MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  spllen Structured version   Visualization version   GIF version

Theorem spllen 14467
Description: The length of a splice. (Contributed by Stefan O'Rear, 23-Aug-2015.) (Proof shortened by AV, 15-Oct-2022.)
Hypotheses
Ref Expression
spllen.s (𝜑𝑆 ∈ Word 𝐴)
spllen.f (𝜑𝐹 ∈ (0...𝑇))
spllen.t (𝜑𝑇 ∈ (0...(♯‘𝑆)))
spllen.r (𝜑𝑅 ∈ Word 𝐴)
Assertion
Ref Expression
spllen (𝜑 → (♯‘(𝑆 splice ⟨𝐹, 𝑇, 𝑅⟩)) = ((♯‘𝑆) + ((♯‘𝑅) − (𝑇𝐹))))

Proof of Theorem spllen
StepHypRef Expression
1 spllen.s . . . 4 (𝜑𝑆 ∈ Word 𝐴)
2 spllen.f . . . 4 (𝜑𝐹 ∈ (0...𝑇))
3 spllen.t . . . 4 (𝜑𝑇 ∈ (0...(♯‘𝑆)))
4 spllen.r . . . 4 (𝜑𝑅 ∈ Word 𝐴)
5 splval 14464 . . . 4 ((𝑆 ∈ Word 𝐴 ∧ (𝐹 ∈ (0...𝑇) ∧ 𝑇 ∈ (0...(♯‘𝑆)) ∧ 𝑅 ∈ Word 𝐴)) → (𝑆 splice ⟨𝐹, 𝑇, 𝑅⟩) = (((𝑆 prefix 𝐹) ++ 𝑅) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩)))
61, 2, 3, 4, 5syl13anc 1371 . . 3 (𝜑 → (𝑆 splice ⟨𝐹, 𝑇, 𝑅⟩) = (((𝑆 prefix 𝐹) ++ 𝑅) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩)))
76fveq2d 6778 . 2 (𝜑 → (♯‘(𝑆 splice ⟨𝐹, 𝑇, 𝑅⟩)) = (♯‘(((𝑆 prefix 𝐹) ++ 𝑅) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))))
8 pfxcl 14390 . . . . 5 (𝑆 ∈ Word 𝐴 → (𝑆 prefix 𝐹) ∈ Word 𝐴)
91, 8syl 17 . . . 4 (𝜑 → (𝑆 prefix 𝐹) ∈ Word 𝐴)
10 ccatcl 14277 . . . 4 (((𝑆 prefix 𝐹) ∈ Word 𝐴𝑅 ∈ Word 𝐴) → ((𝑆 prefix 𝐹) ++ 𝑅) ∈ Word 𝐴)
119, 4, 10syl2anc 584 . . 3 (𝜑 → ((𝑆 prefix 𝐹) ++ 𝑅) ∈ Word 𝐴)
12 swrdcl 14358 . . . 4 (𝑆 ∈ Word 𝐴 → (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩) ∈ Word 𝐴)
131, 12syl 17 . . 3 (𝜑 → (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩) ∈ Word 𝐴)
14 ccatlen 14278 . . 3 ((((𝑆 prefix 𝐹) ++ 𝑅) ∈ Word 𝐴 ∧ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩) ∈ Word 𝐴) → (♯‘(((𝑆 prefix 𝐹) ++ 𝑅) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))) = ((♯‘((𝑆 prefix 𝐹) ++ 𝑅)) + (♯‘(𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))))
1511, 13, 14syl2anc 584 . 2 (𝜑 → (♯‘(((𝑆 prefix 𝐹) ++ 𝑅) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))) = ((♯‘((𝑆 prefix 𝐹) ++ 𝑅)) + (♯‘(𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))))
16 lencl 14236 . . . . . . 7 (𝑅 ∈ Word 𝐴 → (♯‘𝑅) ∈ ℕ0)
1716nn0cnd 12295 . . . . . 6 (𝑅 ∈ Word 𝐴 → (♯‘𝑅) ∈ ℂ)
184, 17syl 17 . . . . 5 (𝜑 → (♯‘𝑅) ∈ ℂ)
19 elfzelz 13256 . . . . . . 7 (𝐹 ∈ (0...𝑇) → 𝐹 ∈ ℤ)
2019zcnd 12427 . . . . . 6 (𝐹 ∈ (0...𝑇) → 𝐹 ∈ ℂ)
212, 20syl 17 . . . . 5 (𝜑𝐹 ∈ ℂ)
2218, 21addcld 10994 . . . 4 (𝜑 → ((♯‘𝑅) + 𝐹) ∈ ℂ)
23 elfzel2 13254 . . . . . 6 (𝑇 ∈ (0...(♯‘𝑆)) → (♯‘𝑆) ∈ ℤ)
2423zcnd 12427 . . . . 5 (𝑇 ∈ (0...(♯‘𝑆)) → (♯‘𝑆) ∈ ℂ)
253, 24syl 17 . . . 4 (𝜑 → (♯‘𝑆) ∈ ℂ)
26 elfzelz 13256 . . . . . 6 (𝑇 ∈ (0...(♯‘𝑆)) → 𝑇 ∈ ℤ)
2726zcnd 12427 . . . . 5 (𝑇 ∈ (0...(♯‘𝑆)) → 𝑇 ∈ ℂ)
283, 27syl 17 . . . 4 (𝜑𝑇 ∈ ℂ)
2922, 25, 28addsub12d 11355 . . 3 (𝜑 → (((♯‘𝑅) + 𝐹) + ((♯‘𝑆) − 𝑇)) = ((♯‘𝑆) + (((♯‘𝑅) + 𝐹) − 𝑇)))
30 ccatlen 14278 . . . . . 6 (((𝑆 prefix 𝐹) ∈ Word 𝐴𝑅 ∈ Word 𝐴) → (♯‘((𝑆 prefix 𝐹) ++ 𝑅)) = ((♯‘(𝑆 prefix 𝐹)) + (♯‘𝑅)))
319, 4, 30syl2anc 584 . . . . 5 (𝜑 → (♯‘((𝑆 prefix 𝐹) ++ 𝑅)) = ((♯‘(𝑆 prefix 𝐹)) + (♯‘𝑅)))
32 elfzuz 13252 . . . . . . . . 9 (𝐹 ∈ (0...𝑇) → 𝐹 ∈ (ℤ‘0))
332, 32syl 17 . . . . . . . 8 (𝜑𝐹 ∈ (ℤ‘0))
34 elfzuz3 13253 . . . . . . . . . 10 (𝑇 ∈ (0...(♯‘𝑆)) → (♯‘𝑆) ∈ (ℤ𝑇))
353, 34syl 17 . . . . . . . . 9 (𝜑 → (♯‘𝑆) ∈ (ℤ𝑇))
36 elfzuz3 13253 . . . . . . . . . 10 (𝐹 ∈ (0...𝑇) → 𝑇 ∈ (ℤ𝐹))
372, 36syl 17 . . . . . . . . 9 (𝜑𝑇 ∈ (ℤ𝐹))
38 uztrn 12600 . . . . . . . . 9 (((♯‘𝑆) ∈ (ℤ𝑇) ∧ 𝑇 ∈ (ℤ𝐹)) → (♯‘𝑆) ∈ (ℤ𝐹))
3935, 37, 38syl2anc 584 . . . . . . . 8 (𝜑 → (♯‘𝑆) ∈ (ℤ𝐹))
40 elfzuzb 13250 . . . . . . . 8 (𝐹 ∈ (0...(♯‘𝑆)) ↔ (𝐹 ∈ (ℤ‘0) ∧ (♯‘𝑆) ∈ (ℤ𝐹)))
4133, 39, 40sylanbrc 583 . . . . . . 7 (𝜑𝐹 ∈ (0...(♯‘𝑆)))
42 pfxlen 14396 . . . . . . 7 ((𝑆 ∈ Word 𝐴𝐹 ∈ (0...(♯‘𝑆))) → (♯‘(𝑆 prefix 𝐹)) = 𝐹)
431, 41, 42syl2anc 584 . . . . . 6 (𝜑 → (♯‘(𝑆 prefix 𝐹)) = 𝐹)
4443oveq1d 7290 . . . . 5 (𝜑 → ((♯‘(𝑆 prefix 𝐹)) + (♯‘𝑅)) = (𝐹 + (♯‘𝑅)))
4521, 18addcomd 11177 . . . . 5 (𝜑 → (𝐹 + (♯‘𝑅)) = ((♯‘𝑅) + 𝐹))
4631, 44, 453eqtrd 2782 . . . 4 (𝜑 → (♯‘((𝑆 prefix 𝐹) ++ 𝑅)) = ((♯‘𝑅) + 𝐹))
47 elfzuz2 13261 . . . . . 6 (𝑇 ∈ (0...(♯‘𝑆)) → (♯‘𝑆) ∈ (ℤ‘0))
48 eluzfz2 13264 . . . . . 6 ((♯‘𝑆) ∈ (ℤ‘0) → (♯‘𝑆) ∈ (0...(♯‘𝑆)))
493, 47, 483syl 18 . . . . 5 (𝜑 → (♯‘𝑆) ∈ (0...(♯‘𝑆)))
50 swrdlen 14360 . . . . 5 ((𝑆 ∈ Word 𝐴𝑇 ∈ (0...(♯‘𝑆)) ∧ (♯‘𝑆) ∈ (0...(♯‘𝑆))) → (♯‘(𝑆 substr ⟨𝑇, (♯‘𝑆)⟩)) = ((♯‘𝑆) − 𝑇))
511, 3, 49, 50syl3anc 1370 . . . 4 (𝜑 → (♯‘(𝑆 substr ⟨𝑇, (♯‘𝑆)⟩)) = ((♯‘𝑆) − 𝑇))
5246, 51oveq12d 7293 . . 3 (𝜑 → ((♯‘((𝑆 prefix 𝐹) ++ 𝑅)) + (♯‘(𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))) = (((♯‘𝑅) + 𝐹) + ((♯‘𝑆) − 𝑇)))
5318, 28, 21subsub3d 11362 . . . 4 (𝜑 → ((♯‘𝑅) − (𝑇𝐹)) = (((♯‘𝑅) + 𝐹) − 𝑇))
5453oveq2d 7291 . . 3 (𝜑 → ((♯‘𝑆) + ((♯‘𝑅) − (𝑇𝐹))) = ((♯‘𝑆) + (((♯‘𝑅) + 𝐹) − 𝑇)))
5529, 52, 543eqtr4d 2788 . 2 (𝜑 → ((♯‘((𝑆 prefix 𝐹) ++ 𝑅)) + (♯‘(𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))) = ((♯‘𝑆) + ((♯‘𝑅) − (𝑇𝐹))))
567, 15, 553eqtrd 2782 1 (𝜑 → (♯‘(𝑆 splice ⟨𝐹, 𝑇, 𝑅⟩)) = ((♯‘𝑆) + ((♯‘𝑅) − (𝑇𝐹))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  cop 4567  cotp 4569  cfv 6433  (class class class)co 7275  cc 10869  0cc0 10871   + caddc 10874  cmin 11205  cuz 12582  ...cfz 13239  chash 14044  Word cword 14217   ++ cconcat 14273   substr csubstr 14353   prefix cpfx 14383   splice csplice 14462
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-ot 4570  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-fzo 13383  df-hash 14045  df-word 14218  df-concat 14274  df-substr 14354  df-pfx 14384  df-splice 14463
This theorem is referenced by:  psgnunilem2  19103  efgtlen  19332
  Copyright terms: Public domain W3C validator