MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  splfv1 Structured version   Visualization version   GIF version

Theorem splfv1 14705
Description: Symbols to the left of a splice are unaffected. (Contributed by Stefan O'Rear, 23-Aug-2015.) (Proof shortened by AV, 15-Oct-2022.)
Hypotheses
Ref Expression
spllen.s (𝜑𝑆 ∈ Word 𝐴)
spllen.f (𝜑𝐹 ∈ (0...𝑇))
spllen.t (𝜑𝑇 ∈ (0...(♯‘𝑆)))
spllen.r (𝜑𝑅 ∈ Word 𝐴)
splfv1.x (𝜑𝑋 ∈ (0..^𝐹))
Assertion
Ref Expression
splfv1 (𝜑 → ((𝑆 splice ⟨𝐹, 𝑇, 𝑅⟩)‘𝑋) = (𝑆𝑋))

Proof of Theorem splfv1
StepHypRef Expression
1 spllen.s . . . 4 (𝜑𝑆 ∈ Word 𝐴)
2 spllen.f . . . 4 (𝜑𝐹 ∈ (0...𝑇))
3 spllen.t . . . 4 (𝜑𝑇 ∈ (0...(♯‘𝑆)))
4 spllen.r . . . 4 (𝜑𝑅 ∈ Word 𝐴)
5 splval 14701 . . . 4 ((𝑆 ∈ Word 𝐴 ∧ (𝐹 ∈ (0...𝑇) ∧ 𝑇 ∈ (0...(♯‘𝑆)) ∧ 𝑅 ∈ Word 𝐴)) → (𝑆 splice ⟨𝐹, 𝑇, 𝑅⟩) = (((𝑆 prefix 𝐹) ++ 𝑅) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩)))
61, 2, 3, 4, 5syl13anc 1373 . . 3 (𝜑 → (𝑆 splice ⟨𝐹, 𝑇, 𝑅⟩) = (((𝑆 prefix 𝐹) ++ 𝑅) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩)))
76fveq1d 6894 . 2 (𝜑 → ((𝑆 splice ⟨𝐹, 𝑇, 𝑅⟩)‘𝑋) = ((((𝑆 prefix 𝐹) ++ 𝑅) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))‘𝑋))
8 pfxcl 14627 . . . . 5 (𝑆 ∈ Word 𝐴 → (𝑆 prefix 𝐹) ∈ Word 𝐴)
91, 8syl 17 . . . 4 (𝜑 → (𝑆 prefix 𝐹) ∈ Word 𝐴)
10 ccatcl 14524 . . . 4 (((𝑆 prefix 𝐹) ∈ Word 𝐴𝑅 ∈ Word 𝐴) → ((𝑆 prefix 𝐹) ++ 𝑅) ∈ Word 𝐴)
119, 4, 10syl2anc 585 . . 3 (𝜑 → ((𝑆 prefix 𝐹) ++ 𝑅) ∈ Word 𝐴)
12 swrdcl 14595 . . . 4 (𝑆 ∈ Word 𝐴 → (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩) ∈ Word 𝐴)
131, 12syl 17 . . 3 (𝜑 → (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩) ∈ Word 𝐴)
142elfzelzd 13502 . . . . . . . 8 (𝜑𝐹 ∈ ℤ)
1514uzidd 12838 . . . . . . 7 (𝜑𝐹 ∈ (ℤ𝐹))
16 lencl 14483 . . . . . . . 8 (𝑅 ∈ Word 𝐴 → (♯‘𝑅) ∈ ℕ0)
174, 16syl 17 . . . . . . 7 (𝜑 → (♯‘𝑅) ∈ ℕ0)
18 uzaddcl 12888 . . . . . . 7 ((𝐹 ∈ (ℤ𝐹) ∧ (♯‘𝑅) ∈ ℕ0) → (𝐹 + (♯‘𝑅)) ∈ (ℤ𝐹))
1915, 17, 18syl2anc 585 . . . . . 6 (𝜑 → (𝐹 + (♯‘𝑅)) ∈ (ℤ𝐹))
20 fzoss2 13660 . . . . . 6 ((𝐹 + (♯‘𝑅)) ∈ (ℤ𝐹) → (0..^𝐹) ⊆ (0..^(𝐹 + (♯‘𝑅))))
2119, 20syl 17 . . . . 5 (𝜑 → (0..^𝐹) ⊆ (0..^(𝐹 + (♯‘𝑅))))
22 splfv1.x . . . . 5 (𝜑𝑋 ∈ (0..^𝐹))
2321, 22sseldd 3984 . . . 4 (𝜑𝑋 ∈ (0..^(𝐹 + (♯‘𝑅))))
24 ccatlen 14525 . . . . . . 7 (((𝑆 prefix 𝐹) ∈ Word 𝐴𝑅 ∈ Word 𝐴) → (♯‘((𝑆 prefix 𝐹) ++ 𝑅)) = ((♯‘(𝑆 prefix 𝐹)) + (♯‘𝑅)))
259, 4, 24syl2anc 585 . . . . . 6 (𝜑 → (♯‘((𝑆 prefix 𝐹) ++ 𝑅)) = ((♯‘(𝑆 prefix 𝐹)) + (♯‘𝑅)))
26 fzass4 13539 . . . . . . . . . . 11 ((𝐹 ∈ (0...(♯‘𝑆)) ∧ 𝑇 ∈ (𝐹...(♯‘𝑆))) ↔ (𝐹 ∈ (0...𝑇) ∧ 𝑇 ∈ (0...(♯‘𝑆))))
2726biimpri 227 . . . . . . . . . 10 ((𝐹 ∈ (0...𝑇) ∧ 𝑇 ∈ (0...(♯‘𝑆))) → (𝐹 ∈ (0...(♯‘𝑆)) ∧ 𝑇 ∈ (𝐹...(♯‘𝑆))))
2827simpld 496 . . . . . . . . 9 ((𝐹 ∈ (0...𝑇) ∧ 𝑇 ∈ (0...(♯‘𝑆))) → 𝐹 ∈ (0...(♯‘𝑆)))
292, 3, 28syl2anc 585 . . . . . . . 8 (𝜑𝐹 ∈ (0...(♯‘𝑆)))
30 pfxlen 14633 . . . . . . . 8 ((𝑆 ∈ Word 𝐴𝐹 ∈ (0...(♯‘𝑆))) → (♯‘(𝑆 prefix 𝐹)) = 𝐹)
311, 29, 30syl2anc 585 . . . . . . 7 (𝜑 → (♯‘(𝑆 prefix 𝐹)) = 𝐹)
3231oveq1d 7424 . . . . . 6 (𝜑 → ((♯‘(𝑆 prefix 𝐹)) + (♯‘𝑅)) = (𝐹 + (♯‘𝑅)))
3325, 32eqtrd 2773 . . . . 5 (𝜑 → (♯‘((𝑆 prefix 𝐹) ++ 𝑅)) = (𝐹 + (♯‘𝑅)))
3433oveq2d 7425 . . . 4 (𝜑 → (0..^(♯‘((𝑆 prefix 𝐹) ++ 𝑅))) = (0..^(𝐹 + (♯‘𝑅))))
3523, 34eleqtrrd 2837 . . 3 (𝜑𝑋 ∈ (0..^(♯‘((𝑆 prefix 𝐹) ++ 𝑅))))
36 ccatval1 14527 . . 3 ((((𝑆 prefix 𝐹) ++ 𝑅) ∈ Word 𝐴 ∧ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩) ∈ Word 𝐴𝑋 ∈ (0..^(♯‘((𝑆 prefix 𝐹) ++ 𝑅)))) → ((((𝑆 prefix 𝐹) ++ 𝑅) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))‘𝑋) = (((𝑆 prefix 𝐹) ++ 𝑅)‘𝑋))
3711, 13, 35, 36syl3anc 1372 . 2 (𝜑 → ((((𝑆 prefix 𝐹) ++ 𝑅) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))‘𝑋) = (((𝑆 prefix 𝐹) ++ 𝑅)‘𝑋))
3831oveq2d 7425 . . . . 5 (𝜑 → (0..^(♯‘(𝑆 prefix 𝐹))) = (0..^𝐹))
3922, 38eleqtrrd 2837 . . . 4 (𝜑𝑋 ∈ (0..^(♯‘(𝑆 prefix 𝐹))))
40 ccatval1 14527 . . . 4 (((𝑆 prefix 𝐹) ∈ Word 𝐴𝑅 ∈ Word 𝐴𝑋 ∈ (0..^(♯‘(𝑆 prefix 𝐹)))) → (((𝑆 prefix 𝐹) ++ 𝑅)‘𝑋) = ((𝑆 prefix 𝐹)‘𝑋))
419, 4, 39, 40syl3anc 1372 . . 3 (𝜑 → (((𝑆 prefix 𝐹) ++ 𝑅)‘𝑋) = ((𝑆 prefix 𝐹)‘𝑋))
42 pfxfv 14632 . . . 4 ((𝑆 ∈ Word 𝐴𝐹 ∈ (0...(♯‘𝑆)) ∧ 𝑋 ∈ (0..^𝐹)) → ((𝑆 prefix 𝐹)‘𝑋) = (𝑆𝑋))
431, 29, 22, 42syl3anc 1372 . . 3 (𝜑 → ((𝑆 prefix 𝐹)‘𝑋) = (𝑆𝑋))
4441, 43eqtrd 2773 . 2 (𝜑 → (((𝑆 prefix 𝐹) ++ 𝑅)‘𝑋) = (𝑆𝑋))
457, 37, 443eqtrd 2777 1 (𝜑 → ((𝑆 splice ⟨𝐹, 𝑇, 𝑅⟩)‘𝑋) = (𝑆𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  wss 3949  cop 4635  cotp 4637  cfv 6544  (class class class)co 7409  0cc0 11110   + caddc 11113  0cn0 12472  cuz 12822  ...cfz 13484  ..^cfzo 13627  chash 14290  Word cword 14464   ++ cconcat 14520   substr csubstr 14590   prefix cpfx 14620   splice csplice 14699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-ot 4638  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-fin 8943  df-card 9934  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-nn 12213  df-n0 12473  df-z 12559  df-uz 12823  df-fz 13485  df-fzo 13628  df-hash 14291  df-word 14465  df-concat 14521  df-substr 14591  df-pfx 14621  df-splice 14700
This theorem is referenced by:  psgnunilem2  19363  cycpmco2lem7  32322
  Copyright terms: Public domain W3C validator