MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  spllen Structured version   Visualization version   GIF version

Theorem spllen 14678
Description: The length of a splice. (Contributed by Stefan O'Rear, 23-Aug-2015.) (Proof shortened by AV, 15-Oct-2022.)
Hypotheses
Ref Expression
spllen.s (𝜑𝑆 ∈ Word 𝐴)
spllen.f (𝜑𝐹 ∈ (0...𝑇))
spllen.t (𝜑𝑇 ∈ (0...(♯‘𝑆)))
spllen.r (𝜑𝑅 ∈ Word 𝐴)
Assertion
Ref Expression
spllen (𝜑 → (♯‘(𝑆 splice ⟨𝐹, 𝑇, 𝑅⟩)) = ((♯‘𝑆) + ((♯‘𝑅) − (𝑇𝐹))))

Proof of Theorem spllen
StepHypRef Expression
1 spllen.s . . . 4 (𝜑𝑆 ∈ Word 𝐴)
2 spllen.f . . . 4 (𝜑𝐹 ∈ (0...𝑇))
3 spllen.t . . . 4 (𝜑𝑇 ∈ (0...(♯‘𝑆)))
4 spllen.r . . . 4 (𝜑𝑅 ∈ Word 𝐴)
5 splval 14675 . . . 4 ((𝑆 ∈ Word 𝐴 ∧ (𝐹 ∈ (0...𝑇) ∧ 𝑇 ∈ (0...(♯‘𝑆)) ∧ 𝑅 ∈ Word 𝐴)) → (𝑆 splice ⟨𝐹, 𝑇, 𝑅⟩) = (((𝑆 prefix 𝐹) ++ 𝑅) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩)))
61, 2, 3, 4, 5syl13anc 1374 . . 3 (𝜑 → (𝑆 splice ⟨𝐹, 𝑇, 𝑅⟩) = (((𝑆 prefix 𝐹) ++ 𝑅) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩)))
76fveq2d 6830 . 2 (𝜑 → (♯‘(𝑆 splice ⟨𝐹, 𝑇, 𝑅⟩)) = (♯‘(((𝑆 prefix 𝐹) ++ 𝑅) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))))
8 pfxcl 14602 . . . . 5 (𝑆 ∈ Word 𝐴 → (𝑆 prefix 𝐹) ∈ Word 𝐴)
91, 8syl 17 . . . 4 (𝜑 → (𝑆 prefix 𝐹) ∈ Word 𝐴)
10 ccatcl 14499 . . . 4 (((𝑆 prefix 𝐹) ∈ Word 𝐴𝑅 ∈ Word 𝐴) → ((𝑆 prefix 𝐹) ++ 𝑅) ∈ Word 𝐴)
119, 4, 10syl2anc 584 . . 3 (𝜑 → ((𝑆 prefix 𝐹) ++ 𝑅) ∈ Word 𝐴)
12 swrdcl 14570 . . . 4 (𝑆 ∈ Word 𝐴 → (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩) ∈ Word 𝐴)
131, 12syl 17 . . 3 (𝜑 → (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩) ∈ Word 𝐴)
14 ccatlen 14500 . . 3 ((((𝑆 prefix 𝐹) ++ 𝑅) ∈ Word 𝐴 ∧ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩) ∈ Word 𝐴) → (♯‘(((𝑆 prefix 𝐹) ++ 𝑅) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))) = ((♯‘((𝑆 prefix 𝐹) ++ 𝑅)) + (♯‘(𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))))
1511, 13, 14syl2anc 584 . 2 (𝜑 → (♯‘(((𝑆 prefix 𝐹) ++ 𝑅) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))) = ((♯‘((𝑆 prefix 𝐹) ++ 𝑅)) + (♯‘(𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))))
16 lencl 14458 . . . . . . 7 (𝑅 ∈ Word 𝐴 → (♯‘𝑅) ∈ ℕ0)
1716nn0cnd 12465 . . . . . 6 (𝑅 ∈ Word 𝐴 → (♯‘𝑅) ∈ ℂ)
184, 17syl 17 . . . . 5 (𝜑 → (♯‘𝑅) ∈ ℂ)
19 elfzelz 13445 . . . . . . 7 (𝐹 ∈ (0...𝑇) → 𝐹 ∈ ℤ)
2019zcnd 12599 . . . . . 6 (𝐹 ∈ (0...𝑇) → 𝐹 ∈ ℂ)
212, 20syl 17 . . . . 5 (𝜑𝐹 ∈ ℂ)
2218, 21addcld 11153 . . . 4 (𝜑 → ((♯‘𝑅) + 𝐹) ∈ ℂ)
23 elfzel2 13443 . . . . . 6 (𝑇 ∈ (0...(♯‘𝑆)) → (♯‘𝑆) ∈ ℤ)
2423zcnd 12599 . . . . 5 (𝑇 ∈ (0...(♯‘𝑆)) → (♯‘𝑆) ∈ ℂ)
253, 24syl 17 . . . 4 (𝜑 → (♯‘𝑆) ∈ ℂ)
26 elfzelz 13445 . . . . . 6 (𝑇 ∈ (0...(♯‘𝑆)) → 𝑇 ∈ ℤ)
2726zcnd 12599 . . . . 5 (𝑇 ∈ (0...(♯‘𝑆)) → 𝑇 ∈ ℂ)
283, 27syl 17 . . . 4 (𝜑𝑇 ∈ ℂ)
2922, 25, 28addsub12d 11516 . . 3 (𝜑 → (((♯‘𝑅) + 𝐹) + ((♯‘𝑆) − 𝑇)) = ((♯‘𝑆) + (((♯‘𝑅) + 𝐹) − 𝑇)))
30 ccatlen 14500 . . . . . 6 (((𝑆 prefix 𝐹) ∈ Word 𝐴𝑅 ∈ Word 𝐴) → (♯‘((𝑆 prefix 𝐹) ++ 𝑅)) = ((♯‘(𝑆 prefix 𝐹)) + (♯‘𝑅)))
319, 4, 30syl2anc 584 . . . . 5 (𝜑 → (♯‘((𝑆 prefix 𝐹) ++ 𝑅)) = ((♯‘(𝑆 prefix 𝐹)) + (♯‘𝑅)))
32 elfzuz 13441 . . . . . . . . 9 (𝐹 ∈ (0...𝑇) → 𝐹 ∈ (ℤ‘0))
332, 32syl 17 . . . . . . . 8 (𝜑𝐹 ∈ (ℤ‘0))
34 elfzuz3 13442 . . . . . . . . . 10 (𝑇 ∈ (0...(♯‘𝑆)) → (♯‘𝑆) ∈ (ℤ𝑇))
353, 34syl 17 . . . . . . . . 9 (𝜑 → (♯‘𝑆) ∈ (ℤ𝑇))
36 elfzuz3 13442 . . . . . . . . . 10 (𝐹 ∈ (0...𝑇) → 𝑇 ∈ (ℤ𝐹))
372, 36syl 17 . . . . . . . . 9 (𝜑𝑇 ∈ (ℤ𝐹))
38 uztrn 12771 . . . . . . . . 9 (((♯‘𝑆) ∈ (ℤ𝑇) ∧ 𝑇 ∈ (ℤ𝐹)) → (♯‘𝑆) ∈ (ℤ𝐹))
3935, 37, 38syl2anc 584 . . . . . . . 8 (𝜑 → (♯‘𝑆) ∈ (ℤ𝐹))
40 elfzuzb 13439 . . . . . . . 8 (𝐹 ∈ (0...(♯‘𝑆)) ↔ (𝐹 ∈ (ℤ‘0) ∧ (♯‘𝑆) ∈ (ℤ𝐹)))
4133, 39, 40sylanbrc 583 . . . . . . 7 (𝜑𝐹 ∈ (0...(♯‘𝑆)))
42 pfxlen 14608 . . . . . . 7 ((𝑆 ∈ Word 𝐴𝐹 ∈ (0...(♯‘𝑆))) → (♯‘(𝑆 prefix 𝐹)) = 𝐹)
431, 41, 42syl2anc 584 . . . . . 6 (𝜑 → (♯‘(𝑆 prefix 𝐹)) = 𝐹)
4443oveq1d 7368 . . . . 5 (𝜑 → ((♯‘(𝑆 prefix 𝐹)) + (♯‘𝑅)) = (𝐹 + (♯‘𝑅)))
4521, 18addcomd 11336 . . . . 5 (𝜑 → (𝐹 + (♯‘𝑅)) = ((♯‘𝑅) + 𝐹))
4631, 44, 453eqtrd 2768 . . . 4 (𝜑 → (♯‘((𝑆 prefix 𝐹) ++ 𝑅)) = ((♯‘𝑅) + 𝐹))
47 elfzuz2 13450 . . . . . 6 (𝑇 ∈ (0...(♯‘𝑆)) → (♯‘𝑆) ∈ (ℤ‘0))
48 eluzfz2 13453 . . . . . 6 ((♯‘𝑆) ∈ (ℤ‘0) → (♯‘𝑆) ∈ (0...(♯‘𝑆)))
493, 47, 483syl 18 . . . . 5 (𝜑 → (♯‘𝑆) ∈ (0...(♯‘𝑆)))
50 swrdlen 14572 . . . . 5 ((𝑆 ∈ Word 𝐴𝑇 ∈ (0...(♯‘𝑆)) ∧ (♯‘𝑆) ∈ (0...(♯‘𝑆))) → (♯‘(𝑆 substr ⟨𝑇, (♯‘𝑆)⟩)) = ((♯‘𝑆) − 𝑇))
511, 3, 49, 50syl3anc 1373 . . . 4 (𝜑 → (♯‘(𝑆 substr ⟨𝑇, (♯‘𝑆)⟩)) = ((♯‘𝑆) − 𝑇))
5246, 51oveq12d 7371 . . 3 (𝜑 → ((♯‘((𝑆 prefix 𝐹) ++ 𝑅)) + (♯‘(𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))) = (((♯‘𝑅) + 𝐹) + ((♯‘𝑆) − 𝑇)))
5318, 28, 21subsub3d 11523 . . . 4 (𝜑 → ((♯‘𝑅) − (𝑇𝐹)) = (((♯‘𝑅) + 𝐹) − 𝑇))
5453oveq2d 7369 . . 3 (𝜑 → ((♯‘𝑆) + ((♯‘𝑅) − (𝑇𝐹))) = ((♯‘𝑆) + (((♯‘𝑅) + 𝐹) − 𝑇)))
5529, 52, 543eqtr4d 2774 . 2 (𝜑 → ((♯‘((𝑆 prefix 𝐹) ++ 𝑅)) + (♯‘(𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))) = ((♯‘𝑆) + ((♯‘𝑅) − (𝑇𝐹))))
567, 15, 553eqtrd 2768 1 (𝜑 → (♯‘(𝑆 splice ⟨𝐹, 𝑇, 𝑅⟩)) = ((♯‘𝑆) + ((♯‘𝑅) − (𝑇𝐹))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cop 4585  cotp 4587  cfv 6486  (class class class)co 7353  cc 11026  0cc0 11028   + caddc 11031  cmin 11365  cuz 12753  ...cfz 13428  chash 14255  Word cword 14438   ++ cconcat 14495   substr csubstr 14565   prefix cpfx 14595   splice csplice 14673
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-ot 4588  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-n0 12403  df-z 12490  df-uz 12754  df-fz 13429  df-fzo 13576  df-hash 14256  df-word 14439  df-concat 14496  df-substr 14566  df-pfx 14596  df-splice 14674
This theorem is referenced by:  psgnunilem2  19392  efgtlen  19623
  Copyright terms: Public domain W3C validator