Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  splfv3 Structured version   Visualization version   GIF version

Theorem splfv3 31224
Description: Symbols to the right of a splice are unaffected. (Contributed by Thierry Arnoux, 14-Dec-2023.)
Hypotheses
Ref Expression
splfv3.s (𝜑𝑆 ∈ Word 𝐴)
splfv3.f (𝜑𝐹 ∈ (0...𝑇))
splfv3.t (𝜑𝑇 ∈ (0...(♯‘𝑆)))
splfv3.r (𝜑𝑅 ∈ Word 𝐴)
splfv3.x (𝜑𝑋 ∈ (0..^((♯‘𝑆) − 𝑇)))
splfv3.k (𝜑𝐾 = (𝐹 + (♯‘𝑅)))
Assertion
Ref Expression
splfv3 (𝜑 → ((𝑆 splice ⟨𝐹, 𝑇, 𝑅⟩)‘(𝑋 + 𝐾)) = (𝑆‘(𝑋 + 𝑇)))

Proof of Theorem splfv3
StepHypRef Expression
1 splfv3.s . . . 4 (𝜑𝑆 ∈ Word 𝐴)
2 splfv3.f . . . 4 (𝜑𝐹 ∈ (0...𝑇))
3 splfv3.t . . . 4 (𝜑𝑇 ∈ (0...(♯‘𝑆)))
4 splfv3.r . . . 4 (𝜑𝑅 ∈ Word 𝐴)
5 splval 14460 . . . 4 ((𝑆 ∈ Word 𝐴 ∧ (𝐹 ∈ (0...𝑇) ∧ 𝑇 ∈ (0...(♯‘𝑆)) ∧ 𝑅 ∈ Word 𝐴)) → (𝑆 splice ⟨𝐹, 𝑇, 𝑅⟩) = (((𝑆 prefix 𝐹) ++ 𝑅) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩)))
61, 2, 3, 4, 5syl13anc 1371 . . 3 (𝜑 → (𝑆 splice ⟨𝐹, 𝑇, 𝑅⟩) = (((𝑆 prefix 𝐹) ++ 𝑅) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩)))
7 elfzuz3 13250 . . . . . . . . 9 (𝑇 ∈ (0...(♯‘𝑆)) → (♯‘𝑆) ∈ (ℤ𝑇))
8 fzss2 13293 . . . . . . . . 9 ((♯‘𝑆) ∈ (ℤ𝑇) → (0...𝑇) ⊆ (0...(♯‘𝑆)))
93, 7, 83syl 18 . . . . . . . 8 (𝜑 → (0...𝑇) ⊆ (0...(♯‘𝑆)))
109, 2sseldd 3927 . . . . . . 7 (𝜑𝐹 ∈ (0...(♯‘𝑆)))
11 pfxlen 14392 . . . . . . 7 ((𝑆 ∈ Word 𝐴𝐹 ∈ (0...(♯‘𝑆))) → (♯‘(𝑆 prefix 𝐹)) = 𝐹)
121, 10, 11syl2anc 584 . . . . . 6 (𝜑 → (♯‘(𝑆 prefix 𝐹)) = 𝐹)
1312oveq1d 7284 . . . . 5 (𝜑 → ((♯‘(𝑆 prefix 𝐹)) + (♯‘𝑅)) = (𝐹 + (♯‘𝑅)))
14 pfxcl 14386 . . . . . . 7 (𝑆 ∈ Word 𝐴 → (𝑆 prefix 𝐹) ∈ Word 𝐴)
151, 14syl 17 . . . . . 6 (𝜑 → (𝑆 prefix 𝐹) ∈ Word 𝐴)
16 ccatlen 14274 . . . . . 6 (((𝑆 prefix 𝐹) ∈ Word 𝐴𝑅 ∈ Word 𝐴) → (♯‘((𝑆 prefix 𝐹) ++ 𝑅)) = ((♯‘(𝑆 prefix 𝐹)) + (♯‘𝑅)))
1715, 4, 16syl2anc 584 . . . . 5 (𝜑 → (♯‘((𝑆 prefix 𝐹) ++ 𝑅)) = ((♯‘(𝑆 prefix 𝐹)) + (♯‘𝑅)))
18 splfv3.k . . . . 5 (𝜑𝐾 = (𝐹 + (♯‘𝑅)))
1913, 17, 183eqtr4rd 2791 . . . 4 (𝜑𝐾 = (♯‘((𝑆 prefix 𝐹) ++ 𝑅)))
2019oveq2d 7285 . . 3 (𝜑 → (𝑋 + 𝐾) = (𝑋 + (♯‘((𝑆 prefix 𝐹) ++ 𝑅))))
216, 20fveq12d 6776 . 2 (𝜑 → ((𝑆 splice ⟨𝐹, 𝑇, 𝑅⟩)‘(𝑋 + 𝐾)) = ((((𝑆 prefix 𝐹) ++ 𝑅) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))‘(𝑋 + (♯‘((𝑆 prefix 𝐹) ++ 𝑅)))))
22 ccatcl 14273 . . . 4 (((𝑆 prefix 𝐹) ∈ Word 𝐴𝑅 ∈ Word 𝐴) → ((𝑆 prefix 𝐹) ++ 𝑅) ∈ Word 𝐴)
2315, 4, 22syl2anc 584 . . 3 (𝜑 → ((𝑆 prefix 𝐹) ++ 𝑅) ∈ Word 𝐴)
24 swrdcl 14354 . . . 4 (𝑆 ∈ Word 𝐴 → (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩) ∈ Word 𝐴)
251, 24syl 17 . . 3 (𝜑 → (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩) ∈ Word 𝐴)
26 splfv3.x . . . 4 (𝜑𝑋 ∈ (0..^((♯‘𝑆) − 𝑇)))
27 lencl 14232 . . . . . . . 8 (𝑆 ∈ Word 𝐴 → (♯‘𝑆) ∈ ℕ0)
28 nn0fz0 13351 . . . . . . . 8 ((♯‘𝑆) ∈ ℕ0 ↔ (♯‘𝑆) ∈ (0...(♯‘𝑆)))
2927, 28sylib 217 . . . . . . 7 (𝑆 ∈ Word 𝐴 → (♯‘𝑆) ∈ (0...(♯‘𝑆)))
301, 29syl 17 . . . . . 6 (𝜑 → (♯‘𝑆) ∈ (0...(♯‘𝑆)))
31 swrdlen 14356 . . . . . 6 ((𝑆 ∈ Word 𝐴𝑇 ∈ (0...(♯‘𝑆)) ∧ (♯‘𝑆) ∈ (0...(♯‘𝑆))) → (♯‘(𝑆 substr ⟨𝑇, (♯‘𝑆)⟩)) = ((♯‘𝑆) − 𝑇))
321, 3, 30, 31syl3anc 1370 . . . . 5 (𝜑 → (♯‘(𝑆 substr ⟨𝑇, (♯‘𝑆)⟩)) = ((♯‘𝑆) − 𝑇))
3332oveq2d 7285 . . . 4 (𝜑 → (0..^(♯‘(𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))) = (0..^((♯‘𝑆) − 𝑇)))
3426, 33eleqtrrd 2844 . . 3 (𝜑𝑋 ∈ (0..^(♯‘(𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))))
35 ccatval3 14280 . . 3 ((((𝑆 prefix 𝐹) ++ 𝑅) ∈ Word 𝐴 ∧ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩) ∈ Word 𝐴𝑋 ∈ (0..^(♯‘(𝑆 substr ⟨𝑇, (♯‘𝑆)⟩)))) → ((((𝑆 prefix 𝐹) ++ 𝑅) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))‘(𝑋 + (♯‘((𝑆 prefix 𝐹) ++ 𝑅)))) = ((𝑆 substr ⟨𝑇, (♯‘𝑆)⟩)‘𝑋))
3623, 25, 34, 35syl3anc 1370 . 2 (𝜑 → ((((𝑆 prefix 𝐹) ++ 𝑅) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))‘(𝑋 + (♯‘((𝑆 prefix 𝐹) ++ 𝑅)))) = ((𝑆 substr ⟨𝑇, (♯‘𝑆)⟩)‘𝑋))
37 swrdfv 14357 . . 3 (((𝑆 ∈ Word 𝐴𝑇 ∈ (0...(♯‘𝑆)) ∧ (♯‘𝑆) ∈ (0...(♯‘𝑆))) ∧ 𝑋 ∈ (0..^((♯‘𝑆) − 𝑇))) → ((𝑆 substr ⟨𝑇, (♯‘𝑆)⟩)‘𝑋) = (𝑆‘(𝑋 + 𝑇)))
381, 3, 30, 26, 37syl31anc 1372 . 2 (𝜑 → ((𝑆 substr ⟨𝑇, (♯‘𝑆)⟩)‘𝑋) = (𝑆‘(𝑋 + 𝑇)))
3921, 36, 383eqtrd 2784 1 (𝜑 → ((𝑆 splice ⟨𝐹, 𝑇, 𝑅⟩)‘(𝑋 + 𝐾)) = (𝑆‘(𝑋 + 𝑇)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2110  wss 3892  cop 4573  cotp 4575  cfv 6431  (class class class)co 7269  0cc0 10870   + caddc 10873  cmin 11203  0cn0 12231  cuz 12579  ...cfz 13236  ..^cfzo 13379  chash 14040  Word cword 14213   ++ cconcat 14269   substr csubstr 14349   prefix cpfx 14379   splice csplice 14458
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7580  ax-cnex 10926  ax-resscn 10927  ax-1cn 10928  ax-icn 10929  ax-addcl 10930  ax-addrcl 10931  ax-mulcl 10932  ax-mulrcl 10933  ax-mulcom 10934  ax-addass 10935  ax-mulass 10936  ax-distr 10937  ax-i2m1 10938  ax-1ne0 10939  ax-1rid 10940  ax-rnegex 10941  ax-rrecex 10942  ax-cnre 10943  ax-pre-lttri 10944  ax-pre-lttrn 10945  ax-pre-ltadd 10946  ax-pre-mulgt0 10947
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-ot 4576  df-uni 4846  df-int 4886  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6200  df-ord 6267  df-on 6268  df-lim 6269  df-suc 6270  df-iota 6389  df-fun 6433  df-fn 6434  df-f 6435  df-f1 6436  df-fo 6437  df-f1o 6438  df-fv 6439  df-riota 7226  df-ov 7272  df-oprab 7273  df-mpo 7274  df-om 7705  df-1st 7822  df-2nd 7823  df-frecs 8086  df-wrecs 8117  df-recs 8191  df-rdg 8230  df-1o 8286  df-er 8479  df-en 8715  df-dom 8716  df-sdom 8717  df-fin 8718  df-card 9696  df-pnf 11010  df-mnf 11011  df-xr 11012  df-ltxr 11013  df-le 11014  df-sub 11205  df-neg 11206  df-nn 11972  df-n0 12232  df-z 12318  df-uz 12580  df-fz 13237  df-fzo 13380  df-hash 14041  df-word 14214  df-concat 14270  df-substr 14350  df-pfx 14380  df-splice 14459
This theorem is referenced by:  cycpmco2lem5  31391  cycpmco2lem6  31392
  Copyright terms: Public domain W3C validator