MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumspl Structured version   Visualization version   GIF version

Theorem gsumspl 18718
Description: The primary purpose of the splice construction is to enable local rewrites. Thus, in any monoidal valuation, if a splice does not cause a local change it does not cause a global change. (Contributed by Stefan O'Rear, 23-Aug-2015.)
Hypotheses
Ref Expression
gsumspl.b 𝐵 = (Base‘𝑀)
gsumspl.m (𝜑𝑀 ∈ Mnd)
gsumspl.s (𝜑𝑆 ∈ Word 𝐵)
gsumspl.f (𝜑𝐹 ∈ (0...𝑇))
gsumspl.t (𝜑𝑇 ∈ (0...(♯‘𝑆)))
gsumspl.x (𝜑𝑋 ∈ Word 𝐵)
gsumspl.y (𝜑𝑌 ∈ Word 𝐵)
gsumspl.eq (𝜑 → (𝑀 Σg 𝑋) = (𝑀 Σg 𝑌))
Assertion
Ref Expression
gsumspl (𝜑 → (𝑀 Σg (𝑆 splice ⟨𝐹, 𝑇, 𝑋⟩)) = (𝑀 Σg (𝑆 splice ⟨𝐹, 𝑇, 𝑌⟩)))

Proof of Theorem gsumspl
StepHypRef Expression
1 gsumspl.eq . . . 4 (𝜑 → (𝑀 Σg 𝑋) = (𝑀 Σg 𝑌))
21oveq2d 7365 . . 3 (𝜑 → ((𝑀 Σg (𝑆 prefix 𝐹))(+g𝑀)(𝑀 Σg 𝑋)) = ((𝑀 Σg (𝑆 prefix 𝐹))(+g𝑀)(𝑀 Σg 𝑌)))
32oveq1d 7364 . 2 (𝜑 → (((𝑀 Σg (𝑆 prefix 𝐹))(+g𝑀)(𝑀 Σg 𝑋))(+g𝑀)(𝑀 Σg (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))) = (((𝑀 Σg (𝑆 prefix 𝐹))(+g𝑀)(𝑀 Σg 𝑌))(+g𝑀)(𝑀 Σg (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))))
4 gsumspl.s . . . . 5 (𝜑𝑆 ∈ Word 𝐵)
5 gsumspl.f . . . . 5 (𝜑𝐹 ∈ (0...𝑇))
6 gsumspl.t . . . . 5 (𝜑𝑇 ∈ (0...(♯‘𝑆)))
7 gsumspl.x . . . . 5 (𝜑𝑋 ∈ Word 𝐵)
8 splval 14657 . . . . 5 ((𝑆 ∈ Word 𝐵 ∧ (𝐹 ∈ (0...𝑇) ∧ 𝑇 ∈ (0...(♯‘𝑆)) ∧ 𝑋 ∈ Word 𝐵)) → (𝑆 splice ⟨𝐹, 𝑇, 𝑋⟩) = (((𝑆 prefix 𝐹) ++ 𝑋) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩)))
94, 5, 6, 7, 8syl13anc 1374 . . . 4 (𝜑 → (𝑆 splice ⟨𝐹, 𝑇, 𝑋⟩) = (((𝑆 prefix 𝐹) ++ 𝑋) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩)))
109oveq2d 7365 . . 3 (𝜑 → (𝑀 Σg (𝑆 splice ⟨𝐹, 𝑇, 𝑋⟩)) = (𝑀 Σg (((𝑆 prefix 𝐹) ++ 𝑋) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))))
11 gsumspl.m . . . 4 (𝜑𝑀 ∈ Mnd)
12 pfxcl 14584 . . . . . 6 (𝑆 ∈ Word 𝐵 → (𝑆 prefix 𝐹) ∈ Word 𝐵)
134, 12syl 17 . . . . 5 (𝜑 → (𝑆 prefix 𝐹) ∈ Word 𝐵)
14 ccatcl 14481 . . . . 5 (((𝑆 prefix 𝐹) ∈ Word 𝐵𝑋 ∈ Word 𝐵) → ((𝑆 prefix 𝐹) ++ 𝑋) ∈ Word 𝐵)
1513, 7, 14syl2anc 584 . . . 4 (𝜑 → ((𝑆 prefix 𝐹) ++ 𝑋) ∈ Word 𝐵)
16 swrdcl 14552 . . . . 5 (𝑆 ∈ Word 𝐵 → (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩) ∈ Word 𝐵)
174, 16syl 17 . . . 4 (𝜑 → (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩) ∈ Word 𝐵)
18 gsumspl.b . . . . 5 𝐵 = (Base‘𝑀)
19 eqid 2729 . . . . 5 (+g𝑀) = (+g𝑀)
2018, 19gsumccat 18715 . . . 4 ((𝑀 ∈ Mnd ∧ ((𝑆 prefix 𝐹) ++ 𝑋) ∈ Word 𝐵 ∧ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩) ∈ Word 𝐵) → (𝑀 Σg (((𝑆 prefix 𝐹) ++ 𝑋) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))) = ((𝑀 Σg ((𝑆 prefix 𝐹) ++ 𝑋))(+g𝑀)(𝑀 Σg (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))))
2111, 15, 17, 20syl3anc 1373 . . 3 (𝜑 → (𝑀 Σg (((𝑆 prefix 𝐹) ++ 𝑋) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))) = ((𝑀 Σg ((𝑆 prefix 𝐹) ++ 𝑋))(+g𝑀)(𝑀 Σg (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))))
2218, 19gsumccat 18715 . . . . 5 ((𝑀 ∈ Mnd ∧ (𝑆 prefix 𝐹) ∈ Word 𝐵𝑋 ∈ Word 𝐵) → (𝑀 Σg ((𝑆 prefix 𝐹) ++ 𝑋)) = ((𝑀 Σg (𝑆 prefix 𝐹))(+g𝑀)(𝑀 Σg 𝑋)))
2311, 13, 7, 22syl3anc 1373 . . . 4 (𝜑 → (𝑀 Σg ((𝑆 prefix 𝐹) ++ 𝑋)) = ((𝑀 Σg (𝑆 prefix 𝐹))(+g𝑀)(𝑀 Σg 𝑋)))
2423oveq1d 7364 . . 3 (𝜑 → ((𝑀 Σg ((𝑆 prefix 𝐹) ++ 𝑋))(+g𝑀)(𝑀 Σg (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))) = (((𝑀 Σg (𝑆 prefix 𝐹))(+g𝑀)(𝑀 Σg 𝑋))(+g𝑀)(𝑀 Σg (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))))
2510, 21, 243eqtrd 2768 . 2 (𝜑 → (𝑀 Σg (𝑆 splice ⟨𝐹, 𝑇, 𝑋⟩)) = (((𝑀 Σg (𝑆 prefix 𝐹))(+g𝑀)(𝑀 Σg 𝑋))(+g𝑀)(𝑀 Σg (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))))
26 gsumspl.y . . . . 5 (𝜑𝑌 ∈ Word 𝐵)
27 splval 14657 . . . . 5 ((𝑆 ∈ Word 𝐵 ∧ (𝐹 ∈ (0...𝑇) ∧ 𝑇 ∈ (0...(♯‘𝑆)) ∧ 𝑌 ∈ Word 𝐵)) → (𝑆 splice ⟨𝐹, 𝑇, 𝑌⟩) = (((𝑆 prefix 𝐹) ++ 𝑌) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩)))
284, 5, 6, 26, 27syl13anc 1374 . . . 4 (𝜑 → (𝑆 splice ⟨𝐹, 𝑇, 𝑌⟩) = (((𝑆 prefix 𝐹) ++ 𝑌) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩)))
2928oveq2d 7365 . . 3 (𝜑 → (𝑀 Σg (𝑆 splice ⟨𝐹, 𝑇, 𝑌⟩)) = (𝑀 Σg (((𝑆 prefix 𝐹) ++ 𝑌) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))))
30 ccatcl 14481 . . . . 5 (((𝑆 prefix 𝐹) ∈ Word 𝐵𝑌 ∈ Word 𝐵) → ((𝑆 prefix 𝐹) ++ 𝑌) ∈ Word 𝐵)
3113, 26, 30syl2anc 584 . . . 4 (𝜑 → ((𝑆 prefix 𝐹) ++ 𝑌) ∈ Word 𝐵)
3218, 19gsumccat 18715 . . . 4 ((𝑀 ∈ Mnd ∧ ((𝑆 prefix 𝐹) ++ 𝑌) ∈ Word 𝐵 ∧ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩) ∈ Word 𝐵) → (𝑀 Σg (((𝑆 prefix 𝐹) ++ 𝑌) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))) = ((𝑀 Σg ((𝑆 prefix 𝐹) ++ 𝑌))(+g𝑀)(𝑀 Σg (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))))
3311, 31, 17, 32syl3anc 1373 . . 3 (𝜑 → (𝑀 Σg (((𝑆 prefix 𝐹) ++ 𝑌) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))) = ((𝑀 Σg ((𝑆 prefix 𝐹) ++ 𝑌))(+g𝑀)(𝑀 Σg (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))))
3418, 19gsumccat 18715 . . . . 5 ((𝑀 ∈ Mnd ∧ (𝑆 prefix 𝐹) ∈ Word 𝐵𝑌 ∈ Word 𝐵) → (𝑀 Σg ((𝑆 prefix 𝐹) ++ 𝑌)) = ((𝑀 Σg (𝑆 prefix 𝐹))(+g𝑀)(𝑀 Σg 𝑌)))
3511, 13, 26, 34syl3anc 1373 . . . 4 (𝜑 → (𝑀 Σg ((𝑆 prefix 𝐹) ++ 𝑌)) = ((𝑀 Σg (𝑆 prefix 𝐹))(+g𝑀)(𝑀 Σg 𝑌)))
3635oveq1d 7364 . . 3 (𝜑 → ((𝑀 Σg ((𝑆 prefix 𝐹) ++ 𝑌))(+g𝑀)(𝑀 Σg (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))) = (((𝑀 Σg (𝑆 prefix 𝐹))(+g𝑀)(𝑀 Σg 𝑌))(+g𝑀)(𝑀 Σg (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))))
3729, 33, 363eqtrd 2768 . 2 (𝜑 → (𝑀 Σg (𝑆 splice ⟨𝐹, 𝑇, 𝑌⟩)) = (((𝑀 Σg (𝑆 prefix 𝐹))(+g𝑀)(𝑀 Σg 𝑌))(+g𝑀)(𝑀 Σg (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))))
383, 25, 373eqtr4d 2774 1 (𝜑 → (𝑀 Σg (𝑆 splice ⟨𝐹, 𝑇, 𝑋⟩)) = (𝑀 Σg (𝑆 splice ⟨𝐹, 𝑇, 𝑌⟩)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cop 4583  cotp 4585  cfv 6482  (class class class)co 7349  0cc0 11009  ...cfz 13410  chash 14237  Word cword 14420   ++ cconcat 14477   substr csubstr 14547   prefix cpfx 14577   splice csplice 14655  Basecbs 17120  +gcplusg 17161   Σg cgsu 17344  Mndcmnd 18608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-ot 4586  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-n0 12385  df-z 12472  df-uz 12736  df-fz 13411  df-fzo 13558  df-seq 13909  df-hash 14238  df-word 14421  df-concat 14478  df-substr 14548  df-pfx 14578  df-splice 14656  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-0g 17345  df-gsum 17346  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-submnd 18658
This theorem is referenced by:  psgnunilem2  19374
  Copyright terms: Public domain W3C validator