MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspsnat Structured version   Visualization version   GIF version

Theorem lspsnat 20606
Description: There is no subspace strictly between the zero subspace and the span of a vector (i.e. a 1-dimensional subspace is an atom). (h1datomi 30523 analog.) (Contributed by NM, 20-Apr-2014.) (Proof shortened by Mario Carneiro, 22-Jun-2014.)
Hypotheses
Ref Expression
lspsnat.v 𝑉 = (Base‘𝑊)
lspsnat.z 0 = (0g𝑊)
lspsnat.s 𝑆 = (LSubSp‘𝑊)
lspsnat.n 𝑁 = (LSpan‘𝑊)
Assertion
Ref Expression
lspsnat (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ 𝑈 ⊆ (𝑁‘{𝑋})) → (𝑈 = (𝑁‘{𝑋}) ∨ 𝑈 = { 0 }))

Proof of Theorem lspsnat
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 n0 4306 . . . . . 6 ((𝑈 ∖ { 0 }) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝑈 ∖ { 0 }))
2 simprl 769 . . . . . . . . 9 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ (𝑈 ⊆ (𝑁‘{𝑋}) ∧ 𝑥 ∈ (𝑈 ∖ { 0 }))) → 𝑈 ⊆ (𝑁‘{𝑋}))
3 lspsnat.s . . . . . . . . . 10 𝑆 = (LSubSp‘𝑊)
4 lspsnat.n . . . . . . . . . 10 𝑁 = (LSpan‘𝑊)
5 simpl1 1191 . . . . . . . . . . 11 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ (𝑈 ⊆ (𝑁‘{𝑋}) ∧ 𝑥 ∈ (𝑈 ∖ { 0 }))) → 𝑊 ∈ LVec)
6 lveclmod 20567 . . . . . . . . . . 11 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
75, 6syl 17 . . . . . . . . . 10 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ (𝑈 ⊆ (𝑁‘{𝑋}) ∧ 𝑥 ∈ (𝑈 ∖ { 0 }))) → 𝑊 ∈ LMod)
8 simpl2 1192 . . . . . . . . . 10 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ (𝑈 ⊆ (𝑁‘{𝑋}) ∧ 𝑥 ∈ (𝑈 ∖ { 0 }))) → 𝑈𝑆)
9 simprr 771 . . . . . . . . . . . . 13 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ (𝑈 ⊆ (𝑁‘{𝑋}) ∧ 𝑥 ∈ (𝑈 ∖ { 0 }))) → 𝑥 ∈ (𝑈 ∖ { 0 }))
109eldifad 3922 . . . . . . . . . . . 12 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ (𝑈 ⊆ (𝑁‘{𝑋}) ∧ 𝑥 ∈ (𝑈 ∖ { 0 }))) → 𝑥𝑈)
113, 4, 7, 8, 10lspsnel5a 20457 . . . . . . . . . . 11 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ (𝑈 ⊆ (𝑁‘{𝑋}) ∧ 𝑥 ∈ (𝑈 ∖ { 0 }))) → (𝑁‘{𝑥}) ⊆ 𝑈)
12 0ss 4356 . . . . . . . . . . . . . 14 ∅ ⊆ 𝑉
1312a1i 11 . . . . . . . . . . . . 13 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ (𝑈 ⊆ (𝑁‘{𝑋}) ∧ 𝑥 ∈ (𝑈 ∖ { 0 }))) → ∅ ⊆ 𝑉)
14 simpl3 1193 . . . . . . . . . . . . 13 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ (𝑈 ⊆ (𝑁‘{𝑋}) ∧ 𝑥 ∈ (𝑈 ∖ { 0 }))) → 𝑋𝑉)
15 ssdif 4099 . . . . . . . . . . . . . . . 16 (𝑈 ⊆ (𝑁‘{𝑋}) → (𝑈 ∖ { 0 }) ⊆ ((𝑁‘{𝑋}) ∖ { 0 }))
1615ad2antrl 726 . . . . . . . . . . . . . . 15 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ (𝑈 ⊆ (𝑁‘{𝑋}) ∧ 𝑥 ∈ (𝑈 ∖ { 0 }))) → (𝑈 ∖ { 0 }) ⊆ ((𝑁‘{𝑋}) ∖ { 0 }))
1716, 9sseldd 3945 . . . . . . . . . . . . . 14 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ (𝑈 ⊆ (𝑁‘{𝑋}) ∧ 𝑥 ∈ (𝑈 ∖ { 0 }))) → 𝑥 ∈ ((𝑁‘{𝑋}) ∖ { 0 }))
18 uncom 4113 . . . . . . . . . . . . . . . . . 18 (∅ ∪ {𝑋}) = ({𝑋} ∪ ∅)
19 un0 4350 . . . . . . . . . . . . . . . . . 18 ({𝑋} ∪ ∅) = {𝑋}
2018, 19eqtri 2764 . . . . . . . . . . . . . . . . 17 (∅ ∪ {𝑋}) = {𝑋}
2120fveq2i 6845 . . . . . . . . . . . . . . . 16 (𝑁‘(∅ ∪ {𝑋})) = (𝑁‘{𝑋})
2221a1i 11 . . . . . . . . . . . . . . 15 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ (𝑈 ⊆ (𝑁‘{𝑋}) ∧ 𝑥 ∈ (𝑈 ∖ { 0 }))) → (𝑁‘(∅ ∪ {𝑋})) = (𝑁‘{𝑋}))
23 lspsnat.z . . . . . . . . . . . . . . . . 17 0 = (0g𝑊)
2423, 4lsp0 20470 . . . . . . . . . . . . . . . 16 (𝑊 ∈ LMod → (𝑁‘∅) = { 0 })
257, 24syl 17 . . . . . . . . . . . . . . 15 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ (𝑈 ⊆ (𝑁‘{𝑋}) ∧ 𝑥 ∈ (𝑈 ∖ { 0 }))) → (𝑁‘∅) = { 0 })
2622, 25difeq12d 4083 . . . . . . . . . . . . . 14 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ (𝑈 ⊆ (𝑁‘{𝑋}) ∧ 𝑥 ∈ (𝑈 ∖ { 0 }))) → ((𝑁‘(∅ ∪ {𝑋})) ∖ (𝑁‘∅)) = ((𝑁‘{𝑋}) ∖ { 0 }))
2717, 26eleqtrrd 2841 . . . . . . . . . . . . 13 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ (𝑈 ⊆ (𝑁‘{𝑋}) ∧ 𝑥 ∈ (𝑈 ∖ { 0 }))) → 𝑥 ∈ ((𝑁‘(∅ ∪ {𝑋})) ∖ (𝑁‘∅)))
28 lspsnat.v . . . . . . . . . . . . . 14 𝑉 = (Base‘𝑊)
2928, 3, 4lspsolv 20604 . . . . . . . . . . . . 13 ((𝑊 ∈ LVec ∧ (∅ ⊆ 𝑉𝑋𝑉𝑥 ∈ ((𝑁‘(∅ ∪ {𝑋})) ∖ (𝑁‘∅)))) → 𝑋 ∈ (𝑁‘(∅ ∪ {𝑥})))
305, 13, 14, 27, 29syl13anc 1372 . . . . . . . . . . . 12 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ (𝑈 ⊆ (𝑁‘{𝑋}) ∧ 𝑥 ∈ (𝑈 ∖ { 0 }))) → 𝑋 ∈ (𝑁‘(∅ ∪ {𝑥})))
31 uncom 4113 . . . . . . . . . . . . . 14 (∅ ∪ {𝑥}) = ({𝑥} ∪ ∅)
32 un0 4350 . . . . . . . . . . . . . 14 ({𝑥} ∪ ∅) = {𝑥}
3331, 32eqtri 2764 . . . . . . . . . . . . 13 (∅ ∪ {𝑥}) = {𝑥}
3433fveq2i 6845 . . . . . . . . . . . 12 (𝑁‘(∅ ∪ {𝑥})) = (𝑁‘{𝑥})
3530, 34eleqtrdi 2848 . . . . . . . . . . 11 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ (𝑈 ⊆ (𝑁‘{𝑋}) ∧ 𝑥 ∈ (𝑈 ∖ { 0 }))) → 𝑋 ∈ (𝑁‘{𝑥}))
3611, 35sseldd 3945 . . . . . . . . . 10 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ (𝑈 ⊆ (𝑁‘{𝑋}) ∧ 𝑥 ∈ (𝑈 ∖ { 0 }))) → 𝑋𝑈)
373, 4, 7, 8, 36lspsnel5a 20457 . . . . . . . . 9 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ (𝑈 ⊆ (𝑁‘{𝑋}) ∧ 𝑥 ∈ (𝑈 ∖ { 0 }))) → (𝑁‘{𝑋}) ⊆ 𝑈)
382, 37eqssd 3961 . . . . . . . 8 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ (𝑈 ⊆ (𝑁‘{𝑋}) ∧ 𝑥 ∈ (𝑈 ∖ { 0 }))) → 𝑈 = (𝑁‘{𝑋}))
3938expr 457 . . . . . . 7 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ 𝑈 ⊆ (𝑁‘{𝑋})) → (𝑥 ∈ (𝑈 ∖ { 0 }) → 𝑈 = (𝑁‘{𝑋})))
4039exlimdv 1936 . . . . . 6 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ 𝑈 ⊆ (𝑁‘{𝑋})) → (∃𝑥 𝑥 ∈ (𝑈 ∖ { 0 }) → 𝑈 = (𝑁‘{𝑋})))
411, 40biimtrid 241 . . . . 5 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ 𝑈 ⊆ (𝑁‘{𝑋})) → ((𝑈 ∖ { 0 }) ≠ ∅ → 𝑈 = (𝑁‘{𝑋})))
4241necon1bd 2961 . . . 4 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ 𝑈 ⊆ (𝑁‘{𝑋})) → (¬ 𝑈 = (𝑁‘{𝑋}) → (𝑈 ∖ { 0 }) = ∅))
43 ssdif0 4323 . . . 4 (𝑈 ⊆ { 0 } ↔ (𝑈 ∖ { 0 }) = ∅)
4442, 43syl6ibr 251 . . 3 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ 𝑈 ⊆ (𝑁‘{𝑋})) → (¬ 𝑈 = (𝑁‘{𝑋}) → 𝑈 ⊆ { 0 }))
45 simpl1 1191 . . . . 5 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ 𝑈 ⊆ (𝑁‘{𝑋})) → 𝑊 ∈ LVec)
4645, 6syl 17 . . . 4 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ 𝑈 ⊆ (𝑁‘{𝑋})) → 𝑊 ∈ LMod)
47 simpl2 1192 . . . 4 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ 𝑈 ⊆ (𝑁‘{𝑋})) → 𝑈𝑆)
4823, 3lssle0 20410 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (𝑈 ⊆ { 0 } ↔ 𝑈 = { 0 }))
4946, 47, 48syl2anc 584 . . 3 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ 𝑈 ⊆ (𝑁‘{𝑋})) → (𝑈 ⊆ { 0 } ↔ 𝑈 = { 0 }))
5044, 49sylibd 238 . 2 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ 𝑈 ⊆ (𝑁‘{𝑋})) → (¬ 𝑈 = (𝑁‘{𝑋}) → 𝑈 = { 0 }))
5150orrd 861 1 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ 𝑈 ⊆ (𝑁‘{𝑋})) → (𝑈 = (𝑁‘{𝑋}) ∨ 𝑈 = { 0 }))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 845  w3a 1087   = wceq 1541  wex 1781  wcel 2106  wne 2943  cdif 3907  cun 3908  wss 3910  c0 4282  {csn 4586  cfv 6496  Basecbs 17083  0gc0g 17321  LModclmod 20322  LSubSpclss 20392  LSpanclspn 20432  LVecclvec 20563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-tpos 8157  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-0g 17323  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-grp 18751  df-minusg 18752  df-sbg 18753  df-cmn 19564  df-abl 19565  df-mgp 19897  df-ur 19914  df-ring 19966  df-oppr 20049  df-dvdsr 20070  df-unit 20071  df-invr 20101  df-drng 20187  df-lmod 20324  df-lss 20393  df-lsp 20433  df-lvec 20564
This theorem is referenced by:  lspsncv0  20607  lsatcmp  37465  dihlspsnssN  39795  dihlspsnat  39796
  Copyright terms: Public domain W3C validator