MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  splfv2a Structured version   Visualization version   GIF version

Theorem splfv2a 14721
Description: Symbols within the replacement region of a splice, expressed using the coordinates of the replacement region. (Contributed by Stefan O'Rear, 23-Aug-2015.) (Proof shortened by AV, 15-Oct-2022.)
Hypotheses
Ref Expression
spllen.s (𝜑𝑆 ∈ Word 𝐴)
spllen.f (𝜑𝐹 ∈ (0...𝑇))
spllen.t (𝜑𝑇 ∈ (0...(♯‘𝑆)))
spllen.r (𝜑𝑅 ∈ Word 𝐴)
splfv2a.x (𝜑𝑋 ∈ (0..^(♯‘𝑅)))
Assertion
Ref Expression
splfv2a (𝜑 → ((𝑆 splice ⟨𝐹, 𝑇, 𝑅⟩)‘(𝐹 + 𝑋)) = (𝑅𝑋))

Proof of Theorem splfv2a
StepHypRef Expression
1 spllen.s . . . 4 (𝜑𝑆 ∈ Word 𝐴)
2 spllen.f . . . 4 (𝜑𝐹 ∈ (0...𝑇))
3 spllen.t . . . 4 (𝜑𝑇 ∈ (0...(♯‘𝑆)))
4 spllen.r . . . 4 (𝜑𝑅 ∈ Word 𝐴)
5 splval 14716 . . . 4 ((𝑆 ∈ Word 𝐴 ∧ (𝐹 ∈ (0...𝑇) ∧ 𝑇 ∈ (0...(♯‘𝑆)) ∧ 𝑅 ∈ Word 𝐴)) → (𝑆 splice ⟨𝐹, 𝑇, 𝑅⟩) = (((𝑆 prefix 𝐹) ++ 𝑅) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩)))
61, 2, 3, 4, 5syl13anc 1374 . . 3 (𝜑 → (𝑆 splice ⟨𝐹, 𝑇, 𝑅⟩) = (((𝑆 prefix 𝐹) ++ 𝑅) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩)))
7 elfznn0 13581 . . . . . . 7 (𝐹 ∈ (0...𝑇) → 𝐹 ∈ ℕ0)
82, 7syl 17 . . . . . 6 (𝜑𝐹 ∈ ℕ0)
98nn0cnd 12505 . . . . 5 (𝜑𝐹 ∈ ℂ)
10 splfv2a.x . . . . . . 7 (𝜑𝑋 ∈ (0..^(♯‘𝑅)))
11 elfzonn0 13668 . . . . . . 7 (𝑋 ∈ (0..^(♯‘𝑅)) → 𝑋 ∈ ℕ0)
1210, 11syl 17 . . . . . 6 (𝜑𝑋 ∈ ℕ0)
1312nn0cnd 12505 . . . . 5 (𝜑𝑋 ∈ ℂ)
149, 13addcomd 11376 . . . 4 (𝜑 → (𝐹 + 𝑋) = (𝑋 + 𝐹))
15 nn0uz 12835 . . . . . . . 8 0 = (ℤ‘0)
168, 15eleqtrdi 2838 . . . . . . 7 (𝜑𝐹 ∈ (ℤ‘0))
17 elfzuz3 13482 . . . . . . . . 9 (𝑇 ∈ (0...(♯‘𝑆)) → (♯‘𝑆) ∈ (ℤ𝑇))
183, 17syl 17 . . . . . . . 8 (𝜑 → (♯‘𝑆) ∈ (ℤ𝑇))
19 elfzuz3 13482 . . . . . . . . 9 (𝐹 ∈ (0...𝑇) → 𝑇 ∈ (ℤ𝐹))
202, 19syl 17 . . . . . . . 8 (𝜑𝑇 ∈ (ℤ𝐹))
21 uztrn 12811 . . . . . . . 8 (((♯‘𝑆) ∈ (ℤ𝑇) ∧ 𝑇 ∈ (ℤ𝐹)) → (♯‘𝑆) ∈ (ℤ𝐹))
2218, 20, 21syl2anc 584 . . . . . . 7 (𝜑 → (♯‘𝑆) ∈ (ℤ𝐹))
23 elfzuzb 13479 . . . . . . 7 (𝐹 ∈ (0...(♯‘𝑆)) ↔ (𝐹 ∈ (ℤ‘0) ∧ (♯‘𝑆) ∈ (ℤ𝐹)))
2416, 22, 23sylanbrc 583 . . . . . 6 (𝜑𝐹 ∈ (0...(♯‘𝑆)))
25 pfxlen 14648 . . . . . 6 ((𝑆 ∈ Word 𝐴𝐹 ∈ (0...(♯‘𝑆))) → (♯‘(𝑆 prefix 𝐹)) = 𝐹)
261, 24, 25syl2anc 584 . . . . 5 (𝜑 → (♯‘(𝑆 prefix 𝐹)) = 𝐹)
2726oveq2d 7403 . . . 4 (𝜑 → (𝑋 + (♯‘(𝑆 prefix 𝐹))) = (𝑋 + 𝐹))
2814, 27eqtr4d 2767 . . 3 (𝜑 → (𝐹 + 𝑋) = (𝑋 + (♯‘(𝑆 prefix 𝐹))))
296, 28fveq12d 6865 . 2 (𝜑 → ((𝑆 splice ⟨𝐹, 𝑇, 𝑅⟩)‘(𝐹 + 𝑋)) = ((((𝑆 prefix 𝐹) ++ 𝑅) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))‘(𝑋 + (♯‘(𝑆 prefix 𝐹)))))
30 pfxcl 14642 . . . . 5 (𝑆 ∈ Word 𝐴 → (𝑆 prefix 𝐹) ∈ Word 𝐴)
311, 30syl 17 . . . 4 (𝜑 → (𝑆 prefix 𝐹) ∈ Word 𝐴)
32 ccatcl 14539 . . . 4 (((𝑆 prefix 𝐹) ∈ Word 𝐴𝑅 ∈ Word 𝐴) → ((𝑆 prefix 𝐹) ++ 𝑅) ∈ Word 𝐴)
3331, 4, 32syl2anc 584 . . 3 (𝜑 → ((𝑆 prefix 𝐹) ++ 𝑅) ∈ Word 𝐴)
34 swrdcl 14610 . . . 4 (𝑆 ∈ Word 𝐴 → (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩) ∈ Word 𝐴)
351, 34syl 17 . . 3 (𝜑 → (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩) ∈ Word 𝐴)
36 0nn0 12457 . . . . . . . 8 0 ∈ ℕ0
37 nn0addcl 12477 . . . . . . . 8 ((0 ∈ ℕ0𝐹 ∈ ℕ0) → (0 + 𝐹) ∈ ℕ0)
3836, 8, 37sylancr 587 . . . . . . 7 (𝜑 → (0 + 𝐹) ∈ ℕ0)
39 fzoss1 13647 . . . . . . . 8 ((0 + 𝐹) ∈ (ℤ‘0) → ((0 + 𝐹)..^((♯‘𝑅) + 𝐹)) ⊆ (0..^((♯‘𝑅) + 𝐹)))
4039, 15eleq2s 2846 . . . . . . 7 ((0 + 𝐹) ∈ ℕ0 → ((0 + 𝐹)..^((♯‘𝑅) + 𝐹)) ⊆ (0..^((♯‘𝑅) + 𝐹)))
4138, 40syl 17 . . . . . 6 (𝜑 → ((0 + 𝐹)..^((♯‘𝑅) + 𝐹)) ⊆ (0..^((♯‘𝑅) + 𝐹)))
42 ccatlen 14540 . . . . . . . . 9 (((𝑆 prefix 𝐹) ∈ Word 𝐴𝑅 ∈ Word 𝐴) → (♯‘((𝑆 prefix 𝐹) ++ 𝑅)) = ((♯‘(𝑆 prefix 𝐹)) + (♯‘𝑅)))
4331, 4, 42syl2anc 584 . . . . . . . 8 (𝜑 → (♯‘((𝑆 prefix 𝐹) ++ 𝑅)) = ((♯‘(𝑆 prefix 𝐹)) + (♯‘𝑅)))
4426oveq1d 7402 . . . . . . . 8 (𝜑 → ((♯‘(𝑆 prefix 𝐹)) + (♯‘𝑅)) = (𝐹 + (♯‘𝑅)))
45 lencl 14498 . . . . . . . . . . 11 (𝑅 ∈ Word 𝐴 → (♯‘𝑅) ∈ ℕ0)
464, 45syl 17 . . . . . . . . . 10 (𝜑 → (♯‘𝑅) ∈ ℕ0)
4746nn0cnd 12505 . . . . . . . . 9 (𝜑 → (♯‘𝑅) ∈ ℂ)
489, 47addcomd 11376 . . . . . . . 8 (𝜑 → (𝐹 + (♯‘𝑅)) = ((♯‘𝑅) + 𝐹))
4943, 44, 483eqtrd 2768 . . . . . . 7 (𝜑 → (♯‘((𝑆 prefix 𝐹) ++ 𝑅)) = ((♯‘𝑅) + 𝐹))
5049oveq2d 7403 . . . . . 6 (𝜑 → (0..^(♯‘((𝑆 prefix 𝐹) ++ 𝑅))) = (0..^((♯‘𝑅) + 𝐹)))
5141, 50sseqtrrd 3984 . . . . 5 (𝜑 → ((0 + 𝐹)..^((♯‘𝑅) + 𝐹)) ⊆ (0..^(♯‘((𝑆 prefix 𝐹) ++ 𝑅))))
528nn0zd 12555 . . . . . 6 (𝜑𝐹 ∈ ℤ)
53 fzoaddel 13678 . . . . . 6 ((𝑋 ∈ (0..^(♯‘𝑅)) ∧ 𝐹 ∈ ℤ) → (𝑋 + 𝐹) ∈ ((0 + 𝐹)..^((♯‘𝑅) + 𝐹)))
5410, 52, 53syl2anc 584 . . . . 5 (𝜑 → (𝑋 + 𝐹) ∈ ((0 + 𝐹)..^((♯‘𝑅) + 𝐹)))
5551, 54sseldd 3947 . . . 4 (𝜑 → (𝑋 + 𝐹) ∈ (0..^(♯‘((𝑆 prefix 𝐹) ++ 𝑅))))
5627, 55eqeltrd 2828 . . 3 (𝜑 → (𝑋 + (♯‘(𝑆 prefix 𝐹))) ∈ (0..^(♯‘((𝑆 prefix 𝐹) ++ 𝑅))))
57 ccatval1 14542 . . 3 ((((𝑆 prefix 𝐹) ++ 𝑅) ∈ Word 𝐴 ∧ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩) ∈ Word 𝐴 ∧ (𝑋 + (♯‘(𝑆 prefix 𝐹))) ∈ (0..^(♯‘((𝑆 prefix 𝐹) ++ 𝑅)))) → ((((𝑆 prefix 𝐹) ++ 𝑅) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))‘(𝑋 + (♯‘(𝑆 prefix 𝐹)))) = (((𝑆 prefix 𝐹) ++ 𝑅)‘(𝑋 + (♯‘(𝑆 prefix 𝐹)))))
5833, 35, 56, 57syl3anc 1373 . 2 (𝜑 → ((((𝑆 prefix 𝐹) ++ 𝑅) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))‘(𝑋 + (♯‘(𝑆 prefix 𝐹)))) = (((𝑆 prefix 𝐹) ++ 𝑅)‘(𝑋 + (♯‘(𝑆 prefix 𝐹)))))
59 ccatval3 14544 . . 3 (((𝑆 prefix 𝐹) ∈ Word 𝐴𝑅 ∈ Word 𝐴𝑋 ∈ (0..^(♯‘𝑅))) → (((𝑆 prefix 𝐹) ++ 𝑅)‘(𝑋 + (♯‘(𝑆 prefix 𝐹)))) = (𝑅𝑋))
6031, 4, 10, 59syl3anc 1373 . 2 (𝜑 → (((𝑆 prefix 𝐹) ++ 𝑅)‘(𝑋 + (♯‘(𝑆 prefix 𝐹)))) = (𝑅𝑋))
6129, 58, 603eqtrd 2768 1 (𝜑 → ((𝑆 splice ⟨𝐹, 𝑇, 𝑅⟩)‘(𝐹 + 𝑋)) = (𝑅𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wss 3914  cop 4595  cotp 4597  cfv 6511  (class class class)co 7387  0cc0 11068   + caddc 11071  0cn0 12442  cz 12529  cuz 12793  ...cfz 13468  ..^cfzo 13615  chash 14295  Word cword 14478   ++ cconcat 14535   substr csubstr 14605   prefix cpfx 14635   splice csplice 14714
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-ot 4598  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-fzo 13616  df-hash 14296  df-word 14479  df-concat 14536  df-substr 14606  df-pfx 14636  df-splice 14715
This theorem is referenced by:  psgnunilem2  19425
  Copyright terms: Public domain W3C validator