MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspsnat Structured version   Visualization version   GIF version

Theorem lspsnat 19911
Description: There is no subspace strictly between the zero subspace and the span of a vector (i.e. a 1-dimensional subspace is an atom). (h1datomi 29352 analog.) (Contributed by NM, 20-Apr-2014.) (Proof shortened by Mario Carneiro, 22-Jun-2014.)
Hypotheses
Ref Expression
lspsnat.v 𝑉 = (Base‘𝑊)
lspsnat.z 0 = (0g𝑊)
lspsnat.s 𝑆 = (LSubSp‘𝑊)
lspsnat.n 𝑁 = (LSpan‘𝑊)
Assertion
Ref Expression
lspsnat (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ 𝑈 ⊆ (𝑁‘{𝑋})) → (𝑈 = (𝑁‘{𝑋}) ∨ 𝑈 = { 0 }))

Proof of Theorem lspsnat
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 n0 4309 . . . . . 6 ((𝑈 ∖ { 0 }) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝑈 ∖ { 0 }))
2 simprl 769 . . . . . . . . 9 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ (𝑈 ⊆ (𝑁‘{𝑋}) ∧ 𝑥 ∈ (𝑈 ∖ { 0 }))) → 𝑈 ⊆ (𝑁‘{𝑋}))
3 lspsnat.s . . . . . . . . . 10 𝑆 = (LSubSp‘𝑊)
4 lspsnat.n . . . . . . . . . 10 𝑁 = (LSpan‘𝑊)
5 simpl1 1187 . . . . . . . . . . 11 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ (𝑈 ⊆ (𝑁‘{𝑋}) ∧ 𝑥 ∈ (𝑈 ∖ { 0 }))) → 𝑊 ∈ LVec)
6 lveclmod 19872 . . . . . . . . . . 11 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
75, 6syl 17 . . . . . . . . . 10 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ (𝑈 ⊆ (𝑁‘{𝑋}) ∧ 𝑥 ∈ (𝑈 ∖ { 0 }))) → 𝑊 ∈ LMod)
8 simpl2 1188 . . . . . . . . . 10 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ (𝑈 ⊆ (𝑁‘{𝑋}) ∧ 𝑥 ∈ (𝑈 ∖ { 0 }))) → 𝑈𝑆)
9 simprr 771 . . . . . . . . . . . . 13 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ (𝑈 ⊆ (𝑁‘{𝑋}) ∧ 𝑥 ∈ (𝑈 ∖ { 0 }))) → 𝑥 ∈ (𝑈 ∖ { 0 }))
109eldifad 3947 . . . . . . . . . . . 12 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ (𝑈 ⊆ (𝑁‘{𝑋}) ∧ 𝑥 ∈ (𝑈 ∖ { 0 }))) → 𝑥𝑈)
113, 4, 7, 8, 10lspsnel5a 19762 . . . . . . . . . . 11 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ (𝑈 ⊆ (𝑁‘{𝑋}) ∧ 𝑥 ∈ (𝑈 ∖ { 0 }))) → (𝑁‘{𝑥}) ⊆ 𝑈)
12 0ss 4349 . . . . . . . . . . . . . 14 ∅ ⊆ 𝑉
1312a1i 11 . . . . . . . . . . . . 13 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ (𝑈 ⊆ (𝑁‘{𝑋}) ∧ 𝑥 ∈ (𝑈 ∖ { 0 }))) → ∅ ⊆ 𝑉)
14 simpl3 1189 . . . . . . . . . . . . 13 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ (𝑈 ⊆ (𝑁‘{𝑋}) ∧ 𝑥 ∈ (𝑈 ∖ { 0 }))) → 𝑋𝑉)
15 ssdif 4115 . . . . . . . . . . . . . . . 16 (𝑈 ⊆ (𝑁‘{𝑋}) → (𝑈 ∖ { 0 }) ⊆ ((𝑁‘{𝑋}) ∖ { 0 }))
1615ad2antrl 726 . . . . . . . . . . . . . . 15 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ (𝑈 ⊆ (𝑁‘{𝑋}) ∧ 𝑥 ∈ (𝑈 ∖ { 0 }))) → (𝑈 ∖ { 0 }) ⊆ ((𝑁‘{𝑋}) ∖ { 0 }))
1716, 9sseldd 3967 . . . . . . . . . . . . . 14 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ (𝑈 ⊆ (𝑁‘{𝑋}) ∧ 𝑥 ∈ (𝑈 ∖ { 0 }))) → 𝑥 ∈ ((𝑁‘{𝑋}) ∖ { 0 }))
18 uncom 4128 . . . . . . . . . . . . . . . . . 18 (∅ ∪ {𝑋}) = ({𝑋} ∪ ∅)
19 un0 4343 . . . . . . . . . . . . . . . . . 18 ({𝑋} ∪ ∅) = {𝑋}
2018, 19eqtri 2844 . . . . . . . . . . . . . . . . 17 (∅ ∪ {𝑋}) = {𝑋}
2120fveq2i 6667 . . . . . . . . . . . . . . . 16 (𝑁‘(∅ ∪ {𝑋})) = (𝑁‘{𝑋})
2221a1i 11 . . . . . . . . . . . . . . 15 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ (𝑈 ⊆ (𝑁‘{𝑋}) ∧ 𝑥 ∈ (𝑈 ∖ { 0 }))) → (𝑁‘(∅ ∪ {𝑋})) = (𝑁‘{𝑋}))
23 lspsnat.z . . . . . . . . . . . . . . . . 17 0 = (0g𝑊)
2423, 4lsp0 19775 . . . . . . . . . . . . . . . 16 (𝑊 ∈ LMod → (𝑁‘∅) = { 0 })
257, 24syl 17 . . . . . . . . . . . . . . 15 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ (𝑈 ⊆ (𝑁‘{𝑋}) ∧ 𝑥 ∈ (𝑈 ∖ { 0 }))) → (𝑁‘∅) = { 0 })
2622, 25difeq12d 4099 . . . . . . . . . . . . . 14 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ (𝑈 ⊆ (𝑁‘{𝑋}) ∧ 𝑥 ∈ (𝑈 ∖ { 0 }))) → ((𝑁‘(∅ ∪ {𝑋})) ∖ (𝑁‘∅)) = ((𝑁‘{𝑋}) ∖ { 0 }))
2717, 26eleqtrrd 2916 . . . . . . . . . . . . 13 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ (𝑈 ⊆ (𝑁‘{𝑋}) ∧ 𝑥 ∈ (𝑈 ∖ { 0 }))) → 𝑥 ∈ ((𝑁‘(∅ ∪ {𝑋})) ∖ (𝑁‘∅)))
28 lspsnat.v . . . . . . . . . . . . . 14 𝑉 = (Base‘𝑊)
2928, 3, 4lspsolv 19909 . . . . . . . . . . . . 13 ((𝑊 ∈ LVec ∧ (∅ ⊆ 𝑉𝑋𝑉𝑥 ∈ ((𝑁‘(∅ ∪ {𝑋})) ∖ (𝑁‘∅)))) → 𝑋 ∈ (𝑁‘(∅ ∪ {𝑥})))
305, 13, 14, 27, 29syl13anc 1368 . . . . . . . . . . . 12 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ (𝑈 ⊆ (𝑁‘{𝑋}) ∧ 𝑥 ∈ (𝑈 ∖ { 0 }))) → 𝑋 ∈ (𝑁‘(∅ ∪ {𝑥})))
31 uncom 4128 . . . . . . . . . . . . . 14 (∅ ∪ {𝑥}) = ({𝑥} ∪ ∅)
32 un0 4343 . . . . . . . . . . . . . 14 ({𝑥} ∪ ∅) = {𝑥}
3331, 32eqtri 2844 . . . . . . . . . . . . 13 (∅ ∪ {𝑥}) = {𝑥}
3433fveq2i 6667 . . . . . . . . . . . 12 (𝑁‘(∅ ∪ {𝑥})) = (𝑁‘{𝑥})
3530, 34eleqtrdi 2923 . . . . . . . . . . 11 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ (𝑈 ⊆ (𝑁‘{𝑋}) ∧ 𝑥 ∈ (𝑈 ∖ { 0 }))) → 𝑋 ∈ (𝑁‘{𝑥}))
3611, 35sseldd 3967 . . . . . . . . . 10 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ (𝑈 ⊆ (𝑁‘{𝑋}) ∧ 𝑥 ∈ (𝑈 ∖ { 0 }))) → 𝑋𝑈)
373, 4, 7, 8, 36lspsnel5a 19762 . . . . . . . . 9 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ (𝑈 ⊆ (𝑁‘{𝑋}) ∧ 𝑥 ∈ (𝑈 ∖ { 0 }))) → (𝑁‘{𝑋}) ⊆ 𝑈)
382, 37eqssd 3983 . . . . . . . 8 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ (𝑈 ⊆ (𝑁‘{𝑋}) ∧ 𝑥 ∈ (𝑈 ∖ { 0 }))) → 𝑈 = (𝑁‘{𝑋}))
3938expr 459 . . . . . . 7 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ 𝑈 ⊆ (𝑁‘{𝑋})) → (𝑥 ∈ (𝑈 ∖ { 0 }) → 𝑈 = (𝑁‘{𝑋})))
4039exlimdv 1930 . . . . . 6 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ 𝑈 ⊆ (𝑁‘{𝑋})) → (∃𝑥 𝑥 ∈ (𝑈 ∖ { 0 }) → 𝑈 = (𝑁‘{𝑋})))
411, 40syl5bi 244 . . . . 5 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ 𝑈 ⊆ (𝑁‘{𝑋})) → ((𝑈 ∖ { 0 }) ≠ ∅ → 𝑈 = (𝑁‘{𝑋})))
4241necon1bd 3034 . . . 4 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ 𝑈 ⊆ (𝑁‘{𝑋})) → (¬ 𝑈 = (𝑁‘{𝑋}) → (𝑈 ∖ { 0 }) = ∅))
43 ssdif0 4322 . . . 4 (𝑈 ⊆ { 0 } ↔ (𝑈 ∖ { 0 }) = ∅)
4442, 43syl6ibr 254 . . 3 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ 𝑈 ⊆ (𝑁‘{𝑋})) → (¬ 𝑈 = (𝑁‘{𝑋}) → 𝑈 ⊆ { 0 }))
45 simpl1 1187 . . . . 5 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ 𝑈 ⊆ (𝑁‘{𝑋})) → 𝑊 ∈ LVec)
4645, 6syl 17 . . . 4 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ 𝑈 ⊆ (𝑁‘{𝑋})) → 𝑊 ∈ LMod)
47 simpl2 1188 . . . 4 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ 𝑈 ⊆ (𝑁‘{𝑋})) → 𝑈𝑆)
4823, 3lssle0 19715 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (𝑈 ⊆ { 0 } ↔ 𝑈 = { 0 }))
4946, 47, 48syl2anc 586 . . 3 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ 𝑈 ⊆ (𝑁‘{𝑋})) → (𝑈 ⊆ { 0 } ↔ 𝑈 = { 0 }))
5044, 49sylibd 241 . 2 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ 𝑈 ⊆ (𝑁‘{𝑋})) → (¬ 𝑈 = (𝑁‘{𝑋}) → 𝑈 = { 0 }))
5150orrd 859 1 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ 𝑈 ⊆ (𝑁‘{𝑋})) → (𝑈 = (𝑁‘{𝑋}) ∨ 𝑈 = { 0 }))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843  w3a 1083   = wceq 1533  wex 1776  wcel 2110  wne 3016  cdif 3932  cun 3933  wss 3935  c0 4290  {csn 4560  cfv 6349  Basecbs 16477  0gc0g 16707  LModclmod 19628  LSubSpclss 19697  LSpanclspn 19737  LVecclvec 19868
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-tpos 7886  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-3 11695  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-mulr 16573  df-0g 16709  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-grp 18100  df-minusg 18101  df-sbg 18102  df-cmn 18902  df-abl 18903  df-mgp 19234  df-ur 19246  df-ring 19293  df-oppr 19367  df-dvdsr 19385  df-unit 19386  df-invr 19416  df-drng 19498  df-lmod 19630  df-lss 19698  df-lsp 19738  df-lvec 19869
This theorem is referenced by:  lspsncv0  19912  lsatcmp  36133  dihlspsnssN  38462  dihlspsnat  38463
  Copyright terms: Public domain W3C validator