MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  splfv1 Structured version   Visualization version   GIF version

Theorem splfv1 14662
Description: Symbols to the left of a splice are unaffected. (Contributed by Stefan O'Rear, 23-Aug-2015.) (Proof shortened by AV, 15-Oct-2022.)
Hypotheses
Ref Expression
spllen.s (𝜑𝑆 ∈ Word 𝐴)
spllen.f (𝜑𝐹 ∈ (0...𝑇))
spllen.t (𝜑𝑇 ∈ (0...(♯‘𝑆)))
spllen.r (𝜑𝑅 ∈ Word 𝐴)
splfv1.x (𝜑𝑋 ∈ (0..^𝐹))
Assertion
Ref Expression
splfv1 (𝜑 → ((𝑆 splice ⟨𝐹, 𝑇, 𝑅⟩)‘𝑋) = (𝑆𝑋))

Proof of Theorem splfv1
StepHypRef Expression
1 spllen.s . . . 4 (𝜑𝑆 ∈ Word 𝐴)
2 spllen.f . . . 4 (𝜑𝐹 ∈ (0...𝑇))
3 spllen.t . . . 4 (𝜑𝑇 ∈ (0...(♯‘𝑆)))
4 spllen.r . . . 4 (𝜑𝑅 ∈ Word 𝐴)
5 splval 14658 . . . 4 ((𝑆 ∈ Word 𝐴 ∧ (𝐹 ∈ (0...𝑇) ∧ 𝑇 ∈ (0...(♯‘𝑆)) ∧ 𝑅 ∈ Word 𝐴)) → (𝑆 splice ⟨𝐹, 𝑇, 𝑅⟩) = (((𝑆 prefix 𝐹) ++ 𝑅) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩)))
61, 2, 3, 4, 5syl13anc 1374 . . 3 (𝜑 → (𝑆 splice ⟨𝐹, 𝑇, 𝑅⟩) = (((𝑆 prefix 𝐹) ++ 𝑅) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩)))
76fveq1d 6824 . 2 (𝜑 → ((𝑆 splice ⟨𝐹, 𝑇, 𝑅⟩)‘𝑋) = ((((𝑆 prefix 𝐹) ++ 𝑅) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))‘𝑋))
8 pfxcl 14585 . . . . 5 (𝑆 ∈ Word 𝐴 → (𝑆 prefix 𝐹) ∈ Word 𝐴)
91, 8syl 17 . . . 4 (𝜑 → (𝑆 prefix 𝐹) ∈ Word 𝐴)
10 ccatcl 14481 . . . 4 (((𝑆 prefix 𝐹) ∈ Word 𝐴𝑅 ∈ Word 𝐴) → ((𝑆 prefix 𝐹) ++ 𝑅) ∈ Word 𝐴)
119, 4, 10syl2anc 584 . . 3 (𝜑 → ((𝑆 prefix 𝐹) ++ 𝑅) ∈ Word 𝐴)
12 swrdcl 14553 . . . 4 (𝑆 ∈ Word 𝐴 → (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩) ∈ Word 𝐴)
131, 12syl 17 . . 3 (𝜑 → (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩) ∈ Word 𝐴)
142elfzelzd 13425 . . . . . . . 8 (𝜑𝐹 ∈ ℤ)
1514uzidd 12748 . . . . . . 7 (𝜑𝐹 ∈ (ℤ𝐹))
16 lencl 14440 . . . . . . . 8 (𝑅 ∈ Word 𝐴 → (♯‘𝑅) ∈ ℕ0)
174, 16syl 17 . . . . . . 7 (𝜑 → (♯‘𝑅) ∈ ℕ0)
18 uzaddcl 12802 . . . . . . 7 ((𝐹 ∈ (ℤ𝐹) ∧ (♯‘𝑅) ∈ ℕ0) → (𝐹 + (♯‘𝑅)) ∈ (ℤ𝐹))
1915, 17, 18syl2anc 584 . . . . . 6 (𝜑 → (𝐹 + (♯‘𝑅)) ∈ (ℤ𝐹))
20 fzoss2 13587 . . . . . 6 ((𝐹 + (♯‘𝑅)) ∈ (ℤ𝐹) → (0..^𝐹) ⊆ (0..^(𝐹 + (♯‘𝑅))))
2119, 20syl 17 . . . . 5 (𝜑 → (0..^𝐹) ⊆ (0..^(𝐹 + (♯‘𝑅))))
22 splfv1.x . . . . 5 (𝜑𝑋 ∈ (0..^𝐹))
2321, 22sseldd 3935 . . . 4 (𝜑𝑋 ∈ (0..^(𝐹 + (♯‘𝑅))))
24 ccatlen 14482 . . . . . . 7 (((𝑆 prefix 𝐹) ∈ Word 𝐴𝑅 ∈ Word 𝐴) → (♯‘((𝑆 prefix 𝐹) ++ 𝑅)) = ((♯‘(𝑆 prefix 𝐹)) + (♯‘𝑅)))
259, 4, 24syl2anc 584 . . . . . 6 (𝜑 → (♯‘((𝑆 prefix 𝐹) ++ 𝑅)) = ((♯‘(𝑆 prefix 𝐹)) + (♯‘𝑅)))
26 fzass4 13462 . . . . . . . . . . 11 ((𝐹 ∈ (0...(♯‘𝑆)) ∧ 𝑇 ∈ (𝐹...(♯‘𝑆))) ↔ (𝐹 ∈ (0...𝑇) ∧ 𝑇 ∈ (0...(♯‘𝑆))))
2726biimpri 228 . . . . . . . . . 10 ((𝐹 ∈ (0...𝑇) ∧ 𝑇 ∈ (0...(♯‘𝑆))) → (𝐹 ∈ (0...(♯‘𝑆)) ∧ 𝑇 ∈ (𝐹...(♯‘𝑆))))
2827simpld 494 . . . . . . . . 9 ((𝐹 ∈ (0...𝑇) ∧ 𝑇 ∈ (0...(♯‘𝑆))) → 𝐹 ∈ (0...(♯‘𝑆)))
292, 3, 28syl2anc 584 . . . . . . . 8 (𝜑𝐹 ∈ (0...(♯‘𝑆)))
30 pfxlen 14591 . . . . . . . 8 ((𝑆 ∈ Word 𝐴𝐹 ∈ (0...(♯‘𝑆))) → (♯‘(𝑆 prefix 𝐹)) = 𝐹)
311, 29, 30syl2anc 584 . . . . . . 7 (𝜑 → (♯‘(𝑆 prefix 𝐹)) = 𝐹)
3231oveq1d 7361 . . . . . 6 (𝜑 → ((♯‘(𝑆 prefix 𝐹)) + (♯‘𝑅)) = (𝐹 + (♯‘𝑅)))
3325, 32eqtrd 2766 . . . . 5 (𝜑 → (♯‘((𝑆 prefix 𝐹) ++ 𝑅)) = (𝐹 + (♯‘𝑅)))
3433oveq2d 7362 . . . 4 (𝜑 → (0..^(♯‘((𝑆 prefix 𝐹) ++ 𝑅))) = (0..^(𝐹 + (♯‘𝑅))))
3523, 34eleqtrrd 2834 . . 3 (𝜑𝑋 ∈ (0..^(♯‘((𝑆 prefix 𝐹) ++ 𝑅))))
36 ccatval1 14484 . . 3 ((((𝑆 prefix 𝐹) ++ 𝑅) ∈ Word 𝐴 ∧ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩) ∈ Word 𝐴𝑋 ∈ (0..^(♯‘((𝑆 prefix 𝐹) ++ 𝑅)))) → ((((𝑆 prefix 𝐹) ++ 𝑅) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))‘𝑋) = (((𝑆 prefix 𝐹) ++ 𝑅)‘𝑋))
3711, 13, 35, 36syl3anc 1373 . 2 (𝜑 → ((((𝑆 prefix 𝐹) ++ 𝑅) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))‘𝑋) = (((𝑆 prefix 𝐹) ++ 𝑅)‘𝑋))
3831oveq2d 7362 . . . . 5 (𝜑 → (0..^(♯‘(𝑆 prefix 𝐹))) = (0..^𝐹))
3922, 38eleqtrrd 2834 . . . 4 (𝜑𝑋 ∈ (0..^(♯‘(𝑆 prefix 𝐹))))
40 ccatval1 14484 . . . 4 (((𝑆 prefix 𝐹) ∈ Word 𝐴𝑅 ∈ Word 𝐴𝑋 ∈ (0..^(♯‘(𝑆 prefix 𝐹)))) → (((𝑆 prefix 𝐹) ++ 𝑅)‘𝑋) = ((𝑆 prefix 𝐹)‘𝑋))
419, 4, 39, 40syl3anc 1373 . . 3 (𝜑 → (((𝑆 prefix 𝐹) ++ 𝑅)‘𝑋) = ((𝑆 prefix 𝐹)‘𝑋))
42 pfxfv 14590 . . . 4 ((𝑆 ∈ Word 𝐴𝐹 ∈ (0...(♯‘𝑆)) ∧ 𝑋 ∈ (0..^𝐹)) → ((𝑆 prefix 𝐹)‘𝑋) = (𝑆𝑋))
431, 29, 22, 42syl3anc 1373 . . 3 (𝜑 → ((𝑆 prefix 𝐹)‘𝑋) = (𝑆𝑋))
4441, 43eqtrd 2766 . 2 (𝜑 → (((𝑆 prefix 𝐹) ++ 𝑅)‘𝑋) = (𝑆𝑋))
457, 37, 443eqtrd 2770 1 (𝜑 → ((𝑆 splice ⟨𝐹, 𝑇, 𝑅⟩)‘𝑋) = (𝑆𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wss 3902  cop 4582  cotp 4584  cfv 6481  (class class class)co 7346  0cc0 11006   + caddc 11009  0cn0 12381  cuz 12732  ...cfz 13407  ..^cfzo 13554  chash 14237  Word cword 14420   ++ cconcat 14477   substr csubstr 14548   prefix cpfx 14578   splice csplice 14656
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-ot 4585  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-n0 12382  df-z 12469  df-uz 12733  df-fz 13408  df-fzo 13555  df-hash 14238  df-word 14421  df-concat 14478  df-substr 14549  df-pfx 14579  df-splice 14657
This theorem is referenced by:  psgnunilem2  19408  cycpmco2lem7  33099
  Copyright terms: Public domain W3C validator