MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  splfv2a Structured version   Visualization version   GIF version

Theorem splfv2a 14321
Description: Symbols within the replacement region of a splice, expressed using the coordinates of the replacement region. (Contributed by Stefan O'Rear, 23-Aug-2015.) (Proof shortened by AV, 15-Oct-2022.)
Hypotheses
Ref Expression
spllen.s (𝜑𝑆 ∈ Word 𝐴)
spllen.f (𝜑𝐹 ∈ (0...𝑇))
spllen.t (𝜑𝑇 ∈ (0...(♯‘𝑆)))
spllen.r (𝜑𝑅 ∈ Word 𝐴)
splfv2a.x (𝜑𝑋 ∈ (0..^(♯‘𝑅)))
Assertion
Ref Expression
splfv2a (𝜑 → ((𝑆 splice ⟨𝐹, 𝑇, 𝑅⟩)‘(𝐹 + 𝑋)) = (𝑅𝑋))

Proof of Theorem splfv2a
StepHypRef Expression
1 spllen.s . . . 4 (𝜑𝑆 ∈ Word 𝐴)
2 spllen.f . . . 4 (𝜑𝐹 ∈ (0...𝑇))
3 spllen.t . . . 4 (𝜑𝑇 ∈ (0...(♯‘𝑆)))
4 spllen.r . . . 4 (𝜑𝑅 ∈ Word 𝐴)
5 splval 14316 . . . 4 ((𝑆 ∈ Word 𝐴 ∧ (𝐹 ∈ (0...𝑇) ∧ 𝑇 ∈ (0...(♯‘𝑆)) ∧ 𝑅 ∈ Word 𝐴)) → (𝑆 splice ⟨𝐹, 𝑇, 𝑅⟩) = (((𝑆 prefix 𝐹) ++ 𝑅) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩)))
61, 2, 3, 4, 5syl13anc 1374 . . 3 (𝜑 → (𝑆 splice ⟨𝐹, 𝑇, 𝑅⟩) = (((𝑆 prefix 𝐹) ++ 𝑅) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩)))
7 elfznn0 13205 . . . . . . 7 (𝐹 ∈ (0...𝑇) → 𝐹 ∈ ℕ0)
82, 7syl 17 . . . . . 6 (𝜑𝐹 ∈ ℕ0)
98nn0cnd 12152 . . . . 5 (𝜑𝐹 ∈ ℂ)
10 splfv2a.x . . . . . . 7 (𝜑𝑋 ∈ (0..^(♯‘𝑅)))
11 elfzonn0 13287 . . . . . . 7 (𝑋 ∈ (0..^(♯‘𝑅)) → 𝑋 ∈ ℕ0)
1210, 11syl 17 . . . . . 6 (𝜑𝑋 ∈ ℕ0)
1312nn0cnd 12152 . . . . 5 (𝜑𝑋 ∈ ℂ)
149, 13addcomd 11034 . . . 4 (𝜑 → (𝐹 + 𝑋) = (𝑋 + 𝐹))
15 nn0uz 12476 . . . . . . . 8 0 = (ℤ‘0)
168, 15eleqtrdi 2848 . . . . . . 7 (𝜑𝐹 ∈ (ℤ‘0))
17 elfzuz3 13109 . . . . . . . . 9 (𝑇 ∈ (0...(♯‘𝑆)) → (♯‘𝑆) ∈ (ℤ𝑇))
183, 17syl 17 . . . . . . . 8 (𝜑 → (♯‘𝑆) ∈ (ℤ𝑇))
19 elfzuz3 13109 . . . . . . . . 9 (𝐹 ∈ (0...𝑇) → 𝑇 ∈ (ℤ𝐹))
202, 19syl 17 . . . . . . . 8 (𝜑𝑇 ∈ (ℤ𝐹))
21 uztrn 12456 . . . . . . . 8 (((♯‘𝑆) ∈ (ℤ𝑇) ∧ 𝑇 ∈ (ℤ𝐹)) → (♯‘𝑆) ∈ (ℤ𝐹))
2218, 20, 21syl2anc 587 . . . . . . 7 (𝜑 → (♯‘𝑆) ∈ (ℤ𝐹))
23 elfzuzb 13106 . . . . . . 7 (𝐹 ∈ (0...(♯‘𝑆)) ↔ (𝐹 ∈ (ℤ‘0) ∧ (♯‘𝑆) ∈ (ℤ𝐹)))
2416, 22, 23sylanbrc 586 . . . . . 6 (𝜑𝐹 ∈ (0...(♯‘𝑆)))
25 pfxlen 14248 . . . . . 6 ((𝑆 ∈ Word 𝐴𝐹 ∈ (0...(♯‘𝑆))) → (♯‘(𝑆 prefix 𝐹)) = 𝐹)
261, 24, 25syl2anc 587 . . . . 5 (𝜑 → (♯‘(𝑆 prefix 𝐹)) = 𝐹)
2726oveq2d 7229 . . . 4 (𝜑 → (𝑋 + (♯‘(𝑆 prefix 𝐹))) = (𝑋 + 𝐹))
2814, 27eqtr4d 2780 . . 3 (𝜑 → (𝐹 + 𝑋) = (𝑋 + (♯‘(𝑆 prefix 𝐹))))
296, 28fveq12d 6724 . 2 (𝜑 → ((𝑆 splice ⟨𝐹, 𝑇, 𝑅⟩)‘(𝐹 + 𝑋)) = ((((𝑆 prefix 𝐹) ++ 𝑅) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))‘(𝑋 + (♯‘(𝑆 prefix 𝐹)))))
30 pfxcl 14242 . . . . 5 (𝑆 ∈ Word 𝐴 → (𝑆 prefix 𝐹) ∈ Word 𝐴)
311, 30syl 17 . . . 4 (𝜑 → (𝑆 prefix 𝐹) ∈ Word 𝐴)
32 ccatcl 14129 . . . 4 (((𝑆 prefix 𝐹) ∈ Word 𝐴𝑅 ∈ Word 𝐴) → ((𝑆 prefix 𝐹) ++ 𝑅) ∈ Word 𝐴)
3331, 4, 32syl2anc 587 . . 3 (𝜑 → ((𝑆 prefix 𝐹) ++ 𝑅) ∈ Word 𝐴)
34 swrdcl 14210 . . . 4 (𝑆 ∈ Word 𝐴 → (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩) ∈ Word 𝐴)
351, 34syl 17 . . 3 (𝜑 → (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩) ∈ Word 𝐴)
36 0nn0 12105 . . . . . . . 8 0 ∈ ℕ0
37 nn0addcl 12125 . . . . . . . 8 ((0 ∈ ℕ0𝐹 ∈ ℕ0) → (0 + 𝐹) ∈ ℕ0)
3836, 8, 37sylancr 590 . . . . . . 7 (𝜑 → (0 + 𝐹) ∈ ℕ0)
39 fzoss1 13269 . . . . . . . 8 ((0 + 𝐹) ∈ (ℤ‘0) → ((0 + 𝐹)..^((♯‘𝑅) + 𝐹)) ⊆ (0..^((♯‘𝑅) + 𝐹)))
4039, 15eleq2s 2856 . . . . . . 7 ((0 + 𝐹) ∈ ℕ0 → ((0 + 𝐹)..^((♯‘𝑅) + 𝐹)) ⊆ (0..^((♯‘𝑅) + 𝐹)))
4138, 40syl 17 . . . . . 6 (𝜑 → ((0 + 𝐹)..^((♯‘𝑅) + 𝐹)) ⊆ (0..^((♯‘𝑅) + 𝐹)))
42 ccatlen 14130 . . . . . . . . 9 (((𝑆 prefix 𝐹) ∈ Word 𝐴𝑅 ∈ Word 𝐴) → (♯‘((𝑆 prefix 𝐹) ++ 𝑅)) = ((♯‘(𝑆 prefix 𝐹)) + (♯‘𝑅)))
4331, 4, 42syl2anc 587 . . . . . . . 8 (𝜑 → (♯‘((𝑆 prefix 𝐹) ++ 𝑅)) = ((♯‘(𝑆 prefix 𝐹)) + (♯‘𝑅)))
4426oveq1d 7228 . . . . . . . 8 (𝜑 → ((♯‘(𝑆 prefix 𝐹)) + (♯‘𝑅)) = (𝐹 + (♯‘𝑅)))
45 lencl 14088 . . . . . . . . . . 11 (𝑅 ∈ Word 𝐴 → (♯‘𝑅) ∈ ℕ0)
464, 45syl 17 . . . . . . . . . 10 (𝜑 → (♯‘𝑅) ∈ ℕ0)
4746nn0cnd 12152 . . . . . . . . 9 (𝜑 → (♯‘𝑅) ∈ ℂ)
489, 47addcomd 11034 . . . . . . . 8 (𝜑 → (𝐹 + (♯‘𝑅)) = ((♯‘𝑅) + 𝐹))
4943, 44, 483eqtrd 2781 . . . . . . 7 (𝜑 → (♯‘((𝑆 prefix 𝐹) ++ 𝑅)) = ((♯‘𝑅) + 𝐹))
5049oveq2d 7229 . . . . . 6 (𝜑 → (0..^(♯‘((𝑆 prefix 𝐹) ++ 𝑅))) = (0..^((♯‘𝑅) + 𝐹)))
5141, 50sseqtrrd 3942 . . . . 5 (𝜑 → ((0 + 𝐹)..^((♯‘𝑅) + 𝐹)) ⊆ (0..^(♯‘((𝑆 prefix 𝐹) ++ 𝑅))))
528nn0zd 12280 . . . . . 6 (𝜑𝐹 ∈ ℤ)
53 fzoaddel 13295 . . . . . 6 ((𝑋 ∈ (0..^(♯‘𝑅)) ∧ 𝐹 ∈ ℤ) → (𝑋 + 𝐹) ∈ ((0 + 𝐹)..^((♯‘𝑅) + 𝐹)))
5410, 52, 53syl2anc 587 . . . . 5 (𝜑 → (𝑋 + 𝐹) ∈ ((0 + 𝐹)..^((♯‘𝑅) + 𝐹)))
5551, 54sseldd 3902 . . . 4 (𝜑 → (𝑋 + 𝐹) ∈ (0..^(♯‘((𝑆 prefix 𝐹) ++ 𝑅))))
5627, 55eqeltrd 2838 . . 3 (𝜑 → (𝑋 + (♯‘(𝑆 prefix 𝐹))) ∈ (0..^(♯‘((𝑆 prefix 𝐹) ++ 𝑅))))
57 ccatval1 14133 . . 3 ((((𝑆 prefix 𝐹) ++ 𝑅) ∈ Word 𝐴 ∧ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩) ∈ Word 𝐴 ∧ (𝑋 + (♯‘(𝑆 prefix 𝐹))) ∈ (0..^(♯‘((𝑆 prefix 𝐹) ++ 𝑅)))) → ((((𝑆 prefix 𝐹) ++ 𝑅) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))‘(𝑋 + (♯‘(𝑆 prefix 𝐹)))) = (((𝑆 prefix 𝐹) ++ 𝑅)‘(𝑋 + (♯‘(𝑆 prefix 𝐹)))))
5833, 35, 56, 57syl3anc 1373 . 2 (𝜑 → ((((𝑆 prefix 𝐹) ++ 𝑅) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))‘(𝑋 + (♯‘(𝑆 prefix 𝐹)))) = (((𝑆 prefix 𝐹) ++ 𝑅)‘(𝑋 + (♯‘(𝑆 prefix 𝐹)))))
59 ccatval3 14136 . . 3 (((𝑆 prefix 𝐹) ∈ Word 𝐴𝑅 ∈ Word 𝐴𝑋 ∈ (0..^(♯‘𝑅))) → (((𝑆 prefix 𝐹) ++ 𝑅)‘(𝑋 + (♯‘(𝑆 prefix 𝐹)))) = (𝑅𝑋))
6031, 4, 10, 59syl3anc 1373 . 2 (𝜑 → (((𝑆 prefix 𝐹) ++ 𝑅)‘(𝑋 + (♯‘(𝑆 prefix 𝐹)))) = (𝑅𝑋))
6129, 58, 603eqtrd 2781 1 (𝜑 → ((𝑆 splice ⟨𝐹, 𝑇, 𝑅⟩)‘(𝐹 + 𝑋)) = (𝑅𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1543  wcel 2110  wss 3866  cop 4547  cotp 4549  cfv 6380  (class class class)co 7213  0cc0 10729   + caddc 10732  0cn0 12090  cz 12176  cuz 12438  ...cfz 13095  ..^cfzo 13238  chash 13896  Word cword 14069   ++ cconcat 14125   substr csubstr 14205   prefix cpfx 14235   splice csplice 14314
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-ot 4550  df-uni 4820  df-int 4860  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-card 9555  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-nn 11831  df-n0 12091  df-z 12177  df-uz 12439  df-fz 13096  df-fzo 13239  df-hash 13897  df-word 14070  df-concat 14126  df-substr 14206  df-pfx 14236  df-splice 14315
This theorem is referenced by:  psgnunilem2  18887
  Copyright terms: Public domain W3C validator