MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumspl Structured version   Visualization version   GIF version

Theorem gsumspl 18571
Description: The primary purpose of the splice construction is to enable local rewrites. Thus, in any monoidal valuation, if a splice does not cause a local change it does not cause a global change. (Contributed by Stefan O'Rear, 23-Aug-2015.)
Hypotheses
Ref Expression
gsumspl.b 𝐵 = (Base‘𝑀)
gsumspl.m (𝜑𝑀 ∈ Mnd)
gsumspl.s (𝜑𝑆 ∈ Word 𝐵)
gsumspl.f (𝜑𝐹 ∈ (0...𝑇))
gsumspl.t (𝜑𝑇 ∈ (0...(♯‘𝑆)))
gsumspl.x (𝜑𝑋 ∈ Word 𝐵)
gsumspl.y (𝜑𝑌 ∈ Word 𝐵)
gsumspl.eq (𝜑 → (𝑀 Σg 𝑋) = (𝑀 Σg 𝑌))
Assertion
Ref Expression
gsumspl (𝜑 → (𝑀 Σg (𝑆 splice ⟨𝐹, 𝑇, 𝑋⟩)) = (𝑀 Σg (𝑆 splice ⟨𝐹, 𝑇, 𝑌⟩)))

Proof of Theorem gsumspl
StepHypRef Expression
1 gsumspl.eq . . . 4 (𝜑 → (𝑀 Σg 𝑋) = (𝑀 Σg 𝑌))
21oveq2d 7345 . . 3 (𝜑 → ((𝑀 Σg (𝑆 prefix 𝐹))(+g𝑀)(𝑀 Σg 𝑋)) = ((𝑀 Σg (𝑆 prefix 𝐹))(+g𝑀)(𝑀 Σg 𝑌)))
32oveq1d 7344 . 2 (𝜑 → (((𝑀 Σg (𝑆 prefix 𝐹))(+g𝑀)(𝑀 Σg 𝑋))(+g𝑀)(𝑀 Σg (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))) = (((𝑀 Σg (𝑆 prefix 𝐹))(+g𝑀)(𝑀 Σg 𝑌))(+g𝑀)(𝑀 Σg (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))))
4 gsumspl.s . . . . 5 (𝜑𝑆 ∈ Word 𝐵)
5 gsumspl.f . . . . 5 (𝜑𝐹 ∈ (0...𝑇))
6 gsumspl.t . . . . 5 (𝜑𝑇 ∈ (0...(♯‘𝑆)))
7 gsumspl.x . . . . 5 (𝜑𝑋 ∈ Word 𝐵)
8 splval 14554 . . . . 5 ((𝑆 ∈ Word 𝐵 ∧ (𝐹 ∈ (0...𝑇) ∧ 𝑇 ∈ (0...(♯‘𝑆)) ∧ 𝑋 ∈ Word 𝐵)) → (𝑆 splice ⟨𝐹, 𝑇, 𝑋⟩) = (((𝑆 prefix 𝐹) ++ 𝑋) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩)))
94, 5, 6, 7, 8syl13anc 1371 . . . 4 (𝜑 → (𝑆 splice ⟨𝐹, 𝑇, 𝑋⟩) = (((𝑆 prefix 𝐹) ++ 𝑋) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩)))
109oveq2d 7345 . . 3 (𝜑 → (𝑀 Σg (𝑆 splice ⟨𝐹, 𝑇, 𝑋⟩)) = (𝑀 Σg (((𝑆 prefix 𝐹) ++ 𝑋) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))))
11 gsumspl.m . . . 4 (𝜑𝑀 ∈ Mnd)
12 pfxcl 14480 . . . . . 6 (𝑆 ∈ Word 𝐵 → (𝑆 prefix 𝐹) ∈ Word 𝐵)
134, 12syl 17 . . . . 5 (𝜑 → (𝑆 prefix 𝐹) ∈ Word 𝐵)
14 ccatcl 14369 . . . . 5 (((𝑆 prefix 𝐹) ∈ Word 𝐵𝑋 ∈ Word 𝐵) → ((𝑆 prefix 𝐹) ++ 𝑋) ∈ Word 𝐵)
1513, 7, 14syl2anc 584 . . . 4 (𝜑 → ((𝑆 prefix 𝐹) ++ 𝑋) ∈ Word 𝐵)
16 swrdcl 14448 . . . . 5 (𝑆 ∈ Word 𝐵 → (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩) ∈ Word 𝐵)
174, 16syl 17 . . . 4 (𝜑 → (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩) ∈ Word 𝐵)
18 gsumspl.b . . . . 5 𝐵 = (Base‘𝑀)
19 eqid 2736 . . . . 5 (+g𝑀) = (+g𝑀)
2018, 19gsumccat 18568 . . . 4 ((𝑀 ∈ Mnd ∧ ((𝑆 prefix 𝐹) ++ 𝑋) ∈ Word 𝐵 ∧ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩) ∈ Word 𝐵) → (𝑀 Σg (((𝑆 prefix 𝐹) ++ 𝑋) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))) = ((𝑀 Σg ((𝑆 prefix 𝐹) ++ 𝑋))(+g𝑀)(𝑀 Σg (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))))
2111, 15, 17, 20syl3anc 1370 . . 3 (𝜑 → (𝑀 Σg (((𝑆 prefix 𝐹) ++ 𝑋) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))) = ((𝑀 Σg ((𝑆 prefix 𝐹) ++ 𝑋))(+g𝑀)(𝑀 Σg (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))))
2218, 19gsumccat 18568 . . . . 5 ((𝑀 ∈ Mnd ∧ (𝑆 prefix 𝐹) ∈ Word 𝐵𝑋 ∈ Word 𝐵) → (𝑀 Σg ((𝑆 prefix 𝐹) ++ 𝑋)) = ((𝑀 Σg (𝑆 prefix 𝐹))(+g𝑀)(𝑀 Σg 𝑋)))
2311, 13, 7, 22syl3anc 1370 . . . 4 (𝜑 → (𝑀 Σg ((𝑆 prefix 𝐹) ++ 𝑋)) = ((𝑀 Σg (𝑆 prefix 𝐹))(+g𝑀)(𝑀 Σg 𝑋)))
2423oveq1d 7344 . . 3 (𝜑 → ((𝑀 Σg ((𝑆 prefix 𝐹) ++ 𝑋))(+g𝑀)(𝑀 Σg (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))) = (((𝑀 Σg (𝑆 prefix 𝐹))(+g𝑀)(𝑀 Σg 𝑋))(+g𝑀)(𝑀 Σg (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))))
2510, 21, 243eqtrd 2780 . 2 (𝜑 → (𝑀 Σg (𝑆 splice ⟨𝐹, 𝑇, 𝑋⟩)) = (((𝑀 Σg (𝑆 prefix 𝐹))(+g𝑀)(𝑀 Σg 𝑋))(+g𝑀)(𝑀 Σg (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))))
26 gsumspl.y . . . . 5 (𝜑𝑌 ∈ Word 𝐵)
27 splval 14554 . . . . 5 ((𝑆 ∈ Word 𝐵 ∧ (𝐹 ∈ (0...𝑇) ∧ 𝑇 ∈ (0...(♯‘𝑆)) ∧ 𝑌 ∈ Word 𝐵)) → (𝑆 splice ⟨𝐹, 𝑇, 𝑌⟩) = (((𝑆 prefix 𝐹) ++ 𝑌) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩)))
284, 5, 6, 26, 27syl13anc 1371 . . . 4 (𝜑 → (𝑆 splice ⟨𝐹, 𝑇, 𝑌⟩) = (((𝑆 prefix 𝐹) ++ 𝑌) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩)))
2928oveq2d 7345 . . 3 (𝜑 → (𝑀 Σg (𝑆 splice ⟨𝐹, 𝑇, 𝑌⟩)) = (𝑀 Σg (((𝑆 prefix 𝐹) ++ 𝑌) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))))
30 ccatcl 14369 . . . . 5 (((𝑆 prefix 𝐹) ∈ Word 𝐵𝑌 ∈ Word 𝐵) → ((𝑆 prefix 𝐹) ++ 𝑌) ∈ Word 𝐵)
3113, 26, 30syl2anc 584 . . . 4 (𝜑 → ((𝑆 prefix 𝐹) ++ 𝑌) ∈ Word 𝐵)
3218, 19gsumccat 18568 . . . 4 ((𝑀 ∈ Mnd ∧ ((𝑆 prefix 𝐹) ++ 𝑌) ∈ Word 𝐵 ∧ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩) ∈ Word 𝐵) → (𝑀 Σg (((𝑆 prefix 𝐹) ++ 𝑌) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))) = ((𝑀 Σg ((𝑆 prefix 𝐹) ++ 𝑌))(+g𝑀)(𝑀 Σg (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))))
3311, 31, 17, 32syl3anc 1370 . . 3 (𝜑 → (𝑀 Σg (((𝑆 prefix 𝐹) ++ 𝑌) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))) = ((𝑀 Σg ((𝑆 prefix 𝐹) ++ 𝑌))(+g𝑀)(𝑀 Σg (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))))
3418, 19gsumccat 18568 . . . . 5 ((𝑀 ∈ Mnd ∧ (𝑆 prefix 𝐹) ∈ Word 𝐵𝑌 ∈ Word 𝐵) → (𝑀 Σg ((𝑆 prefix 𝐹) ++ 𝑌)) = ((𝑀 Σg (𝑆 prefix 𝐹))(+g𝑀)(𝑀 Σg 𝑌)))
3511, 13, 26, 34syl3anc 1370 . . . 4 (𝜑 → (𝑀 Σg ((𝑆 prefix 𝐹) ++ 𝑌)) = ((𝑀 Σg (𝑆 prefix 𝐹))(+g𝑀)(𝑀 Σg 𝑌)))
3635oveq1d 7344 . . 3 (𝜑 → ((𝑀 Σg ((𝑆 prefix 𝐹) ++ 𝑌))(+g𝑀)(𝑀 Σg (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))) = (((𝑀 Σg (𝑆 prefix 𝐹))(+g𝑀)(𝑀 Σg 𝑌))(+g𝑀)(𝑀 Σg (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))))
3729, 33, 363eqtrd 2780 . 2 (𝜑 → (𝑀 Σg (𝑆 splice ⟨𝐹, 𝑇, 𝑌⟩)) = (((𝑀 Σg (𝑆 prefix 𝐹))(+g𝑀)(𝑀 Σg 𝑌))(+g𝑀)(𝑀 Σg (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))))
383, 25, 373eqtr4d 2786 1 (𝜑 → (𝑀 Σg (𝑆 splice ⟨𝐹, 𝑇, 𝑋⟩)) = (𝑀 Σg (𝑆 splice ⟨𝐹, 𝑇, 𝑌⟩)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2105  cop 4578  cotp 4580  cfv 6473  (class class class)co 7329  0cc0 10964  ...cfz 13332  chash 14137  Word cword 14309   ++ cconcat 14365   substr csubstr 14443   prefix cpfx 14473   splice csplice 14552  Basecbs 17001  +gcplusg 17051   Σg cgsu 17240  Mndcmnd 18474
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5226  ax-sep 5240  ax-nul 5247  ax-pow 5305  ax-pr 5369  ax-un 7642  ax-cnex 11020  ax-resscn 11021  ax-1cn 11022  ax-icn 11023  ax-addcl 11024  ax-addrcl 11025  ax-mulcl 11026  ax-mulrcl 11027  ax-mulcom 11028  ax-addass 11029  ax-mulass 11030  ax-distr 11031  ax-i2m1 11032  ax-1ne0 11033  ax-1rid 11034  ax-rnegex 11035  ax-rrecex 11036  ax-cnre 11037  ax-pre-lttri 11038  ax-pre-lttrn 11039  ax-pre-ltadd 11040  ax-pre-mulgt0 11041
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3916  df-nul 4269  df-if 4473  df-pw 4548  df-sn 4573  df-pr 4575  df-op 4579  df-ot 4581  df-uni 4852  df-int 4894  df-iun 4940  df-br 5090  df-opab 5152  df-mpt 5173  df-tr 5207  df-id 5512  df-eprel 5518  df-po 5526  df-so 5527  df-fr 5569  df-we 5571  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6232  df-ord 6299  df-on 6300  df-lim 6301  df-suc 6302  df-iota 6425  df-fun 6475  df-fn 6476  df-f 6477  df-f1 6478  df-fo 6479  df-f1o 6480  df-fv 6481  df-riota 7286  df-ov 7332  df-oprab 7333  df-mpo 7334  df-om 7773  df-1st 7891  df-2nd 7892  df-frecs 8159  df-wrecs 8190  df-recs 8264  df-rdg 8303  df-1o 8359  df-er 8561  df-en 8797  df-dom 8798  df-sdom 8799  df-fin 8800  df-card 9788  df-pnf 11104  df-mnf 11105  df-xr 11106  df-ltxr 11107  df-le 11108  df-sub 11300  df-neg 11301  df-nn 12067  df-2 12129  df-n0 12327  df-z 12413  df-uz 12676  df-fz 13333  df-fzo 13476  df-seq 13815  df-hash 14138  df-word 14310  df-concat 14366  df-substr 14444  df-pfx 14474  df-splice 14553  df-sets 16954  df-slot 16972  df-ndx 16984  df-base 17002  df-ress 17031  df-plusg 17064  df-0g 17241  df-gsum 17242  df-mgm 18415  df-sgrp 18464  df-mnd 18475  df-submnd 18520
This theorem is referenced by:  psgnunilem2  19191
  Copyright terms: Public domain W3C validator