MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumspl Structured version   Visualization version   GIF version

Theorem gsumspl 18725
Description: The primary purpose of the splice construction is to enable local rewrites. Thus, in any monoidal valuation, if a splice does not cause a local change it does not cause a global change. (Contributed by Stefan O'Rear, 23-Aug-2015.)
Hypotheses
Ref Expression
gsumspl.b 𝐵 = (Base‘𝑀)
gsumspl.m (𝜑𝑀 ∈ Mnd)
gsumspl.s (𝜑𝑆 ∈ Word 𝐵)
gsumspl.f (𝜑𝐹 ∈ (0...𝑇))
gsumspl.t (𝜑𝑇 ∈ (0...(♯‘𝑆)))
gsumspl.x (𝜑𝑋 ∈ Word 𝐵)
gsumspl.y (𝜑𝑌 ∈ Word 𝐵)
gsumspl.eq (𝜑 → (𝑀 Σg 𝑋) = (𝑀 Σg 𝑌))
Assertion
Ref Expression
gsumspl (𝜑 → (𝑀 Σg (𝑆 splice ⟨𝐹, 𝑇, 𝑋⟩)) = (𝑀 Σg (𝑆 splice ⟨𝐹, 𝑇, 𝑌⟩)))

Proof of Theorem gsumspl
StepHypRef Expression
1 gsumspl.eq . . . 4 (𝜑 → (𝑀 Σg 𝑋) = (𝑀 Σg 𝑌))
21oveq2d 7425 . . 3 (𝜑 → ((𝑀 Σg (𝑆 prefix 𝐹))(+g𝑀)(𝑀 Σg 𝑋)) = ((𝑀 Σg (𝑆 prefix 𝐹))(+g𝑀)(𝑀 Σg 𝑌)))
32oveq1d 7424 . 2 (𝜑 → (((𝑀 Σg (𝑆 prefix 𝐹))(+g𝑀)(𝑀 Σg 𝑋))(+g𝑀)(𝑀 Σg (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))) = (((𝑀 Σg (𝑆 prefix 𝐹))(+g𝑀)(𝑀 Σg 𝑌))(+g𝑀)(𝑀 Σg (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))))
4 gsumspl.s . . . . 5 (𝜑𝑆 ∈ Word 𝐵)
5 gsumspl.f . . . . 5 (𝜑𝐹 ∈ (0...𝑇))
6 gsumspl.t . . . . 5 (𝜑𝑇 ∈ (0...(♯‘𝑆)))
7 gsumspl.x . . . . 5 (𝜑𝑋 ∈ Word 𝐵)
8 splval 14701 . . . . 5 ((𝑆 ∈ Word 𝐵 ∧ (𝐹 ∈ (0...𝑇) ∧ 𝑇 ∈ (0...(♯‘𝑆)) ∧ 𝑋 ∈ Word 𝐵)) → (𝑆 splice ⟨𝐹, 𝑇, 𝑋⟩) = (((𝑆 prefix 𝐹) ++ 𝑋) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩)))
94, 5, 6, 7, 8syl13anc 1373 . . . 4 (𝜑 → (𝑆 splice ⟨𝐹, 𝑇, 𝑋⟩) = (((𝑆 prefix 𝐹) ++ 𝑋) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩)))
109oveq2d 7425 . . 3 (𝜑 → (𝑀 Σg (𝑆 splice ⟨𝐹, 𝑇, 𝑋⟩)) = (𝑀 Σg (((𝑆 prefix 𝐹) ++ 𝑋) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))))
11 gsumspl.m . . . 4 (𝜑𝑀 ∈ Mnd)
12 pfxcl 14627 . . . . . 6 (𝑆 ∈ Word 𝐵 → (𝑆 prefix 𝐹) ∈ Word 𝐵)
134, 12syl 17 . . . . 5 (𝜑 → (𝑆 prefix 𝐹) ∈ Word 𝐵)
14 ccatcl 14524 . . . . 5 (((𝑆 prefix 𝐹) ∈ Word 𝐵𝑋 ∈ Word 𝐵) → ((𝑆 prefix 𝐹) ++ 𝑋) ∈ Word 𝐵)
1513, 7, 14syl2anc 585 . . . 4 (𝜑 → ((𝑆 prefix 𝐹) ++ 𝑋) ∈ Word 𝐵)
16 swrdcl 14595 . . . . 5 (𝑆 ∈ Word 𝐵 → (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩) ∈ Word 𝐵)
174, 16syl 17 . . . 4 (𝜑 → (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩) ∈ Word 𝐵)
18 gsumspl.b . . . . 5 𝐵 = (Base‘𝑀)
19 eqid 2733 . . . . 5 (+g𝑀) = (+g𝑀)
2018, 19gsumccat 18722 . . . 4 ((𝑀 ∈ Mnd ∧ ((𝑆 prefix 𝐹) ++ 𝑋) ∈ Word 𝐵 ∧ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩) ∈ Word 𝐵) → (𝑀 Σg (((𝑆 prefix 𝐹) ++ 𝑋) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))) = ((𝑀 Σg ((𝑆 prefix 𝐹) ++ 𝑋))(+g𝑀)(𝑀 Σg (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))))
2111, 15, 17, 20syl3anc 1372 . . 3 (𝜑 → (𝑀 Σg (((𝑆 prefix 𝐹) ++ 𝑋) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))) = ((𝑀 Σg ((𝑆 prefix 𝐹) ++ 𝑋))(+g𝑀)(𝑀 Σg (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))))
2218, 19gsumccat 18722 . . . . 5 ((𝑀 ∈ Mnd ∧ (𝑆 prefix 𝐹) ∈ Word 𝐵𝑋 ∈ Word 𝐵) → (𝑀 Σg ((𝑆 prefix 𝐹) ++ 𝑋)) = ((𝑀 Σg (𝑆 prefix 𝐹))(+g𝑀)(𝑀 Σg 𝑋)))
2311, 13, 7, 22syl3anc 1372 . . . 4 (𝜑 → (𝑀 Σg ((𝑆 prefix 𝐹) ++ 𝑋)) = ((𝑀 Σg (𝑆 prefix 𝐹))(+g𝑀)(𝑀 Σg 𝑋)))
2423oveq1d 7424 . . 3 (𝜑 → ((𝑀 Σg ((𝑆 prefix 𝐹) ++ 𝑋))(+g𝑀)(𝑀 Σg (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))) = (((𝑀 Σg (𝑆 prefix 𝐹))(+g𝑀)(𝑀 Σg 𝑋))(+g𝑀)(𝑀 Σg (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))))
2510, 21, 243eqtrd 2777 . 2 (𝜑 → (𝑀 Σg (𝑆 splice ⟨𝐹, 𝑇, 𝑋⟩)) = (((𝑀 Σg (𝑆 prefix 𝐹))(+g𝑀)(𝑀 Σg 𝑋))(+g𝑀)(𝑀 Σg (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))))
26 gsumspl.y . . . . 5 (𝜑𝑌 ∈ Word 𝐵)
27 splval 14701 . . . . 5 ((𝑆 ∈ Word 𝐵 ∧ (𝐹 ∈ (0...𝑇) ∧ 𝑇 ∈ (0...(♯‘𝑆)) ∧ 𝑌 ∈ Word 𝐵)) → (𝑆 splice ⟨𝐹, 𝑇, 𝑌⟩) = (((𝑆 prefix 𝐹) ++ 𝑌) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩)))
284, 5, 6, 26, 27syl13anc 1373 . . . 4 (𝜑 → (𝑆 splice ⟨𝐹, 𝑇, 𝑌⟩) = (((𝑆 prefix 𝐹) ++ 𝑌) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩)))
2928oveq2d 7425 . . 3 (𝜑 → (𝑀 Σg (𝑆 splice ⟨𝐹, 𝑇, 𝑌⟩)) = (𝑀 Σg (((𝑆 prefix 𝐹) ++ 𝑌) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))))
30 ccatcl 14524 . . . . 5 (((𝑆 prefix 𝐹) ∈ Word 𝐵𝑌 ∈ Word 𝐵) → ((𝑆 prefix 𝐹) ++ 𝑌) ∈ Word 𝐵)
3113, 26, 30syl2anc 585 . . . 4 (𝜑 → ((𝑆 prefix 𝐹) ++ 𝑌) ∈ Word 𝐵)
3218, 19gsumccat 18722 . . . 4 ((𝑀 ∈ Mnd ∧ ((𝑆 prefix 𝐹) ++ 𝑌) ∈ Word 𝐵 ∧ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩) ∈ Word 𝐵) → (𝑀 Σg (((𝑆 prefix 𝐹) ++ 𝑌) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))) = ((𝑀 Σg ((𝑆 prefix 𝐹) ++ 𝑌))(+g𝑀)(𝑀 Σg (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))))
3311, 31, 17, 32syl3anc 1372 . . 3 (𝜑 → (𝑀 Σg (((𝑆 prefix 𝐹) ++ 𝑌) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))) = ((𝑀 Σg ((𝑆 prefix 𝐹) ++ 𝑌))(+g𝑀)(𝑀 Σg (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))))
3418, 19gsumccat 18722 . . . . 5 ((𝑀 ∈ Mnd ∧ (𝑆 prefix 𝐹) ∈ Word 𝐵𝑌 ∈ Word 𝐵) → (𝑀 Σg ((𝑆 prefix 𝐹) ++ 𝑌)) = ((𝑀 Σg (𝑆 prefix 𝐹))(+g𝑀)(𝑀 Σg 𝑌)))
3511, 13, 26, 34syl3anc 1372 . . . 4 (𝜑 → (𝑀 Σg ((𝑆 prefix 𝐹) ++ 𝑌)) = ((𝑀 Σg (𝑆 prefix 𝐹))(+g𝑀)(𝑀 Σg 𝑌)))
3635oveq1d 7424 . . 3 (𝜑 → ((𝑀 Σg ((𝑆 prefix 𝐹) ++ 𝑌))(+g𝑀)(𝑀 Σg (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))) = (((𝑀 Σg (𝑆 prefix 𝐹))(+g𝑀)(𝑀 Σg 𝑌))(+g𝑀)(𝑀 Σg (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))))
3729, 33, 363eqtrd 2777 . 2 (𝜑 → (𝑀 Σg (𝑆 splice ⟨𝐹, 𝑇, 𝑌⟩)) = (((𝑀 Σg (𝑆 prefix 𝐹))(+g𝑀)(𝑀 Σg 𝑌))(+g𝑀)(𝑀 Σg (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))))
383, 25, 373eqtr4d 2783 1 (𝜑 → (𝑀 Σg (𝑆 splice ⟨𝐹, 𝑇, 𝑋⟩)) = (𝑀 Σg (𝑆 splice ⟨𝐹, 𝑇, 𝑌⟩)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2107  cop 4635  cotp 4637  cfv 6544  (class class class)co 7409  0cc0 11110  ...cfz 13484  chash 14290  Word cword 14464   ++ cconcat 14520   substr csubstr 14590   prefix cpfx 14620   splice csplice 14699  Basecbs 17144  +gcplusg 17197   Σg cgsu 17386  Mndcmnd 18625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-ot 4638  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-fin 8943  df-card 9934  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-nn 12213  df-2 12275  df-n0 12473  df-z 12559  df-uz 12823  df-fz 13485  df-fzo 13628  df-seq 13967  df-hash 14291  df-word 14465  df-concat 14521  df-substr 14591  df-pfx 14621  df-splice 14700  df-sets 17097  df-slot 17115  df-ndx 17127  df-base 17145  df-ress 17174  df-plusg 17210  df-0g 17387  df-gsum 17388  df-mgm 18561  df-sgrp 18610  df-mnd 18626  df-submnd 18672
This theorem is referenced by:  psgnunilem2  19363
  Copyright terms: Public domain W3C validator