MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumspl Structured version   Visualization version   GIF version

Theorem gsumspl 18668
Description: The primary purpose of the splice construction is to enable local rewrites. Thus, in any monoidal valuation, if a splice does not cause a local change it does not cause a global change. (Contributed by Stefan O'Rear, 23-Aug-2015.)
Hypotheses
Ref Expression
gsumspl.b 𝐵 = (Base‘𝑀)
gsumspl.m (𝜑𝑀 ∈ Mnd)
gsumspl.s (𝜑𝑆 ∈ Word 𝐵)
gsumspl.f (𝜑𝐹 ∈ (0...𝑇))
gsumspl.t (𝜑𝑇 ∈ (0...(♯‘𝑆)))
gsumspl.x (𝜑𝑋 ∈ Word 𝐵)
gsumspl.y (𝜑𝑌 ∈ Word 𝐵)
gsumspl.eq (𝜑 → (𝑀 Σg 𝑋) = (𝑀 Σg 𝑌))
Assertion
Ref Expression
gsumspl (𝜑 → (𝑀 Σg (𝑆 splice ⟨𝐹, 𝑇, 𝑋⟩)) = (𝑀 Σg (𝑆 splice ⟨𝐹, 𝑇, 𝑌⟩)))

Proof of Theorem gsumspl
StepHypRef Expression
1 gsumspl.eq . . . 4 (𝜑 → (𝑀 Σg 𝑋) = (𝑀 Σg 𝑌))
21oveq2d 7378 . . 3 (𝜑 → ((𝑀 Σg (𝑆 prefix 𝐹))(+g𝑀)(𝑀 Σg 𝑋)) = ((𝑀 Σg (𝑆 prefix 𝐹))(+g𝑀)(𝑀 Σg 𝑌)))
32oveq1d 7377 . 2 (𝜑 → (((𝑀 Σg (𝑆 prefix 𝐹))(+g𝑀)(𝑀 Σg 𝑋))(+g𝑀)(𝑀 Σg (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))) = (((𝑀 Σg (𝑆 prefix 𝐹))(+g𝑀)(𝑀 Σg 𝑌))(+g𝑀)(𝑀 Σg (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))))
4 gsumspl.s . . . . 5 (𝜑𝑆 ∈ Word 𝐵)
5 gsumspl.f . . . . 5 (𝜑𝐹 ∈ (0...𝑇))
6 gsumspl.t . . . . 5 (𝜑𝑇 ∈ (0...(♯‘𝑆)))
7 gsumspl.x . . . . 5 (𝜑𝑋 ∈ Word 𝐵)
8 splval 14651 . . . . 5 ((𝑆 ∈ Word 𝐵 ∧ (𝐹 ∈ (0...𝑇) ∧ 𝑇 ∈ (0...(♯‘𝑆)) ∧ 𝑋 ∈ Word 𝐵)) → (𝑆 splice ⟨𝐹, 𝑇, 𝑋⟩) = (((𝑆 prefix 𝐹) ++ 𝑋) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩)))
94, 5, 6, 7, 8syl13anc 1372 . . . 4 (𝜑 → (𝑆 splice ⟨𝐹, 𝑇, 𝑋⟩) = (((𝑆 prefix 𝐹) ++ 𝑋) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩)))
109oveq2d 7378 . . 3 (𝜑 → (𝑀 Σg (𝑆 splice ⟨𝐹, 𝑇, 𝑋⟩)) = (𝑀 Σg (((𝑆 prefix 𝐹) ++ 𝑋) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))))
11 gsumspl.m . . . 4 (𝜑𝑀 ∈ Mnd)
12 pfxcl 14577 . . . . . 6 (𝑆 ∈ Word 𝐵 → (𝑆 prefix 𝐹) ∈ Word 𝐵)
134, 12syl 17 . . . . 5 (𝜑 → (𝑆 prefix 𝐹) ∈ Word 𝐵)
14 ccatcl 14474 . . . . 5 (((𝑆 prefix 𝐹) ∈ Word 𝐵𝑋 ∈ Word 𝐵) → ((𝑆 prefix 𝐹) ++ 𝑋) ∈ Word 𝐵)
1513, 7, 14syl2anc 584 . . . 4 (𝜑 → ((𝑆 prefix 𝐹) ++ 𝑋) ∈ Word 𝐵)
16 swrdcl 14545 . . . . 5 (𝑆 ∈ Word 𝐵 → (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩) ∈ Word 𝐵)
174, 16syl 17 . . . 4 (𝜑 → (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩) ∈ Word 𝐵)
18 gsumspl.b . . . . 5 𝐵 = (Base‘𝑀)
19 eqid 2731 . . . . 5 (+g𝑀) = (+g𝑀)
2018, 19gsumccat 18665 . . . 4 ((𝑀 ∈ Mnd ∧ ((𝑆 prefix 𝐹) ++ 𝑋) ∈ Word 𝐵 ∧ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩) ∈ Word 𝐵) → (𝑀 Σg (((𝑆 prefix 𝐹) ++ 𝑋) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))) = ((𝑀 Σg ((𝑆 prefix 𝐹) ++ 𝑋))(+g𝑀)(𝑀 Σg (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))))
2111, 15, 17, 20syl3anc 1371 . . 3 (𝜑 → (𝑀 Σg (((𝑆 prefix 𝐹) ++ 𝑋) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))) = ((𝑀 Σg ((𝑆 prefix 𝐹) ++ 𝑋))(+g𝑀)(𝑀 Σg (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))))
2218, 19gsumccat 18665 . . . . 5 ((𝑀 ∈ Mnd ∧ (𝑆 prefix 𝐹) ∈ Word 𝐵𝑋 ∈ Word 𝐵) → (𝑀 Σg ((𝑆 prefix 𝐹) ++ 𝑋)) = ((𝑀 Σg (𝑆 prefix 𝐹))(+g𝑀)(𝑀 Σg 𝑋)))
2311, 13, 7, 22syl3anc 1371 . . . 4 (𝜑 → (𝑀 Σg ((𝑆 prefix 𝐹) ++ 𝑋)) = ((𝑀 Σg (𝑆 prefix 𝐹))(+g𝑀)(𝑀 Σg 𝑋)))
2423oveq1d 7377 . . 3 (𝜑 → ((𝑀 Σg ((𝑆 prefix 𝐹) ++ 𝑋))(+g𝑀)(𝑀 Σg (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))) = (((𝑀 Σg (𝑆 prefix 𝐹))(+g𝑀)(𝑀 Σg 𝑋))(+g𝑀)(𝑀 Σg (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))))
2510, 21, 243eqtrd 2775 . 2 (𝜑 → (𝑀 Σg (𝑆 splice ⟨𝐹, 𝑇, 𝑋⟩)) = (((𝑀 Σg (𝑆 prefix 𝐹))(+g𝑀)(𝑀 Σg 𝑋))(+g𝑀)(𝑀 Σg (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))))
26 gsumspl.y . . . . 5 (𝜑𝑌 ∈ Word 𝐵)
27 splval 14651 . . . . 5 ((𝑆 ∈ Word 𝐵 ∧ (𝐹 ∈ (0...𝑇) ∧ 𝑇 ∈ (0...(♯‘𝑆)) ∧ 𝑌 ∈ Word 𝐵)) → (𝑆 splice ⟨𝐹, 𝑇, 𝑌⟩) = (((𝑆 prefix 𝐹) ++ 𝑌) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩)))
284, 5, 6, 26, 27syl13anc 1372 . . . 4 (𝜑 → (𝑆 splice ⟨𝐹, 𝑇, 𝑌⟩) = (((𝑆 prefix 𝐹) ++ 𝑌) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩)))
2928oveq2d 7378 . . 3 (𝜑 → (𝑀 Σg (𝑆 splice ⟨𝐹, 𝑇, 𝑌⟩)) = (𝑀 Σg (((𝑆 prefix 𝐹) ++ 𝑌) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))))
30 ccatcl 14474 . . . . 5 (((𝑆 prefix 𝐹) ∈ Word 𝐵𝑌 ∈ Word 𝐵) → ((𝑆 prefix 𝐹) ++ 𝑌) ∈ Word 𝐵)
3113, 26, 30syl2anc 584 . . . 4 (𝜑 → ((𝑆 prefix 𝐹) ++ 𝑌) ∈ Word 𝐵)
3218, 19gsumccat 18665 . . . 4 ((𝑀 ∈ Mnd ∧ ((𝑆 prefix 𝐹) ++ 𝑌) ∈ Word 𝐵 ∧ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩) ∈ Word 𝐵) → (𝑀 Σg (((𝑆 prefix 𝐹) ++ 𝑌) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))) = ((𝑀 Σg ((𝑆 prefix 𝐹) ++ 𝑌))(+g𝑀)(𝑀 Σg (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))))
3311, 31, 17, 32syl3anc 1371 . . 3 (𝜑 → (𝑀 Σg (((𝑆 prefix 𝐹) ++ 𝑌) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))) = ((𝑀 Σg ((𝑆 prefix 𝐹) ++ 𝑌))(+g𝑀)(𝑀 Σg (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))))
3418, 19gsumccat 18665 . . . . 5 ((𝑀 ∈ Mnd ∧ (𝑆 prefix 𝐹) ∈ Word 𝐵𝑌 ∈ Word 𝐵) → (𝑀 Σg ((𝑆 prefix 𝐹) ++ 𝑌)) = ((𝑀 Σg (𝑆 prefix 𝐹))(+g𝑀)(𝑀 Σg 𝑌)))
3511, 13, 26, 34syl3anc 1371 . . . 4 (𝜑 → (𝑀 Σg ((𝑆 prefix 𝐹) ++ 𝑌)) = ((𝑀 Σg (𝑆 prefix 𝐹))(+g𝑀)(𝑀 Σg 𝑌)))
3635oveq1d 7377 . . 3 (𝜑 → ((𝑀 Σg ((𝑆 prefix 𝐹) ++ 𝑌))(+g𝑀)(𝑀 Σg (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))) = (((𝑀 Σg (𝑆 prefix 𝐹))(+g𝑀)(𝑀 Σg 𝑌))(+g𝑀)(𝑀 Σg (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))))
3729, 33, 363eqtrd 2775 . 2 (𝜑 → (𝑀 Σg (𝑆 splice ⟨𝐹, 𝑇, 𝑌⟩)) = (((𝑀 Σg (𝑆 prefix 𝐹))(+g𝑀)(𝑀 Σg 𝑌))(+g𝑀)(𝑀 Σg (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))))
383, 25, 373eqtr4d 2781 1 (𝜑 → (𝑀 Σg (𝑆 splice ⟨𝐹, 𝑇, 𝑋⟩)) = (𝑀 Σg (𝑆 splice ⟨𝐹, 𝑇, 𝑌⟩)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2106  cop 4597  cotp 4599  cfv 6501  (class class class)co 7362  0cc0 11060  ...cfz 13434  chash 14240  Word cword 14414   ++ cconcat 14470   substr csubstr 14540   prefix cpfx 14570   splice csplice 14649  Basecbs 17094  +gcplusg 17147   Σg cgsu 17336  Mndcmnd 18570
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-cnex 11116  ax-resscn 11117  ax-1cn 11118  ax-icn 11119  ax-addcl 11120  ax-addrcl 11121  ax-mulcl 11122  ax-mulrcl 11123  ax-mulcom 11124  ax-addass 11125  ax-mulass 11126  ax-distr 11127  ax-i2m1 11128  ax-1ne0 11129  ax-1rid 11130  ax-rnegex 11131  ax-rrecex 11132  ax-cnre 11133  ax-pre-lttri 11134  ax-pre-lttrn 11135  ax-pre-ltadd 11136  ax-pre-mulgt0 11137
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3351  df-reu 3352  df-rab 3406  df-v 3448  df-sbc 3743  df-csb 3859  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-pss 3932  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-ot 4600  df-uni 4871  df-int 4913  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-om 7808  df-1st 7926  df-2nd 7927  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-1o 8417  df-er 8655  df-en 8891  df-dom 8892  df-sdom 8893  df-fin 8894  df-card 9884  df-pnf 11200  df-mnf 11201  df-xr 11202  df-ltxr 11203  df-le 11204  df-sub 11396  df-neg 11397  df-nn 12163  df-2 12225  df-n0 12423  df-z 12509  df-uz 12773  df-fz 13435  df-fzo 13578  df-seq 13917  df-hash 14241  df-word 14415  df-concat 14471  df-substr 14541  df-pfx 14571  df-splice 14650  df-sets 17047  df-slot 17065  df-ndx 17077  df-base 17095  df-ress 17124  df-plusg 17160  df-0g 17337  df-gsum 17338  df-mgm 18511  df-sgrp 18560  df-mnd 18571  df-submnd 18616
This theorem is referenced by:  psgnunilem2  19291
  Copyright terms: Public domain W3C validator