Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  splfv3 Structured version   Visualization version   GIF version

Theorem splfv3 32928
Description: Symbols to the right of a splice are unaffected. (Contributed by Thierry Arnoux, 14-Dec-2023.)
Hypotheses
Ref Expression
splfv3.s (𝜑𝑆 ∈ Word 𝐴)
splfv3.f (𝜑𝐹 ∈ (0...𝑇))
splfv3.t (𝜑𝑇 ∈ (0...(♯‘𝑆)))
splfv3.r (𝜑𝑅 ∈ Word 𝐴)
splfv3.x (𝜑𝑋 ∈ (0..^((♯‘𝑆) − 𝑇)))
splfv3.k (𝜑𝐾 = (𝐹 + (♯‘𝑅)))
Assertion
Ref Expression
splfv3 (𝜑 → ((𝑆 splice ⟨𝐹, 𝑇, 𝑅⟩)‘(𝑋 + 𝐾)) = (𝑆‘(𝑋 + 𝑇)))

Proof of Theorem splfv3
StepHypRef Expression
1 splfv3.s . . . 4 (𝜑𝑆 ∈ Word 𝐴)
2 splfv3.f . . . 4 (𝜑𝐹 ∈ (0...𝑇))
3 splfv3.t . . . 4 (𝜑𝑇 ∈ (0...(♯‘𝑆)))
4 splfv3.r . . . 4 (𝜑𝑅 ∈ Word 𝐴)
5 splval 14786 . . . 4 ((𝑆 ∈ Word 𝐴 ∧ (𝐹 ∈ (0...𝑇) ∧ 𝑇 ∈ (0...(♯‘𝑆)) ∧ 𝑅 ∈ Word 𝐴)) → (𝑆 splice ⟨𝐹, 𝑇, 𝑅⟩) = (((𝑆 prefix 𝐹) ++ 𝑅) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩)))
61, 2, 3, 4, 5syl13anc 1371 . . 3 (𝜑 → (𝑆 splice ⟨𝐹, 𝑇, 𝑅⟩) = (((𝑆 prefix 𝐹) ++ 𝑅) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩)))
7 elfzuz3 13558 . . . . . . . . 9 (𝑇 ∈ (0...(♯‘𝑆)) → (♯‘𝑆) ∈ (ℤ𝑇))
8 fzss2 13601 . . . . . . . . 9 ((♯‘𝑆) ∈ (ℤ𝑇) → (0...𝑇) ⊆ (0...(♯‘𝑆)))
93, 7, 83syl 18 . . . . . . . 8 (𝜑 → (0...𝑇) ⊆ (0...(♯‘𝑆)))
109, 2sseldd 3996 . . . . . . 7 (𝜑𝐹 ∈ (0...(♯‘𝑆)))
11 pfxlen 14718 . . . . . . 7 ((𝑆 ∈ Word 𝐴𝐹 ∈ (0...(♯‘𝑆))) → (♯‘(𝑆 prefix 𝐹)) = 𝐹)
121, 10, 11syl2anc 584 . . . . . 6 (𝜑 → (♯‘(𝑆 prefix 𝐹)) = 𝐹)
1312oveq1d 7446 . . . . 5 (𝜑 → ((♯‘(𝑆 prefix 𝐹)) + (♯‘𝑅)) = (𝐹 + (♯‘𝑅)))
14 pfxcl 14712 . . . . . . 7 (𝑆 ∈ Word 𝐴 → (𝑆 prefix 𝐹) ∈ Word 𝐴)
151, 14syl 17 . . . . . 6 (𝜑 → (𝑆 prefix 𝐹) ∈ Word 𝐴)
16 ccatlen 14610 . . . . . 6 (((𝑆 prefix 𝐹) ∈ Word 𝐴𝑅 ∈ Word 𝐴) → (♯‘((𝑆 prefix 𝐹) ++ 𝑅)) = ((♯‘(𝑆 prefix 𝐹)) + (♯‘𝑅)))
1715, 4, 16syl2anc 584 . . . . 5 (𝜑 → (♯‘((𝑆 prefix 𝐹) ++ 𝑅)) = ((♯‘(𝑆 prefix 𝐹)) + (♯‘𝑅)))
18 splfv3.k . . . . 5 (𝜑𝐾 = (𝐹 + (♯‘𝑅)))
1913, 17, 183eqtr4rd 2786 . . . 4 (𝜑𝐾 = (♯‘((𝑆 prefix 𝐹) ++ 𝑅)))
2019oveq2d 7447 . . 3 (𝜑 → (𝑋 + 𝐾) = (𝑋 + (♯‘((𝑆 prefix 𝐹) ++ 𝑅))))
216, 20fveq12d 6914 . 2 (𝜑 → ((𝑆 splice ⟨𝐹, 𝑇, 𝑅⟩)‘(𝑋 + 𝐾)) = ((((𝑆 prefix 𝐹) ++ 𝑅) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))‘(𝑋 + (♯‘((𝑆 prefix 𝐹) ++ 𝑅)))))
22 ccatcl 14609 . . . 4 (((𝑆 prefix 𝐹) ∈ Word 𝐴𝑅 ∈ Word 𝐴) → ((𝑆 prefix 𝐹) ++ 𝑅) ∈ Word 𝐴)
2315, 4, 22syl2anc 584 . . 3 (𝜑 → ((𝑆 prefix 𝐹) ++ 𝑅) ∈ Word 𝐴)
24 swrdcl 14680 . . . 4 (𝑆 ∈ Word 𝐴 → (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩) ∈ Word 𝐴)
251, 24syl 17 . . 3 (𝜑 → (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩) ∈ Word 𝐴)
26 splfv3.x . . . 4 (𝜑𝑋 ∈ (0..^((♯‘𝑆) − 𝑇)))
27 lencl 14568 . . . . . . . 8 (𝑆 ∈ Word 𝐴 → (♯‘𝑆) ∈ ℕ0)
28 nn0fz0 13662 . . . . . . . 8 ((♯‘𝑆) ∈ ℕ0 ↔ (♯‘𝑆) ∈ (0...(♯‘𝑆)))
2927, 28sylib 218 . . . . . . 7 (𝑆 ∈ Word 𝐴 → (♯‘𝑆) ∈ (0...(♯‘𝑆)))
301, 29syl 17 . . . . . 6 (𝜑 → (♯‘𝑆) ∈ (0...(♯‘𝑆)))
31 swrdlen 14682 . . . . . 6 ((𝑆 ∈ Word 𝐴𝑇 ∈ (0...(♯‘𝑆)) ∧ (♯‘𝑆) ∈ (0...(♯‘𝑆))) → (♯‘(𝑆 substr ⟨𝑇, (♯‘𝑆)⟩)) = ((♯‘𝑆) − 𝑇))
321, 3, 30, 31syl3anc 1370 . . . . 5 (𝜑 → (♯‘(𝑆 substr ⟨𝑇, (♯‘𝑆)⟩)) = ((♯‘𝑆) − 𝑇))
3332oveq2d 7447 . . . 4 (𝜑 → (0..^(♯‘(𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))) = (0..^((♯‘𝑆) − 𝑇)))
3426, 33eleqtrrd 2842 . . 3 (𝜑𝑋 ∈ (0..^(♯‘(𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))))
35 ccatval3 14614 . . 3 ((((𝑆 prefix 𝐹) ++ 𝑅) ∈ Word 𝐴 ∧ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩) ∈ Word 𝐴𝑋 ∈ (0..^(♯‘(𝑆 substr ⟨𝑇, (♯‘𝑆)⟩)))) → ((((𝑆 prefix 𝐹) ++ 𝑅) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))‘(𝑋 + (♯‘((𝑆 prefix 𝐹) ++ 𝑅)))) = ((𝑆 substr ⟨𝑇, (♯‘𝑆)⟩)‘𝑋))
3623, 25, 34, 35syl3anc 1370 . 2 (𝜑 → ((((𝑆 prefix 𝐹) ++ 𝑅) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))‘(𝑋 + (♯‘((𝑆 prefix 𝐹) ++ 𝑅)))) = ((𝑆 substr ⟨𝑇, (♯‘𝑆)⟩)‘𝑋))
37 swrdfv 14683 . . 3 (((𝑆 ∈ Word 𝐴𝑇 ∈ (0...(♯‘𝑆)) ∧ (♯‘𝑆) ∈ (0...(♯‘𝑆))) ∧ 𝑋 ∈ (0..^((♯‘𝑆) − 𝑇))) → ((𝑆 substr ⟨𝑇, (♯‘𝑆)⟩)‘𝑋) = (𝑆‘(𝑋 + 𝑇)))
381, 3, 30, 26, 37syl31anc 1372 . 2 (𝜑 → ((𝑆 substr ⟨𝑇, (♯‘𝑆)⟩)‘𝑋) = (𝑆‘(𝑋 + 𝑇)))
3921, 36, 383eqtrd 2779 1 (𝜑 → ((𝑆 splice ⟨𝐹, 𝑇, 𝑅⟩)‘(𝑋 + 𝐾)) = (𝑆‘(𝑋 + 𝑇)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2106  wss 3963  cop 4637  cotp 4639  cfv 6563  (class class class)co 7431  0cc0 11153   + caddc 11156  cmin 11490  0cn0 12524  cuz 12876  ...cfz 13544  ..^cfzo 13691  chash 14366  Word cword 14549   ++ cconcat 14605   substr csubstr 14675   prefix cpfx 14705   splice csplice 14784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-ot 4640  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-n0 12525  df-z 12612  df-uz 12877  df-fz 13545  df-fzo 13692  df-hash 14367  df-word 14550  df-concat 14606  df-substr 14676  df-pfx 14706  df-splice 14785
This theorem is referenced by:  cycpmco2lem5  33133  cycpmco2lem6  33134
  Copyright terms: Public domain W3C validator