MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspsnat Structured version   Visualization version   GIF version

Theorem lspsnat 21062
Description: There is no subspace strictly between the zero subspace and the span of a vector (i.e. a 1-dimensional subspace is an atom). (h1datomi 31483 analog.) (Contributed by NM, 20-Apr-2014.) (Proof shortened by Mario Carneiro, 22-Jun-2014.)
Hypotheses
Ref Expression
lspsnat.v 𝑉 = (Base‘𝑊)
lspsnat.z 0 = (0g𝑊)
lspsnat.s 𝑆 = (LSubSp‘𝑊)
lspsnat.n 𝑁 = (LSpan‘𝑊)
Assertion
Ref Expression
lspsnat (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ 𝑈 ⊆ (𝑁‘{𝑋})) → (𝑈 = (𝑁‘{𝑋}) ∨ 𝑈 = { 0 }))

Proof of Theorem lspsnat
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 n0 4346 . . . . . 6 ((𝑈 ∖ { 0 }) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝑈 ∖ { 0 }))
2 simprl 769 . . . . . . . . 9 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ (𝑈 ⊆ (𝑁‘{𝑋}) ∧ 𝑥 ∈ (𝑈 ∖ { 0 }))) → 𝑈 ⊆ (𝑁‘{𝑋}))
3 lspsnat.s . . . . . . . . . 10 𝑆 = (LSubSp‘𝑊)
4 lspsnat.n . . . . . . . . . 10 𝑁 = (LSpan‘𝑊)
5 simpl1 1188 . . . . . . . . . . 11 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ (𝑈 ⊆ (𝑁‘{𝑋}) ∧ 𝑥 ∈ (𝑈 ∖ { 0 }))) → 𝑊 ∈ LVec)
6 lveclmod 21020 . . . . . . . . . . 11 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
75, 6syl 17 . . . . . . . . . 10 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ (𝑈 ⊆ (𝑁‘{𝑋}) ∧ 𝑥 ∈ (𝑈 ∖ { 0 }))) → 𝑊 ∈ LMod)
8 simpl2 1189 . . . . . . . . . 10 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ (𝑈 ⊆ (𝑁‘{𝑋}) ∧ 𝑥 ∈ (𝑈 ∖ { 0 }))) → 𝑈𝑆)
9 simprr 771 . . . . . . . . . . . . 13 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ (𝑈 ⊆ (𝑁‘{𝑋}) ∧ 𝑥 ∈ (𝑈 ∖ { 0 }))) → 𝑥 ∈ (𝑈 ∖ { 0 }))
109eldifad 3956 . . . . . . . . . . . 12 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ (𝑈 ⊆ (𝑁‘{𝑋}) ∧ 𝑥 ∈ (𝑈 ∖ { 0 }))) → 𝑥𝑈)
113, 4, 7, 8, 10lspsnel5a 20909 . . . . . . . . . . 11 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ (𝑈 ⊆ (𝑁‘{𝑋}) ∧ 𝑥 ∈ (𝑈 ∖ { 0 }))) → (𝑁‘{𝑥}) ⊆ 𝑈)
12 0ss 4398 . . . . . . . . . . . . . 14 ∅ ⊆ 𝑉
1312a1i 11 . . . . . . . . . . . . 13 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ (𝑈 ⊆ (𝑁‘{𝑋}) ∧ 𝑥 ∈ (𝑈 ∖ { 0 }))) → ∅ ⊆ 𝑉)
14 simpl3 1190 . . . . . . . . . . . . 13 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ (𝑈 ⊆ (𝑁‘{𝑋}) ∧ 𝑥 ∈ (𝑈 ∖ { 0 }))) → 𝑋𝑉)
15 ssdif 4136 . . . . . . . . . . . . . . . 16 (𝑈 ⊆ (𝑁‘{𝑋}) → (𝑈 ∖ { 0 }) ⊆ ((𝑁‘{𝑋}) ∖ { 0 }))
1615ad2antrl 726 . . . . . . . . . . . . . . 15 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ (𝑈 ⊆ (𝑁‘{𝑋}) ∧ 𝑥 ∈ (𝑈 ∖ { 0 }))) → (𝑈 ∖ { 0 }) ⊆ ((𝑁‘{𝑋}) ∖ { 0 }))
1716, 9sseldd 3977 . . . . . . . . . . . . . 14 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ (𝑈 ⊆ (𝑁‘{𝑋}) ∧ 𝑥 ∈ (𝑈 ∖ { 0 }))) → 𝑥 ∈ ((𝑁‘{𝑋}) ∖ { 0 }))
18 uncom 4150 . . . . . . . . . . . . . . . . . 18 (∅ ∪ {𝑋}) = ({𝑋} ∪ ∅)
19 un0 4392 . . . . . . . . . . . . . . . . . 18 ({𝑋} ∪ ∅) = {𝑋}
2018, 19eqtri 2753 . . . . . . . . . . . . . . . . 17 (∅ ∪ {𝑋}) = {𝑋}
2120fveq2i 6899 . . . . . . . . . . . . . . . 16 (𝑁‘(∅ ∪ {𝑋})) = (𝑁‘{𝑋})
2221a1i 11 . . . . . . . . . . . . . . 15 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ (𝑈 ⊆ (𝑁‘{𝑋}) ∧ 𝑥 ∈ (𝑈 ∖ { 0 }))) → (𝑁‘(∅ ∪ {𝑋})) = (𝑁‘{𝑋}))
23 lspsnat.z . . . . . . . . . . . . . . . . 17 0 = (0g𝑊)
2423, 4lsp0 20922 . . . . . . . . . . . . . . . 16 (𝑊 ∈ LMod → (𝑁‘∅) = { 0 })
257, 24syl 17 . . . . . . . . . . . . . . 15 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ (𝑈 ⊆ (𝑁‘{𝑋}) ∧ 𝑥 ∈ (𝑈 ∖ { 0 }))) → (𝑁‘∅) = { 0 })
2622, 25difeq12d 4119 . . . . . . . . . . . . . 14 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ (𝑈 ⊆ (𝑁‘{𝑋}) ∧ 𝑥 ∈ (𝑈 ∖ { 0 }))) → ((𝑁‘(∅ ∪ {𝑋})) ∖ (𝑁‘∅)) = ((𝑁‘{𝑋}) ∖ { 0 }))
2717, 26eleqtrrd 2828 . . . . . . . . . . . . 13 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ (𝑈 ⊆ (𝑁‘{𝑋}) ∧ 𝑥 ∈ (𝑈 ∖ { 0 }))) → 𝑥 ∈ ((𝑁‘(∅ ∪ {𝑋})) ∖ (𝑁‘∅)))
28 lspsnat.v . . . . . . . . . . . . . 14 𝑉 = (Base‘𝑊)
2928, 3, 4lspsolv 21060 . . . . . . . . . . . . 13 ((𝑊 ∈ LVec ∧ (∅ ⊆ 𝑉𝑋𝑉𝑥 ∈ ((𝑁‘(∅ ∪ {𝑋})) ∖ (𝑁‘∅)))) → 𝑋 ∈ (𝑁‘(∅ ∪ {𝑥})))
305, 13, 14, 27, 29syl13anc 1369 . . . . . . . . . . . 12 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ (𝑈 ⊆ (𝑁‘{𝑋}) ∧ 𝑥 ∈ (𝑈 ∖ { 0 }))) → 𝑋 ∈ (𝑁‘(∅ ∪ {𝑥})))
31 uncom 4150 . . . . . . . . . . . . . 14 (∅ ∪ {𝑥}) = ({𝑥} ∪ ∅)
32 un0 4392 . . . . . . . . . . . . . 14 ({𝑥} ∪ ∅) = {𝑥}
3331, 32eqtri 2753 . . . . . . . . . . . . 13 (∅ ∪ {𝑥}) = {𝑥}
3433fveq2i 6899 . . . . . . . . . . . 12 (𝑁‘(∅ ∪ {𝑥})) = (𝑁‘{𝑥})
3530, 34eleqtrdi 2835 . . . . . . . . . . 11 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ (𝑈 ⊆ (𝑁‘{𝑋}) ∧ 𝑥 ∈ (𝑈 ∖ { 0 }))) → 𝑋 ∈ (𝑁‘{𝑥}))
3611, 35sseldd 3977 . . . . . . . . . 10 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ (𝑈 ⊆ (𝑁‘{𝑋}) ∧ 𝑥 ∈ (𝑈 ∖ { 0 }))) → 𝑋𝑈)
373, 4, 7, 8, 36lspsnel5a 20909 . . . . . . . . 9 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ (𝑈 ⊆ (𝑁‘{𝑋}) ∧ 𝑥 ∈ (𝑈 ∖ { 0 }))) → (𝑁‘{𝑋}) ⊆ 𝑈)
382, 37eqssd 3994 . . . . . . . 8 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ (𝑈 ⊆ (𝑁‘{𝑋}) ∧ 𝑥 ∈ (𝑈 ∖ { 0 }))) → 𝑈 = (𝑁‘{𝑋}))
3938expr 455 . . . . . . 7 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ 𝑈 ⊆ (𝑁‘{𝑋})) → (𝑥 ∈ (𝑈 ∖ { 0 }) → 𝑈 = (𝑁‘{𝑋})))
4039exlimdv 1928 . . . . . 6 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ 𝑈 ⊆ (𝑁‘{𝑋})) → (∃𝑥 𝑥 ∈ (𝑈 ∖ { 0 }) → 𝑈 = (𝑁‘{𝑋})))
411, 40biimtrid 241 . . . . 5 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ 𝑈 ⊆ (𝑁‘{𝑋})) → ((𝑈 ∖ { 0 }) ≠ ∅ → 𝑈 = (𝑁‘{𝑋})))
4241necon1bd 2947 . . . 4 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ 𝑈 ⊆ (𝑁‘{𝑋})) → (¬ 𝑈 = (𝑁‘{𝑋}) → (𝑈 ∖ { 0 }) = ∅))
43 ssdif0 4363 . . . 4 (𝑈 ⊆ { 0 } ↔ (𝑈 ∖ { 0 }) = ∅)
4442, 43imbitrrdi 251 . . 3 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ 𝑈 ⊆ (𝑁‘{𝑋})) → (¬ 𝑈 = (𝑁‘{𝑋}) → 𝑈 ⊆ { 0 }))
45 simpl1 1188 . . . . 5 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ 𝑈 ⊆ (𝑁‘{𝑋})) → 𝑊 ∈ LVec)
4645, 6syl 17 . . . 4 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ 𝑈 ⊆ (𝑁‘{𝑋})) → 𝑊 ∈ LMod)
47 simpl2 1189 . . . 4 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ 𝑈 ⊆ (𝑁‘{𝑋})) → 𝑈𝑆)
4823, 3lssle0 20863 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (𝑈 ⊆ { 0 } ↔ 𝑈 = { 0 }))
4946, 47, 48syl2anc 582 . . 3 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ 𝑈 ⊆ (𝑁‘{𝑋})) → (𝑈 ⊆ { 0 } ↔ 𝑈 = { 0 }))
5044, 49sylibd 238 . 2 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ 𝑈 ⊆ (𝑁‘{𝑋})) → (¬ 𝑈 = (𝑁‘{𝑋}) → 𝑈 = { 0 }))
5150orrd 861 1 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ 𝑈 ⊆ (𝑁‘{𝑋})) → (𝑈 = (𝑁‘{𝑋}) ∨ 𝑈 = { 0 }))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  wo 845  w3a 1084   = wceq 1533  wex 1773  wcel 2098  wne 2929  cdif 3941  cun 3942  wss 3944  c0 4322  {csn 4630  cfv 6549  Basecbs 17199  0gc0g 17440  LModclmod 20772  LSubSpclss 20844  LSpanclspn 20884  LVecclvec 21016
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11201  ax-resscn 11202  ax-1cn 11203  ax-icn 11204  ax-addcl 11205  ax-addrcl 11206  ax-mulcl 11207  ax-mulrcl 11208  ax-mulcom 11209  ax-addass 11210  ax-mulass 11211  ax-distr 11212  ax-i2m1 11213  ax-1ne0 11214  ax-1rid 11215  ax-rnegex 11216  ax-rrecex 11217  ax-cnre 11218  ax-pre-lttri 11219  ax-pre-lttrn 11220  ax-pre-ltadd 11221  ax-pre-mulgt0 11222
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-1st 7994  df-2nd 7995  df-tpos 8232  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11287  df-mnf 11288  df-xr 11289  df-ltxr 11290  df-le 11291  df-sub 11483  df-neg 11484  df-nn 12251  df-2 12313  df-3 12314  df-sets 17152  df-slot 17170  df-ndx 17182  df-base 17200  df-ress 17229  df-plusg 17265  df-mulr 17266  df-0g 17442  df-mgm 18619  df-sgrp 18698  df-mnd 18714  df-grp 18917  df-minusg 18918  df-sbg 18919  df-cmn 19766  df-abl 19767  df-mgp 20104  df-rng 20122  df-ur 20151  df-ring 20204  df-oppr 20302  df-dvdsr 20325  df-unit 20326  df-invr 20356  df-drng 20655  df-lmod 20774  df-lss 20845  df-lsp 20885  df-lvec 21017
This theorem is referenced by:  lspsncv0  21063  lsatcmp  38625  dihlspsnssN  40955  dihlspsnat  40956
  Copyright terms: Public domain W3C validator