Proof of Theorem splfv1
| Step | Hyp | Ref
| Expression |
| 1 | | spllen.s |
. . . 4
⊢ (𝜑 → 𝑆 ∈ Word 𝐴) |
| 2 | | spllen.f |
. . . 4
⊢ (𝜑 → 𝐹 ∈ (0...𝑇)) |
| 3 | | spllen.t |
. . . 4
⊢ (𝜑 → 𝑇 ∈ (0...(♯‘𝑆))) |
| 4 | | spllen.r |
. . . 4
⊢ (𝜑 → 𝑅 ∈ Word 𝐴) |
| 5 | | splval 14769 |
. . . 4
⊢ ((𝑆 ∈ Word 𝐴 ∧ (𝐹 ∈ (0...𝑇) ∧ 𝑇 ∈ (0...(♯‘𝑆)) ∧ 𝑅 ∈ Word 𝐴)) → (𝑆 splice 〈𝐹, 𝑇, 𝑅〉) = (((𝑆 prefix 𝐹) ++ 𝑅) ++ (𝑆 substr 〈𝑇, (♯‘𝑆)〉))) |
| 6 | 1, 2, 3, 4, 5 | syl13anc 1374 |
. . 3
⊢ (𝜑 → (𝑆 splice 〈𝐹, 𝑇, 𝑅〉) = (((𝑆 prefix 𝐹) ++ 𝑅) ++ (𝑆 substr 〈𝑇, (♯‘𝑆)〉))) |
| 7 | 6 | fveq1d 6878 |
. 2
⊢ (𝜑 → ((𝑆 splice 〈𝐹, 𝑇, 𝑅〉)‘𝑋) = ((((𝑆 prefix 𝐹) ++ 𝑅) ++ (𝑆 substr 〈𝑇, (♯‘𝑆)〉))‘𝑋)) |
| 8 | | pfxcl 14695 |
. . . . 5
⊢ (𝑆 ∈ Word 𝐴 → (𝑆 prefix 𝐹) ∈ Word 𝐴) |
| 9 | 1, 8 | syl 17 |
. . . 4
⊢ (𝜑 → (𝑆 prefix 𝐹) ∈ Word 𝐴) |
| 10 | | ccatcl 14592 |
. . . 4
⊢ (((𝑆 prefix 𝐹) ∈ Word 𝐴 ∧ 𝑅 ∈ Word 𝐴) → ((𝑆 prefix 𝐹) ++ 𝑅) ∈ Word 𝐴) |
| 11 | 9, 4, 10 | syl2anc 584 |
. . 3
⊢ (𝜑 → ((𝑆 prefix 𝐹) ++ 𝑅) ∈ Word 𝐴) |
| 12 | | swrdcl 14663 |
. . . 4
⊢ (𝑆 ∈ Word 𝐴 → (𝑆 substr 〈𝑇, (♯‘𝑆)〉) ∈ Word 𝐴) |
| 13 | 1, 12 | syl 17 |
. . 3
⊢ (𝜑 → (𝑆 substr 〈𝑇, (♯‘𝑆)〉) ∈ Word 𝐴) |
| 14 | 2 | elfzelzd 13542 |
. . . . . . . 8
⊢ (𝜑 → 𝐹 ∈ ℤ) |
| 15 | 14 | uzidd 12868 |
. . . . . . 7
⊢ (𝜑 → 𝐹 ∈ (ℤ≥‘𝐹)) |
| 16 | | lencl 14551 |
. . . . . . . 8
⊢ (𝑅 ∈ Word 𝐴 → (♯‘𝑅) ∈
ℕ0) |
| 17 | 4, 16 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (♯‘𝑅) ∈
ℕ0) |
| 18 | | uzaddcl 12920 |
. . . . . . 7
⊢ ((𝐹 ∈
(ℤ≥‘𝐹) ∧ (♯‘𝑅) ∈ ℕ0) → (𝐹 + (♯‘𝑅)) ∈
(ℤ≥‘𝐹)) |
| 19 | 15, 17, 18 | syl2anc 584 |
. . . . . 6
⊢ (𝜑 → (𝐹 + (♯‘𝑅)) ∈
(ℤ≥‘𝐹)) |
| 20 | | fzoss2 13704 |
. . . . . 6
⊢ ((𝐹 + (♯‘𝑅)) ∈
(ℤ≥‘𝐹) → (0..^𝐹) ⊆ (0..^(𝐹 + (♯‘𝑅)))) |
| 21 | 19, 20 | syl 17 |
. . . . 5
⊢ (𝜑 → (0..^𝐹) ⊆ (0..^(𝐹 + (♯‘𝑅)))) |
| 22 | | splfv1.x |
. . . . 5
⊢ (𝜑 → 𝑋 ∈ (0..^𝐹)) |
| 23 | 21, 22 | sseldd 3959 |
. . . 4
⊢ (𝜑 → 𝑋 ∈ (0..^(𝐹 + (♯‘𝑅)))) |
| 24 | | ccatlen 14593 |
. . . . . . 7
⊢ (((𝑆 prefix 𝐹) ∈ Word 𝐴 ∧ 𝑅 ∈ Word 𝐴) → (♯‘((𝑆 prefix 𝐹) ++ 𝑅)) = ((♯‘(𝑆 prefix 𝐹)) + (♯‘𝑅))) |
| 25 | 9, 4, 24 | syl2anc 584 |
. . . . . 6
⊢ (𝜑 → (♯‘((𝑆 prefix 𝐹) ++ 𝑅)) = ((♯‘(𝑆 prefix 𝐹)) + (♯‘𝑅))) |
| 26 | | fzass4 13579 |
. . . . . . . . . . 11
⊢ ((𝐹 ∈
(0...(♯‘𝑆))
∧ 𝑇 ∈ (𝐹...(♯‘𝑆))) ↔ (𝐹 ∈ (0...𝑇) ∧ 𝑇 ∈ (0...(♯‘𝑆)))) |
| 27 | 26 | biimpri 228 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ (0...𝑇) ∧ 𝑇 ∈ (0...(♯‘𝑆))) → (𝐹 ∈ (0...(♯‘𝑆)) ∧ 𝑇 ∈ (𝐹...(♯‘𝑆)))) |
| 28 | 27 | simpld 494 |
. . . . . . . . 9
⊢ ((𝐹 ∈ (0...𝑇) ∧ 𝑇 ∈ (0...(♯‘𝑆))) → 𝐹 ∈ (0...(♯‘𝑆))) |
| 29 | 2, 3, 28 | syl2anc 584 |
. . . . . . . 8
⊢ (𝜑 → 𝐹 ∈ (0...(♯‘𝑆))) |
| 30 | | pfxlen 14701 |
. . . . . . . 8
⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ (0...(♯‘𝑆))) → (♯‘(𝑆 prefix 𝐹)) = 𝐹) |
| 31 | 1, 29, 30 | syl2anc 584 |
. . . . . . 7
⊢ (𝜑 → (♯‘(𝑆 prefix 𝐹)) = 𝐹) |
| 32 | 31 | oveq1d 7420 |
. . . . . 6
⊢ (𝜑 → ((♯‘(𝑆 prefix 𝐹)) + (♯‘𝑅)) = (𝐹 + (♯‘𝑅))) |
| 33 | 25, 32 | eqtrd 2770 |
. . . . 5
⊢ (𝜑 → (♯‘((𝑆 prefix 𝐹) ++ 𝑅)) = (𝐹 + (♯‘𝑅))) |
| 34 | 33 | oveq2d 7421 |
. . . 4
⊢ (𝜑 →
(0..^(♯‘((𝑆
prefix 𝐹) ++ 𝑅))) = (0..^(𝐹 + (♯‘𝑅)))) |
| 35 | 23, 34 | eleqtrrd 2837 |
. . 3
⊢ (𝜑 → 𝑋 ∈ (0..^(♯‘((𝑆 prefix 𝐹) ++ 𝑅)))) |
| 36 | | ccatval1 14595 |
. . 3
⊢ ((((𝑆 prefix 𝐹) ++ 𝑅) ∈ Word 𝐴 ∧ (𝑆 substr 〈𝑇, (♯‘𝑆)〉) ∈ Word 𝐴 ∧ 𝑋 ∈ (0..^(♯‘((𝑆 prefix 𝐹) ++ 𝑅)))) → ((((𝑆 prefix 𝐹) ++ 𝑅) ++ (𝑆 substr 〈𝑇, (♯‘𝑆)〉))‘𝑋) = (((𝑆 prefix 𝐹) ++ 𝑅)‘𝑋)) |
| 37 | 11, 13, 35, 36 | syl3anc 1373 |
. 2
⊢ (𝜑 → ((((𝑆 prefix 𝐹) ++ 𝑅) ++ (𝑆 substr 〈𝑇, (♯‘𝑆)〉))‘𝑋) = (((𝑆 prefix 𝐹) ++ 𝑅)‘𝑋)) |
| 38 | 31 | oveq2d 7421 |
. . . . 5
⊢ (𝜑 → (0..^(♯‘(𝑆 prefix 𝐹))) = (0..^𝐹)) |
| 39 | 22, 38 | eleqtrrd 2837 |
. . . 4
⊢ (𝜑 → 𝑋 ∈ (0..^(♯‘(𝑆 prefix 𝐹)))) |
| 40 | | ccatval1 14595 |
. . . 4
⊢ (((𝑆 prefix 𝐹) ∈ Word 𝐴 ∧ 𝑅 ∈ Word 𝐴 ∧ 𝑋 ∈ (0..^(♯‘(𝑆 prefix 𝐹)))) → (((𝑆 prefix 𝐹) ++ 𝑅)‘𝑋) = ((𝑆 prefix 𝐹)‘𝑋)) |
| 41 | 9, 4, 39, 40 | syl3anc 1373 |
. . 3
⊢ (𝜑 → (((𝑆 prefix 𝐹) ++ 𝑅)‘𝑋) = ((𝑆 prefix 𝐹)‘𝑋)) |
| 42 | | pfxfv 14700 |
. . . 4
⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ (0...(♯‘𝑆)) ∧ 𝑋 ∈ (0..^𝐹)) → ((𝑆 prefix 𝐹)‘𝑋) = (𝑆‘𝑋)) |
| 43 | 1, 29, 22, 42 | syl3anc 1373 |
. . 3
⊢ (𝜑 → ((𝑆 prefix 𝐹)‘𝑋) = (𝑆‘𝑋)) |
| 44 | 41, 43 | eqtrd 2770 |
. 2
⊢ (𝜑 → (((𝑆 prefix 𝐹) ++ 𝑅)‘𝑋) = (𝑆‘𝑋)) |
| 45 | 7, 37, 44 | 3eqtrd 2774 |
1
⊢ (𝜑 → ((𝑆 splice 〈𝐹, 𝑇, 𝑅〉)‘𝑋) = (𝑆‘𝑋)) |