Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  splfv3 Structured version   Visualization version   GIF version

Theorem splfv3 32673
Description: Symbols to the right of a splice are unaffected. (Contributed by Thierry Arnoux, 14-Dec-2023.)
Hypotheses
Ref Expression
splfv3.s (𝜑𝑆 ∈ Word 𝐴)
splfv3.f (𝜑𝐹 ∈ (0...𝑇))
splfv3.t (𝜑𝑇 ∈ (0...(♯‘𝑆)))
splfv3.r (𝜑𝑅 ∈ Word 𝐴)
splfv3.x (𝜑𝑋 ∈ (0..^((♯‘𝑆) − 𝑇)))
splfv3.k (𝜑𝐾 = (𝐹 + (♯‘𝑅)))
Assertion
Ref Expression
splfv3 (𝜑 → ((𝑆 splice ⟨𝐹, 𝑇, 𝑅⟩)‘(𝑋 + 𝐾)) = (𝑆‘(𝑋 + 𝑇)))

Proof of Theorem splfv3
StepHypRef Expression
1 splfv3.s . . . 4 (𝜑𝑆 ∈ Word 𝐴)
2 splfv3.f . . . 4 (𝜑𝐹 ∈ (0...𝑇))
3 splfv3.t . . . 4 (𝜑𝑇 ∈ (0...(♯‘𝑆)))
4 splfv3.r . . . 4 (𝜑𝑅 ∈ Word 𝐴)
5 splval 14727 . . . 4 ((𝑆 ∈ Word 𝐴 ∧ (𝐹 ∈ (0...𝑇) ∧ 𝑇 ∈ (0...(♯‘𝑆)) ∧ 𝑅 ∈ Word 𝐴)) → (𝑆 splice ⟨𝐹, 𝑇, 𝑅⟩) = (((𝑆 prefix 𝐹) ++ 𝑅) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩)))
61, 2, 3, 4, 5syl13anc 1370 . . 3 (𝜑 → (𝑆 splice ⟨𝐹, 𝑇, 𝑅⟩) = (((𝑆 prefix 𝐹) ++ 𝑅) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩)))
7 elfzuz3 13524 . . . . . . . . 9 (𝑇 ∈ (0...(♯‘𝑆)) → (♯‘𝑆) ∈ (ℤ𝑇))
8 fzss2 13567 . . . . . . . . 9 ((♯‘𝑆) ∈ (ℤ𝑇) → (0...𝑇) ⊆ (0...(♯‘𝑆)))
93, 7, 83syl 18 . . . . . . . 8 (𝜑 → (0...𝑇) ⊆ (0...(♯‘𝑆)))
109, 2sseldd 3979 . . . . . . 7 (𝜑𝐹 ∈ (0...(♯‘𝑆)))
11 pfxlen 14659 . . . . . . 7 ((𝑆 ∈ Word 𝐴𝐹 ∈ (0...(♯‘𝑆))) → (♯‘(𝑆 prefix 𝐹)) = 𝐹)
121, 10, 11syl2anc 583 . . . . . 6 (𝜑 → (♯‘(𝑆 prefix 𝐹)) = 𝐹)
1312oveq1d 7429 . . . . 5 (𝜑 → ((♯‘(𝑆 prefix 𝐹)) + (♯‘𝑅)) = (𝐹 + (♯‘𝑅)))
14 pfxcl 14653 . . . . . . 7 (𝑆 ∈ Word 𝐴 → (𝑆 prefix 𝐹) ∈ Word 𝐴)
151, 14syl 17 . . . . . 6 (𝜑 → (𝑆 prefix 𝐹) ∈ Word 𝐴)
16 ccatlen 14551 . . . . . 6 (((𝑆 prefix 𝐹) ∈ Word 𝐴𝑅 ∈ Word 𝐴) → (♯‘((𝑆 prefix 𝐹) ++ 𝑅)) = ((♯‘(𝑆 prefix 𝐹)) + (♯‘𝑅)))
1715, 4, 16syl2anc 583 . . . . 5 (𝜑 → (♯‘((𝑆 prefix 𝐹) ++ 𝑅)) = ((♯‘(𝑆 prefix 𝐹)) + (♯‘𝑅)))
18 splfv3.k . . . . 5 (𝜑𝐾 = (𝐹 + (♯‘𝑅)))
1913, 17, 183eqtr4rd 2779 . . . 4 (𝜑𝐾 = (♯‘((𝑆 prefix 𝐹) ++ 𝑅)))
2019oveq2d 7430 . . 3 (𝜑 → (𝑋 + 𝐾) = (𝑋 + (♯‘((𝑆 prefix 𝐹) ++ 𝑅))))
216, 20fveq12d 6898 . 2 (𝜑 → ((𝑆 splice ⟨𝐹, 𝑇, 𝑅⟩)‘(𝑋 + 𝐾)) = ((((𝑆 prefix 𝐹) ++ 𝑅) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))‘(𝑋 + (♯‘((𝑆 prefix 𝐹) ++ 𝑅)))))
22 ccatcl 14550 . . . 4 (((𝑆 prefix 𝐹) ∈ Word 𝐴𝑅 ∈ Word 𝐴) → ((𝑆 prefix 𝐹) ++ 𝑅) ∈ Word 𝐴)
2315, 4, 22syl2anc 583 . . 3 (𝜑 → ((𝑆 prefix 𝐹) ++ 𝑅) ∈ Word 𝐴)
24 swrdcl 14621 . . . 4 (𝑆 ∈ Word 𝐴 → (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩) ∈ Word 𝐴)
251, 24syl 17 . . 3 (𝜑 → (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩) ∈ Word 𝐴)
26 splfv3.x . . . 4 (𝜑𝑋 ∈ (0..^((♯‘𝑆) − 𝑇)))
27 lencl 14509 . . . . . . . 8 (𝑆 ∈ Word 𝐴 → (♯‘𝑆) ∈ ℕ0)
28 nn0fz0 13625 . . . . . . . 8 ((♯‘𝑆) ∈ ℕ0 ↔ (♯‘𝑆) ∈ (0...(♯‘𝑆)))
2927, 28sylib 217 . . . . . . 7 (𝑆 ∈ Word 𝐴 → (♯‘𝑆) ∈ (0...(♯‘𝑆)))
301, 29syl 17 . . . . . 6 (𝜑 → (♯‘𝑆) ∈ (0...(♯‘𝑆)))
31 swrdlen 14623 . . . . . 6 ((𝑆 ∈ Word 𝐴𝑇 ∈ (0...(♯‘𝑆)) ∧ (♯‘𝑆) ∈ (0...(♯‘𝑆))) → (♯‘(𝑆 substr ⟨𝑇, (♯‘𝑆)⟩)) = ((♯‘𝑆) − 𝑇))
321, 3, 30, 31syl3anc 1369 . . . . 5 (𝜑 → (♯‘(𝑆 substr ⟨𝑇, (♯‘𝑆)⟩)) = ((♯‘𝑆) − 𝑇))
3332oveq2d 7430 . . . 4 (𝜑 → (0..^(♯‘(𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))) = (0..^((♯‘𝑆) − 𝑇)))
3426, 33eleqtrrd 2832 . . 3 (𝜑𝑋 ∈ (0..^(♯‘(𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))))
35 ccatval3 14555 . . 3 ((((𝑆 prefix 𝐹) ++ 𝑅) ∈ Word 𝐴 ∧ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩) ∈ Word 𝐴𝑋 ∈ (0..^(♯‘(𝑆 substr ⟨𝑇, (♯‘𝑆)⟩)))) → ((((𝑆 prefix 𝐹) ++ 𝑅) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))‘(𝑋 + (♯‘((𝑆 prefix 𝐹) ++ 𝑅)))) = ((𝑆 substr ⟨𝑇, (♯‘𝑆)⟩)‘𝑋))
3623, 25, 34, 35syl3anc 1369 . 2 (𝜑 → ((((𝑆 prefix 𝐹) ++ 𝑅) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))‘(𝑋 + (♯‘((𝑆 prefix 𝐹) ++ 𝑅)))) = ((𝑆 substr ⟨𝑇, (♯‘𝑆)⟩)‘𝑋))
37 swrdfv 14624 . . 3 (((𝑆 ∈ Word 𝐴𝑇 ∈ (0...(♯‘𝑆)) ∧ (♯‘𝑆) ∈ (0...(♯‘𝑆))) ∧ 𝑋 ∈ (0..^((♯‘𝑆) − 𝑇))) → ((𝑆 substr ⟨𝑇, (♯‘𝑆)⟩)‘𝑋) = (𝑆‘(𝑋 + 𝑇)))
381, 3, 30, 26, 37syl31anc 1371 . 2 (𝜑 → ((𝑆 substr ⟨𝑇, (♯‘𝑆)⟩)‘𝑋) = (𝑆‘(𝑋 + 𝑇)))
3921, 36, 383eqtrd 2772 1 (𝜑 → ((𝑆 splice ⟨𝐹, 𝑇, 𝑅⟩)‘(𝑋 + 𝐾)) = (𝑆‘(𝑋 + 𝑇)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  wcel 2099  wss 3945  cop 4630  cotp 4632  cfv 6542  (class class class)co 7414  0cc0 11132   + caddc 11135  cmin 11468  0cn0 12496  cuz 12846  ...cfz 13510  ..^cfzo 13653  chash 14315  Word cword 14490   ++ cconcat 14546   substr csubstr 14616   prefix cpfx 14646   splice csplice 14725
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11188  ax-resscn 11189  ax-1cn 11190  ax-icn 11191  ax-addcl 11192  ax-addrcl 11193  ax-mulcl 11194  ax-mulrcl 11195  ax-mulcom 11196  ax-addass 11197  ax-mulass 11198  ax-distr 11199  ax-i2m1 11200  ax-1ne0 11201  ax-1rid 11202  ax-rnegex 11203  ax-rrecex 11204  ax-cnre 11205  ax-pre-lttri 11206  ax-pre-lttrn 11207  ax-pre-ltadd 11208  ax-pre-mulgt0 11209
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-ot 4633  df-uni 4904  df-int 4945  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8718  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-card 9956  df-pnf 11274  df-mnf 11275  df-xr 11276  df-ltxr 11277  df-le 11278  df-sub 11470  df-neg 11471  df-nn 12237  df-n0 12497  df-z 12583  df-uz 12847  df-fz 13511  df-fzo 13654  df-hash 14316  df-word 14491  df-concat 14547  df-substr 14617  df-pfx 14647  df-splice 14726
This theorem is referenced by:  cycpmco2lem5  32845  cycpmco2lem6  32846
  Copyright terms: Public domain W3C validator