splice. (Contributed by Stefan O'Rear, 23-Aug-2015.) (Proof shortened by AV, 15-Oct-2022.)
Hypotheses
Ref Expression
spllen.s (𝜑𝑆 ∈ Word 𝐴)
spllen.f (𝜑𝐹 ∈ (0...𝑇))
spllen.t (𝜑𝑇 ∈ (0...(♯‘𝑆)))
spllen.r (𝜑𝑅 ∈ Word 𝐴)
Assertion
Ref Expression
spllen (𝜑 → (♯‘(𝑆 splice ⟨𝐹, 𝑇, 𝑅⟩)) = ((♯‘𝑆) + ((♯‘𝑅) − (𝑇𝐹))))

Proof of Theorem spllen
StepHypRef Expression
1 spllen.s . . . 4 (𝜑𝑆 ∈ Word 𝐴)
2 spllen.f . . . 4 (𝜑𝐹 ∈ (0...𝑇))
3 spllen.t . . . 4 (𝜑𝑇 ∈ (0...(♯‘𝑆)))
4 spllen.r . . . 4 (𝜑𝑅 ∈ Word 𝐴)
5 splval 14723 . . . 4 ((𝑆 ∈ Word 𝐴 ∧ (𝐹 ∈ (0...𝑇) ∧ 𝑇 ∈ (0...(♯‘𝑆)) ∧ 𝑅 ∈ Word 𝐴)) → (𝑆 splice ⟨𝐹, 𝑇, 𝑅⟩) = (((𝑆 prefix 𝐹) ++ 𝑅) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩)))
61, 2, 3, 4, 5syl13anc 1374 . . 3 (𝜑 → (𝑆 splice ⟨𝐹, 𝑇, 𝑅⟩) = (((𝑆 prefix 𝐹) ++ 𝑅) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩)))
76fveq2d 6865 . 2 (𝜑 → (♯‘(𝑆 splice ⟨𝐹, 𝑇, 𝑅⟩)) = (♯‘(((𝑆 prefix 𝐹) ++ 𝑅) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))))
8 pfxcl 14649 . . . . 5 (𝑆 ∈ Word 𝐴 → (𝑆 prefix 𝐹) ∈ Word 𝐴)
91, 8syl 17 . . . 4 (𝜑 → (𝑆 prefix 𝐹) ∈ Word 𝐴)
10 ccatcl 14546 . . . 4 (((𝑆 prefix 𝐹) ∈ Word 𝐴𝑅 ∈ Word 𝐴) → ((𝑆 prefix 𝐹) ++ 𝑅) ∈ Word 𝐴)
119, 4, 10syl2anc 584 . . 3 (𝜑 → ((𝑆 prefix 𝐹) ++ 𝑅) ∈ Word 𝐴)
12 swrdcl 14617 . . . 4 (𝑆 ∈ Word 𝐴 → (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩) ∈ Word 𝐴)
131, 12syl 17 . . 3 (𝜑 → (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩) ∈ Word 𝐴)
14 ccatlen 14547 . . 3 ((((𝑆 prefix 𝐹) ++ 𝑅) ∈ Word 𝐴 ∧ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩) ∈ Word 𝐴) → (♯‘(((𝑆 prefix 𝐹) ++ 𝑅) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))) = ((♯‘((𝑆 prefix 𝐹) ++ 𝑅)) + (♯‘(𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))))
1511, 13, 14syl2anc 584 . 2 (𝜑 → (♯‘(((𝑆 prefix 𝐹) ++ 𝑅) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))) = ((♯‘((𝑆 prefix 𝐹) ++ 𝑅)) + (♯‘(𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))))
16 lencl 14505 . . . . . . 7 (𝑅 ∈ Word 𝐴 → (♯‘𝑅) ∈ ℕ0)
1716nn0cnd 12512 . . . . . 6 (𝑅 ∈ Word 𝐴 → (♯‘𝑅) ∈ ℂ)
184, 17syl 17 . . . . 5 (𝜑 → (♯‘𝑅) ∈ ℂ)
19 elfzelz 13492 . . . . . . 7 (𝐹 ∈ (0...𝑇) → 𝐹 ∈ ℤ)
2019zcnd 12646 . . . . . 6 (𝐹 ∈ (0...𝑇) → 𝐹 ∈ ℂ)
212, 20syl 17 . . . . 5 (𝜑𝐹 ∈ ℂ)
2218, 21addcld 11200 . . . 4 (𝜑 → ((♯‘𝑅) + 𝐹) ∈ ℂ)
23 elfzel2 13490 . . . . . 6 (𝑇 ∈ (0...(♯‘𝑆)) → (♯‘𝑆) ∈ ℤ)
2423zcnd 12646 . . . . 5 (𝑇 ∈ (0...(♯‘𝑆)) → (♯‘𝑆) ∈ ℂ)
253, 24syl 17 . . . 4 (𝜑 → (♯‘𝑆) ∈ ℂ)
26 elfzelz 13492 . . . . . 6 (𝑇 ∈ (0...(♯‘𝑆)) → 𝑇 ∈ ℤ)
2726zcnd 12646 . . . . 5 (𝑇 ∈ (0...(♯‘𝑆)) → 𝑇 ∈ ℂ)
283, 27syl 17 . . . 4 (𝜑𝑇 ∈ ℂ)
2922, 25, 28addsub12d 11563 . . 3 (𝜑 → (((♯‘𝑅) + 𝐹) + ((♯‘𝑆) − 𝑇)) = ((♯‘𝑆) + (((♯‘𝑅) + 𝐹) − 𝑇)))
30 ccatlen 14547 . . . . . 6 (((𝑆 prefix 𝐹) ∈ Word 𝐴𝑅 ∈ Word 𝐴) → (♯‘((𝑆 prefix 𝐹) ++ 𝑅)) = ((♯‘(𝑆 prefix 𝐹)) + (♯‘𝑅)))
319, 4, 30syl2anc 584 . . . . 5 (𝜑 → (♯‘((𝑆 prefix 𝐹) ++ 𝑅)) = ((♯‘(𝑆 prefix 𝐹)) + (♯‘𝑅)))
32 elfzuz 13488 . . . . . . . . 9 (𝐹 ∈ (0...𝑇) → 𝐹 ∈ (ℤ‘0))
332, 32syl 17 . . . . . . . 8 (𝜑𝐹 ∈ (ℤ‘0))
34 elfzuz3 13489 . . . . . . . . . 10 (𝑇 ∈ (0...(♯‘𝑆)) → (♯‘𝑆) ∈ (ℤ𝑇))
353, 34syl 17 . . . . . . . . 9 (𝜑 → (♯‘𝑆) ∈ (ℤ𝑇))
36 elfzuz3 13489 . . . . . . . . . 10 (𝐹 ∈ (0...𝑇) → 𝑇 ∈ (ℤ𝐹))
372, 36syl 17 . . . . . . . . 9 (𝜑𝑇 ∈ (ℤ𝐹))
38 uztrn 12818 . . . . . . . . 9 (((♯‘𝑆) ∈ (ℤ𝑇) ∧ 𝑇 ∈ (ℤ𝐹)) → (♯‘𝑆) ∈ (ℤ𝐹))
3935, 37, 38syl2anc 584 . . . . . . . 8 (𝜑 → (♯‘𝑆) ∈ (ℤ𝐹))
40 elfzuzb 13486 . . . . . . . 8 (𝐹 ∈ (0...(♯‘𝑆)) ↔ (𝐹 ∈ (ℤ‘0) ∧ (♯‘𝑆) ∈ (ℤ𝐹)))
4133, 39, 40sylanbrc 583 . . . . . . 7 (𝜑𝐹 ∈ (0...(♯‘𝑆)))
42 pfxlen 14655 . . . . . . 7 ((𝑆 ∈ Word 𝐴𝐹 ∈ (0...(♯‘𝑆))) → (♯‘(𝑆 prefix 𝐹)) = 𝐹)
431, 41, 42syl2anc 584 . . . . . 6 (𝜑 → (♯‘(𝑆 prefix 𝐹)) = 𝐹)
4443oveq1d 7405 . . . . 5 (𝜑 → ((♯‘(𝑆 prefix 𝐹)) + (♯‘𝑅)) = (𝐹 + (♯‘𝑅)))
4521, 18addcomd 11383 . . . . 5 (𝜑 → (𝐹 + (♯‘𝑅)) = ((♯‘𝑅) + 𝐹))
4631, 44, 453eqtrd 2769 . . . 4 (𝜑 → (♯‘((𝑆 prefix 𝐹) ++ 𝑅)) = ((♯‘𝑅) + 𝐹))
47 elfzuz2 13497 . . . . . 6 (𝑇 ∈ (0...(♯‘𝑆)) → (♯‘𝑆) ∈ (ℤ‘0))
48 eluzfz2 13500 . . . . . 6 ((♯‘𝑆) ∈ (ℤ‘0) → (♯‘𝑆) ∈ (0...(♯‘𝑆)))
493, 47, 483syl 18 . . . . 5 (𝜑 → (♯‘𝑆) ∈ (0...(♯‘𝑆)))
50 swrdlen 14619 . . . . 5 ((𝑆 ∈ Word 𝐴𝑇 ∈ (0...(♯‘𝑆)) ∧ (♯‘𝑆) ∈ (0...(♯‘𝑆))) → (♯‘(𝑆 substr ⟨𝑇, (♯‘𝑆)⟩)) = ((♯‘𝑆) − 𝑇))
511, 3, 49, 50syl3anc 1373 . . . 4 (𝜑 → (♯‘(𝑆 substr ⟨𝑇, (♯‘𝑆)⟩)) = ((♯‘𝑆) − 𝑇))
5246, 51oveq12d 7408 . . 3 (𝜑 → ((♯‘((𝑆 prefix 𝐹) ++ 𝑅)) + (♯‘(𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))) = (((♯‘𝑅) + 𝐹) + ((♯‘𝑆) − 𝑇)))
5318, 28, 21subsub3d 11570 . . . 4 (𝜑 → ((♯‘𝑅) − (𝑇𝐹)) = (((♯‘𝑅) + 𝐹) − 𝑇))
5453oveq2d 7406 . . 3 (𝜑 → ((♯‘𝑆) + ((♯‘𝑅) − (𝑇𝐹))) = ((♯‘𝑆) + (((♯‘𝑅) + 𝐹) − 𝑇)))
5529, 52, 543eqtr4d 2775 . 2 (𝜑 → ((♯‘((𝑆 prefix 𝐹) ++ 𝑅)) + (♯‘(𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))) = ((♯‘𝑆) + ((♯‘𝑅) − (𝑇𝐹))))
567, 15, 553eqtrd 2769 1 (𝜑 → (♯‘(𝑆 splice ⟨𝐹, 𝑇, 𝑅⟩)) = ((♯‘𝑆) + ((♯‘𝑅) − (𝑇𝐹))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cop 4598  cotp 4600  cfv 6514  (class class class)co 7390  cc 11073  0cc0 11075   + caddc 11078  cmin 11412  cuz 12800  ...cfz 13475  chash 14302  Word cword 14485   ++ cconcat 14542   substr csubstr 14612   prefix cpfx 14642   splice csplice 14721
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-ot 4601  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-fzo 13623  df-hash 14303  df-word 14486  df-concat 14543  df-substr 14613  df-pfx 14643  df-splice 14722
This theorem is referenced by:  psgnunilem2  19432  efgtlen  19663
  Copyright terms: Public domain W3C validator