MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  splfv1 Structured version   Visualization version   GIF version

Theorem splfv1 14679
Description: Symbols to the left of a splice are unaffected. (Contributed by Stefan O'Rear, 23-Aug-2015.) (Proof shortened by AV, 15-Oct-2022.)
Hypotheses
Ref Expression
spllen.s (𝜑𝑆 ∈ Word 𝐴)
spllen.f (𝜑𝐹 ∈ (0...𝑇))
spllen.t (𝜑𝑇 ∈ (0...(♯‘𝑆)))
spllen.r (𝜑𝑅 ∈ Word 𝐴)
splfv1.x (𝜑𝑋 ∈ (0..^𝐹))
Assertion
Ref Expression
splfv1 (𝜑 → ((𝑆 splice ⟨𝐹, 𝑇, 𝑅⟩)‘𝑋) = (𝑆𝑋))

Proof of Theorem splfv1
StepHypRef Expression
1 spllen.s . . . 4 (𝜑𝑆 ∈ Word 𝐴)
2 spllen.f . . . 4 (𝜑𝐹 ∈ (0...𝑇))
3 spllen.t . . . 4 (𝜑𝑇 ∈ (0...(♯‘𝑆)))
4 spllen.r . . . 4 (𝜑𝑅 ∈ Word 𝐴)
5 splval 14675 . . . 4 ((𝑆 ∈ Word 𝐴 ∧ (𝐹 ∈ (0...𝑇) ∧ 𝑇 ∈ (0...(♯‘𝑆)) ∧ 𝑅 ∈ Word 𝐴)) → (𝑆 splice ⟨𝐹, 𝑇, 𝑅⟩) = (((𝑆 prefix 𝐹) ++ 𝑅) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩)))
61, 2, 3, 4, 5syl13anc 1374 . . 3 (𝜑 → (𝑆 splice ⟨𝐹, 𝑇, 𝑅⟩) = (((𝑆 prefix 𝐹) ++ 𝑅) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩)))
76fveq1d 6828 . 2 (𝜑 → ((𝑆 splice ⟨𝐹, 𝑇, 𝑅⟩)‘𝑋) = ((((𝑆 prefix 𝐹) ++ 𝑅) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))‘𝑋))
8 pfxcl 14602 . . . . 5 (𝑆 ∈ Word 𝐴 → (𝑆 prefix 𝐹) ∈ Word 𝐴)
91, 8syl 17 . . . 4 (𝜑 → (𝑆 prefix 𝐹) ∈ Word 𝐴)
10 ccatcl 14499 . . . 4 (((𝑆 prefix 𝐹) ∈ Word 𝐴𝑅 ∈ Word 𝐴) → ((𝑆 prefix 𝐹) ++ 𝑅) ∈ Word 𝐴)
119, 4, 10syl2anc 584 . . 3 (𝜑 → ((𝑆 prefix 𝐹) ++ 𝑅) ∈ Word 𝐴)
12 swrdcl 14570 . . . 4 (𝑆 ∈ Word 𝐴 → (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩) ∈ Word 𝐴)
131, 12syl 17 . . 3 (𝜑 → (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩) ∈ Word 𝐴)
142elfzelzd 13446 . . . . . . . 8 (𝜑𝐹 ∈ ℤ)
1514uzidd 12769 . . . . . . 7 (𝜑𝐹 ∈ (ℤ𝐹))
16 lencl 14458 . . . . . . . 8 (𝑅 ∈ Word 𝐴 → (♯‘𝑅) ∈ ℕ0)
174, 16syl 17 . . . . . . 7 (𝜑 → (♯‘𝑅) ∈ ℕ0)
18 uzaddcl 12823 . . . . . . 7 ((𝐹 ∈ (ℤ𝐹) ∧ (♯‘𝑅) ∈ ℕ0) → (𝐹 + (♯‘𝑅)) ∈ (ℤ𝐹))
1915, 17, 18syl2anc 584 . . . . . 6 (𝜑 → (𝐹 + (♯‘𝑅)) ∈ (ℤ𝐹))
20 fzoss2 13608 . . . . . 6 ((𝐹 + (♯‘𝑅)) ∈ (ℤ𝐹) → (0..^𝐹) ⊆ (0..^(𝐹 + (♯‘𝑅))))
2119, 20syl 17 . . . . 5 (𝜑 → (0..^𝐹) ⊆ (0..^(𝐹 + (♯‘𝑅))))
22 splfv1.x . . . . 5 (𝜑𝑋 ∈ (0..^𝐹))
2321, 22sseldd 3938 . . . 4 (𝜑𝑋 ∈ (0..^(𝐹 + (♯‘𝑅))))
24 ccatlen 14500 . . . . . . 7 (((𝑆 prefix 𝐹) ∈ Word 𝐴𝑅 ∈ Word 𝐴) → (♯‘((𝑆 prefix 𝐹) ++ 𝑅)) = ((♯‘(𝑆 prefix 𝐹)) + (♯‘𝑅)))
259, 4, 24syl2anc 584 . . . . . 6 (𝜑 → (♯‘((𝑆 prefix 𝐹) ++ 𝑅)) = ((♯‘(𝑆 prefix 𝐹)) + (♯‘𝑅)))
26 fzass4 13483 . . . . . . . . . . 11 ((𝐹 ∈ (0...(♯‘𝑆)) ∧ 𝑇 ∈ (𝐹...(♯‘𝑆))) ↔ (𝐹 ∈ (0...𝑇) ∧ 𝑇 ∈ (0...(♯‘𝑆))))
2726biimpri 228 . . . . . . . . . 10 ((𝐹 ∈ (0...𝑇) ∧ 𝑇 ∈ (0...(♯‘𝑆))) → (𝐹 ∈ (0...(♯‘𝑆)) ∧ 𝑇 ∈ (𝐹...(♯‘𝑆))))
2827simpld 494 . . . . . . . . 9 ((𝐹 ∈ (0...𝑇) ∧ 𝑇 ∈ (0...(♯‘𝑆))) → 𝐹 ∈ (0...(♯‘𝑆)))
292, 3, 28syl2anc 584 . . . . . . . 8 (𝜑𝐹 ∈ (0...(♯‘𝑆)))
30 pfxlen 14608 . . . . . . . 8 ((𝑆 ∈ Word 𝐴𝐹 ∈ (0...(♯‘𝑆))) → (♯‘(𝑆 prefix 𝐹)) = 𝐹)
311, 29, 30syl2anc 584 . . . . . . 7 (𝜑 → (♯‘(𝑆 prefix 𝐹)) = 𝐹)
3231oveq1d 7368 . . . . . 6 (𝜑 → ((♯‘(𝑆 prefix 𝐹)) + (♯‘𝑅)) = (𝐹 + (♯‘𝑅)))
3325, 32eqtrd 2764 . . . . 5 (𝜑 → (♯‘((𝑆 prefix 𝐹) ++ 𝑅)) = (𝐹 + (♯‘𝑅)))
3433oveq2d 7369 . . . 4 (𝜑 → (0..^(♯‘((𝑆 prefix 𝐹) ++ 𝑅))) = (0..^(𝐹 + (♯‘𝑅))))
3523, 34eleqtrrd 2831 . . 3 (𝜑𝑋 ∈ (0..^(♯‘((𝑆 prefix 𝐹) ++ 𝑅))))
36 ccatval1 14502 . . 3 ((((𝑆 prefix 𝐹) ++ 𝑅) ∈ Word 𝐴 ∧ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩) ∈ Word 𝐴𝑋 ∈ (0..^(♯‘((𝑆 prefix 𝐹) ++ 𝑅)))) → ((((𝑆 prefix 𝐹) ++ 𝑅) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))‘𝑋) = (((𝑆 prefix 𝐹) ++ 𝑅)‘𝑋))
3711, 13, 35, 36syl3anc 1373 . 2 (𝜑 → ((((𝑆 prefix 𝐹) ++ 𝑅) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))‘𝑋) = (((𝑆 prefix 𝐹) ++ 𝑅)‘𝑋))
3831oveq2d 7369 . . . . 5 (𝜑 → (0..^(♯‘(𝑆 prefix 𝐹))) = (0..^𝐹))
3922, 38eleqtrrd 2831 . . . 4 (𝜑𝑋 ∈ (0..^(♯‘(𝑆 prefix 𝐹))))
40 ccatval1 14502 . . . 4 (((𝑆 prefix 𝐹) ∈ Word 𝐴𝑅 ∈ Word 𝐴𝑋 ∈ (0..^(♯‘(𝑆 prefix 𝐹)))) → (((𝑆 prefix 𝐹) ++ 𝑅)‘𝑋) = ((𝑆 prefix 𝐹)‘𝑋))
419, 4, 39, 40syl3anc 1373 . . 3 (𝜑 → (((𝑆 prefix 𝐹) ++ 𝑅)‘𝑋) = ((𝑆 prefix 𝐹)‘𝑋))
42 pfxfv 14607 . . . 4 ((𝑆 ∈ Word 𝐴𝐹 ∈ (0...(♯‘𝑆)) ∧ 𝑋 ∈ (0..^𝐹)) → ((𝑆 prefix 𝐹)‘𝑋) = (𝑆𝑋))
431, 29, 22, 42syl3anc 1373 . . 3 (𝜑 → ((𝑆 prefix 𝐹)‘𝑋) = (𝑆𝑋))
4441, 43eqtrd 2764 . 2 (𝜑 → (((𝑆 prefix 𝐹) ++ 𝑅)‘𝑋) = (𝑆𝑋))
457, 37, 443eqtrd 2768 1 (𝜑 → ((𝑆 splice ⟨𝐹, 𝑇, 𝑅⟩)‘𝑋) = (𝑆𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wss 3905  cop 4585  cotp 4587  cfv 6486  (class class class)co 7353  0cc0 11028   + caddc 11031  0cn0 12402  cuz 12753  ...cfz 13428  ..^cfzo 13575  chash 14255  Word cword 14438   ++ cconcat 14495   substr csubstr 14565   prefix cpfx 14595   splice csplice 14673
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-ot 4588  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-n0 12403  df-z 12490  df-uz 12754  df-fz 13429  df-fzo 13576  df-hash 14256  df-word 14439  df-concat 14496  df-substr 14566  df-pfx 14596  df-splice 14674
This theorem is referenced by:  psgnunilem2  19392  cycpmco2lem7  33087
  Copyright terms: Public domain W3C validator