Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  splfv3 Structured version   Visualization version   GIF version

Theorem splfv3 30658
Description: Symbols to the right of a splice are unaffected. (Contributed by Thierry Arnoux, 14-Dec-2023.)
Hypotheses
Ref Expression
splfv3.s (𝜑𝑆 ∈ Word 𝐴)
splfv3.f (𝜑𝐹 ∈ (0...𝑇))
splfv3.t (𝜑𝑇 ∈ (0...(♯‘𝑆)))
splfv3.r (𝜑𝑅 ∈ Word 𝐴)
splfv3.x (𝜑𝑋 ∈ (0..^((♯‘𝑆) − 𝑇)))
splfv3.k (𝜑𝐾 = (𝐹 + (♯‘𝑅)))
Assertion
Ref Expression
splfv3 (𝜑 → ((𝑆 splice ⟨𝐹, 𝑇, 𝑅⟩)‘(𝑋 + 𝐾)) = (𝑆‘(𝑋 + 𝑇)))

Proof of Theorem splfv3
StepHypRef Expression
1 splfv3.s . . . 4 (𝜑𝑆 ∈ Word 𝐴)
2 splfv3.f . . . 4 (𝜑𝐹 ∈ (0...𝑇))
3 splfv3.t . . . 4 (𝜑𝑇 ∈ (0...(♯‘𝑆)))
4 splfv3.r . . . 4 (𝜑𝑅 ∈ Word 𝐴)
5 splval 14104 . . . 4 ((𝑆 ∈ Word 𝐴 ∧ (𝐹 ∈ (0...𝑇) ∧ 𝑇 ∈ (0...(♯‘𝑆)) ∧ 𝑅 ∈ Word 𝐴)) → (𝑆 splice ⟨𝐹, 𝑇, 𝑅⟩) = (((𝑆 prefix 𝐹) ++ 𝑅) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩)))
61, 2, 3, 4, 5syl13anc 1369 . . 3 (𝜑 → (𝑆 splice ⟨𝐹, 𝑇, 𝑅⟩) = (((𝑆 prefix 𝐹) ++ 𝑅) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩)))
7 elfzuz3 12899 . . . . . . . . 9 (𝑇 ∈ (0...(♯‘𝑆)) → (♯‘𝑆) ∈ (ℤ𝑇))
8 fzss2 12942 . . . . . . . . 9 ((♯‘𝑆) ∈ (ℤ𝑇) → (0...𝑇) ⊆ (0...(♯‘𝑆)))
93, 7, 83syl 18 . . . . . . . 8 (𝜑 → (0...𝑇) ⊆ (0...(♯‘𝑆)))
109, 2sseldd 3916 . . . . . . 7 (𝜑𝐹 ∈ (0...(♯‘𝑆)))
11 pfxlen 14036 . . . . . . 7 ((𝑆 ∈ Word 𝐴𝐹 ∈ (0...(♯‘𝑆))) → (♯‘(𝑆 prefix 𝐹)) = 𝐹)
121, 10, 11syl2anc 587 . . . . . 6 (𝜑 → (♯‘(𝑆 prefix 𝐹)) = 𝐹)
1312oveq1d 7150 . . . . 5 (𝜑 → ((♯‘(𝑆 prefix 𝐹)) + (♯‘𝑅)) = (𝐹 + (♯‘𝑅)))
14 pfxcl 14030 . . . . . . 7 (𝑆 ∈ Word 𝐴 → (𝑆 prefix 𝐹) ∈ Word 𝐴)
151, 14syl 17 . . . . . 6 (𝜑 → (𝑆 prefix 𝐹) ∈ Word 𝐴)
16 ccatlen 13918 . . . . . 6 (((𝑆 prefix 𝐹) ∈ Word 𝐴𝑅 ∈ Word 𝐴) → (♯‘((𝑆 prefix 𝐹) ++ 𝑅)) = ((♯‘(𝑆 prefix 𝐹)) + (♯‘𝑅)))
1715, 4, 16syl2anc 587 . . . . 5 (𝜑 → (♯‘((𝑆 prefix 𝐹) ++ 𝑅)) = ((♯‘(𝑆 prefix 𝐹)) + (♯‘𝑅)))
18 splfv3.k . . . . 5 (𝜑𝐾 = (𝐹 + (♯‘𝑅)))
1913, 17, 183eqtr4rd 2844 . . . 4 (𝜑𝐾 = (♯‘((𝑆 prefix 𝐹) ++ 𝑅)))
2019oveq2d 7151 . . 3 (𝜑 → (𝑋 + 𝐾) = (𝑋 + (♯‘((𝑆 prefix 𝐹) ++ 𝑅))))
216, 20fveq12d 6652 . 2 (𝜑 → ((𝑆 splice ⟨𝐹, 𝑇, 𝑅⟩)‘(𝑋 + 𝐾)) = ((((𝑆 prefix 𝐹) ++ 𝑅) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))‘(𝑋 + (♯‘((𝑆 prefix 𝐹) ++ 𝑅)))))
22 ccatcl 13917 . . . 4 (((𝑆 prefix 𝐹) ∈ Word 𝐴𝑅 ∈ Word 𝐴) → ((𝑆 prefix 𝐹) ++ 𝑅) ∈ Word 𝐴)
2315, 4, 22syl2anc 587 . . 3 (𝜑 → ((𝑆 prefix 𝐹) ++ 𝑅) ∈ Word 𝐴)
24 swrdcl 13998 . . . 4 (𝑆 ∈ Word 𝐴 → (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩) ∈ Word 𝐴)
251, 24syl 17 . . 3 (𝜑 → (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩) ∈ Word 𝐴)
26 splfv3.x . . . 4 (𝜑𝑋 ∈ (0..^((♯‘𝑆) − 𝑇)))
27 lencl 13876 . . . . . . . 8 (𝑆 ∈ Word 𝐴 → (♯‘𝑆) ∈ ℕ0)
28 nn0fz0 13000 . . . . . . . 8 ((♯‘𝑆) ∈ ℕ0 ↔ (♯‘𝑆) ∈ (0...(♯‘𝑆)))
2927, 28sylib 221 . . . . . . 7 (𝑆 ∈ Word 𝐴 → (♯‘𝑆) ∈ (0...(♯‘𝑆)))
301, 29syl 17 . . . . . 6 (𝜑 → (♯‘𝑆) ∈ (0...(♯‘𝑆)))
31 swrdlen 14000 . . . . . 6 ((𝑆 ∈ Word 𝐴𝑇 ∈ (0...(♯‘𝑆)) ∧ (♯‘𝑆) ∈ (0...(♯‘𝑆))) → (♯‘(𝑆 substr ⟨𝑇, (♯‘𝑆)⟩)) = ((♯‘𝑆) − 𝑇))
321, 3, 30, 31syl3anc 1368 . . . . 5 (𝜑 → (♯‘(𝑆 substr ⟨𝑇, (♯‘𝑆)⟩)) = ((♯‘𝑆) − 𝑇))
3332oveq2d 7151 . . . 4 (𝜑 → (0..^(♯‘(𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))) = (0..^((♯‘𝑆) − 𝑇)))
3426, 33eleqtrrd 2893 . . 3 (𝜑𝑋 ∈ (0..^(♯‘(𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))))
35 ccatval3 13924 . . 3 ((((𝑆 prefix 𝐹) ++ 𝑅) ∈ Word 𝐴 ∧ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩) ∈ Word 𝐴𝑋 ∈ (0..^(♯‘(𝑆 substr ⟨𝑇, (♯‘𝑆)⟩)))) → ((((𝑆 prefix 𝐹) ++ 𝑅) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))‘(𝑋 + (♯‘((𝑆 prefix 𝐹) ++ 𝑅)))) = ((𝑆 substr ⟨𝑇, (♯‘𝑆)⟩)‘𝑋))
3623, 25, 34, 35syl3anc 1368 . 2 (𝜑 → ((((𝑆 prefix 𝐹) ++ 𝑅) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))‘(𝑋 + (♯‘((𝑆 prefix 𝐹) ++ 𝑅)))) = ((𝑆 substr ⟨𝑇, (♯‘𝑆)⟩)‘𝑋))
37 swrdfv 14001 . . 3 (((𝑆 ∈ Word 𝐴𝑇 ∈ (0...(♯‘𝑆)) ∧ (♯‘𝑆) ∈ (0...(♯‘𝑆))) ∧ 𝑋 ∈ (0..^((♯‘𝑆) − 𝑇))) → ((𝑆 substr ⟨𝑇, (♯‘𝑆)⟩)‘𝑋) = (𝑆‘(𝑋 + 𝑇)))
381, 3, 30, 26, 37syl31anc 1370 . 2 (𝜑 → ((𝑆 substr ⟨𝑇, (♯‘𝑆)⟩)‘𝑋) = (𝑆‘(𝑋 + 𝑇)))
3921, 36, 383eqtrd 2837 1 (𝜑 → ((𝑆 splice ⟨𝐹, 𝑇, 𝑅⟩)‘(𝑋 + 𝐾)) = (𝑆‘(𝑋 + 𝑇)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wcel 2111  wss 3881  cop 4531  cotp 4533  cfv 6324  (class class class)co 7135  0cc0 10526   + caddc 10529  cmin 10859  0cn0 11885  cuz 12231  ...cfz 12885  ..^cfzo 13028  chash 13686  Word cword 13857   ++ cconcat 13913   substr csubstr 13993   prefix cpfx 14023   splice csplice 14102
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-ot 4534  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886  df-fzo 13029  df-hash 13687  df-word 13858  df-concat 13914  df-substr 13994  df-pfx 14024  df-splice 14103
This theorem is referenced by:  cycpmco2lem5  30822  cycpmco2lem6  30823
  Copyright terms: Public domain W3C validator