HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  mdslmd1i Structured version   Visualization version   GIF version

Theorem mdslmd1i 32155
Description: Preservation of the modular pair property in the one-to-one onto mapping between the two sublattices in Lemma 1.3 of [MaedaMaeda] p. 2 (meet version). (Contributed by NM, 27-Apr-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
mdslmd.1 𝐴C
mdslmd.2 𝐵C
mdslmd.3 𝐶C
mdslmd.4 𝐷C
Assertion
Ref Expression
mdslmd1i (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ (𝐴 ⊆ (𝐶𝐷) ∧ (𝐶 𝐷) ⊆ (𝐴 𝐵))) → (𝐶 𝑀 𝐷 ↔ (𝐶𝐵) 𝑀 (𝐷𝐵)))

Proof of Theorem mdslmd1i
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssin 4223 . . 3 ((𝐴𝐶𝐴𝐷) ↔ 𝐴 ⊆ (𝐶𝐷))
2 mdslmd.3 . . . 4 𝐶C
3 mdslmd.4 . . . 4 𝐷C
4 mdslmd.1 . . . . 5 𝐴C
5 mdslmd.2 . . . . 5 𝐵C
64, 5chjcli 31283 . . . 4 (𝐴 𝐵) ∈ C
72, 3, 6chlubi 31297 . . 3 ((𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)) ↔ (𝐶 𝐷) ⊆ (𝐴 𝐵))
81, 7anbi12i 626 . 2 (((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))) ↔ (𝐴 ⊆ (𝐶𝐷) ∧ (𝐶 𝐷) ⊆ (𝐴 𝐵)))
9 chjcl 31183 . . . . . . . . . . 11 ((𝑥C𝐴C ) → (𝑥 𝐴) ∈ C )
104, 9mpan2 689 . . . . . . . . . 10 (𝑥C → (𝑥 𝐴) ∈ C )
11 sseq1 3997 . . . . . . . . . . . 12 (𝑦 = (𝑥 𝐴) → (𝑦𝐷 ↔ (𝑥 𝐴) ⊆ 𝐷))
12 oveq1 7421 . . . . . . . . . . . . . 14 (𝑦 = (𝑥 𝐴) → (𝑦 𝐶) = ((𝑥 𝐴) ∨ 𝐶))
1312ineq1d 4203 . . . . . . . . . . . . 13 (𝑦 = (𝑥 𝐴) → ((𝑦 𝐶) ∩ 𝐷) = (((𝑥 𝐴) ∨ 𝐶) ∩ 𝐷))
14 oveq1 7421 . . . . . . . . . . . . 13 (𝑦 = (𝑥 𝐴) → (𝑦 (𝐶𝐷)) = ((𝑥 𝐴) ∨ (𝐶𝐷)))
1513, 14sseq12d 4005 . . . . . . . . . . . 12 (𝑦 = (𝑥 𝐴) → (((𝑦 𝐶) ∩ 𝐷) ⊆ (𝑦 (𝐶𝐷)) ↔ (((𝑥 𝐴) ∨ 𝐶) ∩ 𝐷) ⊆ ((𝑥 𝐴) ∨ (𝐶𝐷))))
1611, 15imbi12d 343 . . . . . . . . . . 11 (𝑦 = (𝑥 𝐴) → ((𝑦𝐷 → ((𝑦 𝐶) ∩ 𝐷) ⊆ (𝑦 (𝐶𝐷))) ↔ ((𝑥 𝐴) ⊆ 𝐷 → (((𝑥 𝐴) ∨ 𝐶) ∩ 𝐷) ⊆ ((𝑥 𝐴) ∨ (𝐶𝐷)))))
1716rspcv 3597 . . . . . . . . . 10 ((𝑥 𝐴) ∈ C → (∀𝑦C (𝑦𝐷 → ((𝑦 𝐶) ∩ 𝐷) ⊆ (𝑦 (𝐶𝐷))) → ((𝑥 𝐴) ⊆ 𝐷 → (((𝑥 𝐴) ∨ 𝐶) ∩ 𝐷) ⊆ ((𝑥 𝐴) ∨ (𝐶𝐷)))))
1810, 17syl 17 . . . . . . . . 9 (𝑥C → (∀𝑦C (𝑦𝐷 → ((𝑦 𝐶) ∩ 𝐷) ⊆ (𝑦 (𝐶𝐷))) → ((𝑥 𝐴) ⊆ 𝐷 → (((𝑥 𝐴) ∨ 𝐶) ∩ 𝐷) ⊆ ((𝑥 𝐴) ∨ (𝐶𝐷)))))
1918adantr 479 . . . . . . . 8 ((𝑥C ∧ ((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))))) → (∀𝑦C (𝑦𝐷 → ((𝑦 𝐶) ∩ 𝐷) ⊆ (𝑦 (𝐶𝐷))) → ((𝑥 𝐴) ⊆ 𝐷 → (((𝑥 𝐴) ∨ 𝐶) ∩ 𝐷) ⊆ ((𝑥 𝐴) ∨ (𝐶𝐷)))))
204, 5, 2, 3mdslmd1lem3 32153 . . . . . . . 8 ((𝑥C ∧ ((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))))) → (((𝑥 𝐴) ⊆ 𝐷 → (((𝑥 𝐴) ∨ 𝐶) ∩ 𝐷) ⊆ ((𝑥 𝐴) ∨ (𝐶𝐷))) → ((((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑥𝑥 ⊆ (𝐷𝐵)) → ((𝑥 (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ (𝑥 ((𝐶𝐵) ∩ (𝐷𝐵))))))
2119, 20syld 47 . . . . . . 7 ((𝑥C ∧ ((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))))) → (∀𝑦C (𝑦𝐷 → ((𝑦 𝐶) ∩ 𝐷) ⊆ (𝑦 (𝐶𝐷))) → ((((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑥𝑥 ⊆ (𝐷𝐵)) → ((𝑥 (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ (𝑥 ((𝐶𝐵) ∩ (𝐷𝐵))))))
2221ex 411 . . . . . 6 (𝑥C → (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) → (∀𝑦C (𝑦𝐷 → ((𝑦 𝐶) ∩ 𝐷) ⊆ (𝑦 (𝐶𝐷))) → ((((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑥𝑥 ⊆ (𝐷𝐵)) → ((𝑥 (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ (𝑥 ((𝐶𝐵) ∩ (𝐷𝐵)))))))
2322com3l 89 . . . . 5 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) → (∀𝑦C (𝑦𝐷 → ((𝑦 𝐶) ∩ 𝐷) ⊆ (𝑦 (𝐶𝐷))) → (𝑥C → ((((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑥𝑥 ⊆ (𝐷𝐵)) → ((𝑥 (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ (𝑥 ((𝐶𝐵) ∩ (𝐷𝐵)))))))
2423ralrimdv 3142 . . . 4 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) → (∀𝑦C (𝑦𝐷 → ((𝑦 𝐶) ∩ 𝐷) ⊆ (𝑦 (𝐶𝐷))) → ∀𝑥C ((((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑥𝑥 ⊆ (𝐷𝐵)) → ((𝑥 (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ (𝑥 ((𝐶𝐵) ∩ (𝐷𝐵))))))
25 mdbr2 32122 . . . . 5 ((𝐶C𝐷C ) → (𝐶 𝑀 𝐷 ↔ ∀𝑦C (𝑦𝐷 → ((𝑦 𝐶) ∩ 𝐷) ⊆ (𝑦 (𝐶𝐷)))))
262, 3, 25mp2an 690 . . . 4 (𝐶 𝑀 𝐷 ↔ ∀𝑦C (𝑦𝐷 → ((𝑦 𝐶) ∩ 𝐷) ⊆ (𝑦 (𝐶𝐷))))
272, 5chincli 31286 . . . . 5 (𝐶𝐵) ∈ C
283, 5chincli 31286 . . . . 5 (𝐷𝐵) ∈ C
2927, 28mdsl2i 32148 . . . 4 ((𝐶𝐵) 𝑀 (𝐷𝐵) ↔ ∀𝑥C ((((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑥𝑥 ⊆ (𝐷𝐵)) → ((𝑥 (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ (𝑥 ((𝐶𝐵) ∩ (𝐷𝐵)))))
3024, 26, 293imtr4g 295 . . 3 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) → (𝐶 𝑀 𝐷 → (𝐶𝐵) 𝑀 (𝐷𝐵)))
31 chincl 31325 . . . . . . . . . . 11 ((𝑥C𝐵C ) → (𝑥𝐵) ∈ C )
325, 31mpan2 689 . . . . . . . . . 10 (𝑥C → (𝑥𝐵) ∈ C )
33 sseq1 3997 . . . . . . . . . . . 12 (𝑦 = (𝑥𝐵) → (𝑦 ⊆ (𝐷𝐵) ↔ (𝑥𝐵) ⊆ (𝐷𝐵)))
34 oveq1 7421 . . . . . . . . . . . . . 14 (𝑦 = (𝑥𝐵) → (𝑦 (𝐶𝐵)) = ((𝑥𝐵) ∨ (𝐶𝐵)))
3534ineq1d 4203 . . . . . . . . . . . . 13 (𝑦 = (𝑥𝐵) → ((𝑦 (𝐶𝐵)) ∩ (𝐷𝐵)) = (((𝑥𝐵) ∨ (𝐶𝐵)) ∩ (𝐷𝐵)))
36 oveq1 7421 . . . . . . . . . . . . 13 (𝑦 = (𝑥𝐵) → (𝑦 ((𝐶𝐵) ∩ (𝐷𝐵))) = ((𝑥𝐵) ∨ ((𝐶𝐵) ∩ (𝐷𝐵))))
3735, 36sseq12d 4005 . . . . . . . . . . . 12 (𝑦 = (𝑥𝐵) → (((𝑦 (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ (𝑦 ((𝐶𝐵) ∩ (𝐷𝐵))) ↔ (((𝑥𝐵) ∨ (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ ((𝑥𝐵) ∨ ((𝐶𝐵) ∩ (𝐷𝐵)))))
3833, 37imbi12d 343 . . . . . . . . . . 11 (𝑦 = (𝑥𝐵) → ((𝑦 ⊆ (𝐷𝐵) → ((𝑦 (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ (𝑦 ((𝐶𝐵) ∩ (𝐷𝐵)))) ↔ ((𝑥𝐵) ⊆ (𝐷𝐵) → (((𝑥𝐵) ∨ (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ ((𝑥𝐵) ∨ ((𝐶𝐵) ∩ (𝐷𝐵))))))
3938rspcv 3597 . . . . . . . . . 10 ((𝑥𝐵) ∈ C → (∀𝑦C (𝑦 ⊆ (𝐷𝐵) → ((𝑦 (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ (𝑦 ((𝐶𝐵) ∩ (𝐷𝐵)))) → ((𝑥𝐵) ⊆ (𝐷𝐵) → (((𝑥𝐵) ∨ (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ ((𝑥𝐵) ∨ ((𝐶𝐵) ∩ (𝐷𝐵))))))
4032, 39syl 17 . . . . . . . . 9 (𝑥C → (∀𝑦C (𝑦 ⊆ (𝐷𝐵) → ((𝑦 (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ (𝑦 ((𝐶𝐵) ∩ (𝐷𝐵)))) → ((𝑥𝐵) ⊆ (𝐷𝐵) → (((𝑥𝐵) ∨ (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ ((𝑥𝐵) ∨ ((𝐶𝐵) ∩ (𝐷𝐵))))))
4140adantr 479 . . . . . . . 8 ((𝑥C ∧ ((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))))) → (∀𝑦C (𝑦 ⊆ (𝐷𝐵) → ((𝑦 (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ (𝑦 ((𝐶𝐵) ∩ (𝐷𝐵)))) → ((𝑥𝐵) ⊆ (𝐷𝐵) → (((𝑥𝐵) ∨ (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ ((𝑥𝐵) ∨ ((𝐶𝐵) ∩ (𝐷𝐵))))))
424, 5, 2, 3mdslmd1lem4 32154 . . . . . . . 8 ((𝑥C ∧ ((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))))) → (((𝑥𝐵) ⊆ (𝐷𝐵) → (((𝑥𝐵) ∨ (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ ((𝑥𝐵) ∨ ((𝐶𝐵) ∩ (𝐷𝐵)))) → (((𝐶𝐷) ⊆ 𝑥𝑥𝐷) → ((𝑥 𝐶) ∩ 𝐷) ⊆ (𝑥 (𝐶𝐷)))))
4341, 42syld 47 . . . . . . 7 ((𝑥C ∧ ((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))))) → (∀𝑦C (𝑦 ⊆ (𝐷𝐵) → ((𝑦 (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ (𝑦 ((𝐶𝐵) ∩ (𝐷𝐵)))) → (((𝐶𝐷) ⊆ 𝑥𝑥𝐷) → ((𝑥 𝐶) ∩ 𝐷) ⊆ (𝑥 (𝐶𝐷)))))
4443ex 411 . . . . . 6 (𝑥C → (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) → (∀𝑦C (𝑦 ⊆ (𝐷𝐵) → ((𝑦 (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ (𝑦 ((𝐶𝐵) ∩ (𝐷𝐵)))) → (((𝐶𝐷) ⊆ 𝑥𝑥𝐷) → ((𝑥 𝐶) ∩ 𝐷) ⊆ (𝑥 (𝐶𝐷))))))
4544com3l 89 . . . . 5 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) → (∀𝑦C (𝑦 ⊆ (𝐷𝐵) → ((𝑦 (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ (𝑦 ((𝐶𝐵) ∩ (𝐷𝐵)))) → (𝑥C → (((𝐶𝐷) ⊆ 𝑥𝑥𝐷) → ((𝑥 𝐶) ∩ 𝐷) ⊆ (𝑥 (𝐶𝐷))))))
4645ralrimdv 3142 . . . 4 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) → (∀𝑦C (𝑦 ⊆ (𝐷𝐵) → ((𝑦 (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ (𝑦 ((𝐶𝐵) ∩ (𝐷𝐵)))) → ∀𝑥C (((𝐶𝐷) ⊆ 𝑥𝑥𝐷) → ((𝑥 𝐶) ∩ 𝐷) ⊆ (𝑥 (𝐶𝐷)))))
47 mdbr2 32122 . . . . 5 (((𝐶𝐵) ∈ C ∧ (𝐷𝐵) ∈ C ) → ((𝐶𝐵) 𝑀 (𝐷𝐵) ↔ ∀𝑦C (𝑦 ⊆ (𝐷𝐵) → ((𝑦 (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ (𝑦 ((𝐶𝐵) ∩ (𝐷𝐵))))))
4827, 28, 47mp2an 690 . . . 4 ((𝐶𝐵) 𝑀 (𝐷𝐵) ↔ ∀𝑦C (𝑦 ⊆ (𝐷𝐵) → ((𝑦 (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ (𝑦 ((𝐶𝐵) ∩ (𝐷𝐵)))))
492, 3mdsl2i 32148 . . . 4 (𝐶 𝑀 𝐷 ↔ ∀𝑥C (((𝐶𝐷) ⊆ 𝑥𝑥𝐷) → ((𝑥 𝐶) ∩ 𝐷) ⊆ (𝑥 (𝐶𝐷))))
5046, 48, 493imtr4g 295 . . 3 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) → ((𝐶𝐵) 𝑀 (𝐷𝐵) → 𝐶 𝑀 𝐷))
5130, 50impbid 211 . 2 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) → (𝐶 𝑀 𝐷 ↔ (𝐶𝐵) 𝑀 (𝐷𝐵)))
528, 51sylan2br 593 1 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ (𝐴 ⊆ (𝐶𝐷) ∧ (𝐶 𝐷) ⊆ (𝐴 𝐵))) → (𝐶 𝑀 𝐷 ↔ (𝐶𝐵) 𝑀 (𝐷𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  wral 3051  cin 3938  wss 3939   class class class wbr 5141  (class class class)co 7414   C cch 30755   chj 30759   𝑀 cmd 30792   𝑀* cdmd 30793
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5357  ax-pr 5421  ax-un 7736  ax-inf2 9662  ax-cc 10456  ax-cnex 11192  ax-resscn 11193  ax-1cn 11194  ax-icn 11195  ax-addcl 11196  ax-addrcl 11197  ax-mulcl 11198  ax-mulrcl 11199  ax-mulcom 11200  ax-addass 11201  ax-mulass 11202  ax-distr 11203  ax-i2m1 11204  ax-1ne0 11205  ax-1rid 11206  ax-rnegex 11207  ax-rrecex 11208  ax-cnre 11209  ax-pre-lttri 11210  ax-pre-lttrn 11211  ax-pre-ltadd 11212  ax-pre-mulgt0 11213  ax-pre-sup 11214  ax-addf 11215  ax-mulf 11216  ax-hilex 30825  ax-hfvadd 30826  ax-hvcom 30827  ax-hvass 30828  ax-hv0cl 30829  ax-hvaddid 30830  ax-hfvmul 30831  ax-hvmulid 30832  ax-hvmulass 30833  ax-hvdistr1 30834  ax-hvdistr2 30835  ax-hvmul0 30836  ax-hfi 30905  ax-his1 30908  ax-his2 30909  ax-his3 30910  ax-his4 30911  ax-hcompl 31028
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3769  df-csb 3885  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-pss 3958  df-nul 4317  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-tp 4627  df-op 4629  df-uni 4902  df-int 4943  df-iun 4991  df-iin 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5568  df-eprel 5574  df-po 5582  df-so 5583  df-fr 5625  df-se 5626  df-we 5627  df-xp 5676  df-rel 5677  df-cnv 5678  df-co 5679  df-dm 5680  df-rn 5681  df-res 5682  df-ima 5683  df-pred 6298  df-ord 6365  df-on 6366  df-lim 6367  df-suc 6368  df-iota 6493  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-isom 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-of 7680  df-om 7867  df-1st 7989  df-2nd 7990  df-supp 8162  df-frecs 8283  df-wrecs 8314  df-recs 8388  df-rdg 8427  df-1o 8483  df-2o 8484  df-oadd 8487  df-omul 8488  df-er 8721  df-map 8843  df-pm 8844  df-ixp 8913  df-en 8961  df-dom 8962  df-sdom 8963  df-fin 8964  df-fsupp 9384  df-fi 9432  df-sup 9463  df-inf 9464  df-oi 9531  df-card 9960  df-acn 9963  df-pnf 11278  df-mnf 11279  df-xr 11280  df-ltxr 11281  df-le 11282  df-sub 11474  df-neg 11475  df-div 11900  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12501  df-z 12587  df-dec 12706  df-uz 12851  df-q 12961  df-rp 13005  df-xneg 13122  df-xadd 13123  df-xmul 13124  df-ioo 13358  df-ico 13360  df-icc 13361  df-fz 13515  df-fzo 13658  df-fl 13787  df-seq 13997  df-exp 14057  df-hash 14320  df-cj 15076  df-re 15077  df-im 15078  df-sqrt 15212  df-abs 15213  df-clim 15462  df-rlim 15463  df-sum 15663  df-struct 17113  df-sets 17130  df-slot 17148  df-ndx 17160  df-base 17178  df-ress 17207  df-plusg 17243  df-mulr 17244  df-starv 17245  df-sca 17246  df-vsca 17247  df-ip 17248  df-tset 17249  df-ple 17250  df-ds 17252  df-unif 17253  df-hom 17254  df-cco 17255  df-rest 17401  df-topn 17402  df-0g 17420  df-gsum 17421  df-topgen 17422  df-pt 17423  df-prds 17426  df-xrs 17481  df-qtop 17486  df-imas 17487  df-xps 17489  df-mre 17563  df-mrc 17564  df-acs 17566  df-mgm 18597  df-sgrp 18676  df-mnd 18692  df-submnd 18738  df-mulg 19026  df-cntz 19270  df-cmn 19739  df-psmet 21273  df-xmet 21274  df-met 21275  df-bl 21276  df-mopn 21277  df-fbas 21278  df-fg 21279  df-cnfld 21282  df-top 22812  df-topon 22829  df-topsp 22851  df-bases 22865  df-cld 22939  df-ntr 22940  df-cls 22941  df-nei 23018  df-cn 23147  df-cnp 23148  df-lm 23149  df-haus 23235  df-tx 23482  df-hmeo 23675  df-fil 23766  df-fm 23858  df-flim 23859  df-flf 23860  df-xms 24242  df-ms 24243  df-tms 24244  df-cfil 25199  df-cau 25200  df-cmet 25201  df-grpo 30319  df-gid 30320  df-ginv 30321  df-gdiv 30322  df-ablo 30371  df-vc 30385  df-nv 30418  df-va 30421  df-ba 30422  df-sm 30423  df-0v 30424  df-vs 30425  df-nmcv 30426  df-ims 30427  df-dip 30527  df-ssp 30548  df-ph 30639  df-cbn 30689  df-hnorm 30794  df-hba 30795  df-hvsub 30797  df-hlim 30798  df-hcau 30799  df-sh 31033  df-ch 31047  df-oc 31078  df-ch0 31079  df-shs 31134  df-chj 31136  df-md 32106  df-dmd 32107
This theorem is referenced by:  mdslmd2i  32156  mdcompli  32255
  Copyright terms: Public domain W3C validator