HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  mdslmd1i Structured version   Visualization version   GIF version

Theorem mdslmd1i 30211
Description: Preservation of the modular pair property in the one-to-one onto mapping between the two sublattices in Lemma 1.3 of [MaedaMaeda] p. 2 (meet version). (Contributed by NM, 27-Apr-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
mdslmd.1 𝐴C
mdslmd.2 𝐵C
mdslmd.3 𝐶C
mdslmd.4 𝐷C
Assertion
Ref Expression
mdslmd1i (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ (𝐴 ⊆ (𝐶𝐷) ∧ (𝐶 𝐷) ⊆ (𝐴 𝐵))) → (𝐶 𝑀 𝐷 ↔ (𝐶𝐵) 𝑀 (𝐷𝐵)))

Proof of Theorem mdslmd1i
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssin 4135 . . 3 ((𝐴𝐶𝐴𝐷) ↔ 𝐴 ⊆ (𝐶𝐷))
2 mdslmd.3 . . . 4 𝐶C
3 mdslmd.4 . . . 4 𝐷C
4 mdslmd.1 . . . . 5 𝐴C
5 mdslmd.2 . . . . 5 𝐵C
64, 5chjcli 29339 . . . 4 (𝐴 𝐵) ∈ C
72, 3, 6chlubi 29353 . . 3 ((𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)) ↔ (𝐶 𝐷) ⊆ (𝐴 𝐵))
81, 7anbi12i 629 . 2 (((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))) ↔ (𝐴 ⊆ (𝐶𝐷) ∧ (𝐶 𝐷) ⊆ (𝐴 𝐵)))
9 chjcl 29239 . . . . . . . . . . 11 ((𝑥C𝐴C ) → (𝑥 𝐴) ∈ C )
104, 9mpan2 690 . . . . . . . . . 10 (𝑥C → (𝑥 𝐴) ∈ C )
11 sseq1 3917 . . . . . . . . . . . 12 (𝑦 = (𝑥 𝐴) → (𝑦𝐷 ↔ (𝑥 𝐴) ⊆ 𝐷))
12 oveq1 7157 . . . . . . . . . . . . . 14 (𝑦 = (𝑥 𝐴) → (𝑦 𝐶) = ((𝑥 𝐴) ∨ 𝐶))
1312ineq1d 4116 . . . . . . . . . . . . 13 (𝑦 = (𝑥 𝐴) → ((𝑦 𝐶) ∩ 𝐷) = (((𝑥 𝐴) ∨ 𝐶) ∩ 𝐷))
14 oveq1 7157 . . . . . . . . . . . . 13 (𝑦 = (𝑥 𝐴) → (𝑦 (𝐶𝐷)) = ((𝑥 𝐴) ∨ (𝐶𝐷)))
1513, 14sseq12d 3925 . . . . . . . . . . . 12 (𝑦 = (𝑥 𝐴) → (((𝑦 𝐶) ∩ 𝐷) ⊆ (𝑦 (𝐶𝐷)) ↔ (((𝑥 𝐴) ∨ 𝐶) ∩ 𝐷) ⊆ ((𝑥 𝐴) ∨ (𝐶𝐷))))
1611, 15imbi12d 348 . . . . . . . . . . 11 (𝑦 = (𝑥 𝐴) → ((𝑦𝐷 → ((𝑦 𝐶) ∩ 𝐷) ⊆ (𝑦 (𝐶𝐷))) ↔ ((𝑥 𝐴) ⊆ 𝐷 → (((𝑥 𝐴) ∨ 𝐶) ∩ 𝐷) ⊆ ((𝑥 𝐴) ∨ (𝐶𝐷)))))
1716rspcv 3536 . . . . . . . . . 10 ((𝑥 𝐴) ∈ C → (∀𝑦C (𝑦𝐷 → ((𝑦 𝐶) ∩ 𝐷) ⊆ (𝑦 (𝐶𝐷))) → ((𝑥 𝐴) ⊆ 𝐷 → (((𝑥 𝐴) ∨ 𝐶) ∩ 𝐷) ⊆ ((𝑥 𝐴) ∨ (𝐶𝐷)))))
1810, 17syl 17 . . . . . . . . 9 (𝑥C → (∀𝑦C (𝑦𝐷 → ((𝑦 𝐶) ∩ 𝐷) ⊆ (𝑦 (𝐶𝐷))) → ((𝑥 𝐴) ⊆ 𝐷 → (((𝑥 𝐴) ∨ 𝐶) ∩ 𝐷) ⊆ ((𝑥 𝐴) ∨ (𝐶𝐷)))))
1918adantr 484 . . . . . . . 8 ((𝑥C ∧ ((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))))) → (∀𝑦C (𝑦𝐷 → ((𝑦 𝐶) ∩ 𝐷) ⊆ (𝑦 (𝐶𝐷))) → ((𝑥 𝐴) ⊆ 𝐷 → (((𝑥 𝐴) ∨ 𝐶) ∩ 𝐷) ⊆ ((𝑥 𝐴) ∨ (𝐶𝐷)))))
204, 5, 2, 3mdslmd1lem3 30209 . . . . . . . 8 ((𝑥C ∧ ((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))))) → (((𝑥 𝐴) ⊆ 𝐷 → (((𝑥 𝐴) ∨ 𝐶) ∩ 𝐷) ⊆ ((𝑥 𝐴) ∨ (𝐶𝐷))) → ((((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑥𝑥 ⊆ (𝐷𝐵)) → ((𝑥 (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ (𝑥 ((𝐶𝐵) ∩ (𝐷𝐵))))))
2119, 20syld 47 . . . . . . 7 ((𝑥C ∧ ((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))))) → (∀𝑦C (𝑦𝐷 → ((𝑦 𝐶) ∩ 𝐷) ⊆ (𝑦 (𝐶𝐷))) → ((((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑥𝑥 ⊆ (𝐷𝐵)) → ((𝑥 (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ (𝑥 ((𝐶𝐵) ∩ (𝐷𝐵))))))
2221ex 416 . . . . . 6 (𝑥C → (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) → (∀𝑦C (𝑦𝐷 → ((𝑦 𝐶) ∩ 𝐷) ⊆ (𝑦 (𝐶𝐷))) → ((((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑥𝑥 ⊆ (𝐷𝐵)) → ((𝑥 (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ (𝑥 ((𝐶𝐵) ∩ (𝐷𝐵)))))))
2322com3l 89 . . . . 5 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) → (∀𝑦C (𝑦𝐷 → ((𝑦 𝐶) ∩ 𝐷) ⊆ (𝑦 (𝐶𝐷))) → (𝑥C → ((((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑥𝑥 ⊆ (𝐷𝐵)) → ((𝑥 (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ (𝑥 ((𝐶𝐵) ∩ (𝐷𝐵)))))))
2423ralrimdv 3117 . . . 4 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) → (∀𝑦C (𝑦𝐷 → ((𝑦 𝐶) ∩ 𝐷) ⊆ (𝑦 (𝐶𝐷))) → ∀𝑥C ((((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑥𝑥 ⊆ (𝐷𝐵)) → ((𝑥 (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ (𝑥 ((𝐶𝐵) ∩ (𝐷𝐵))))))
25 mdbr2 30178 . . . . 5 ((𝐶C𝐷C ) → (𝐶 𝑀 𝐷 ↔ ∀𝑦C (𝑦𝐷 → ((𝑦 𝐶) ∩ 𝐷) ⊆ (𝑦 (𝐶𝐷)))))
262, 3, 25mp2an 691 . . . 4 (𝐶 𝑀 𝐷 ↔ ∀𝑦C (𝑦𝐷 → ((𝑦 𝐶) ∩ 𝐷) ⊆ (𝑦 (𝐶𝐷))))
272, 5chincli 29342 . . . . 5 (𝐶𝐵) ∈ C
283, 5chincli 29342 . . . . 5 (𝐷𝐵) ∈ C
2927, 28mdsl2i 30204 . . . 4 ((𝐶𝐵) 𝑀 (𝐷𝐵) ↔ ∀𝑥C ((((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑥𝑥 ⊆ (𝐷𝐵)) → ((𝑥 (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ (𝑥 ((𝐶𝐵) ∩ (𝐷𝐵)))))
3024, 26, 293imtr4g 299 . . 3 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) → (𝐶 𝑀 𝐷 → (𝐶𝐵) 𝑀 (𝐷𝐵)))
31 chincl 29381 . . . . . . . . . . 11 ((𝑥C𝐵C ) → (𝑥𝐵) ∈ C )
325, 31mpan2 690 . . . . . . . . . 10 (𝑥C → (𝑥𝐵) ∈ C )
33 sseq1 3917 . . . . . . . . . . . 12 (𝑦 = (𝑥𝐵) → (𝑦 ⊆ (𝐷𝐵) ↔ (𝑥𝐵) ⊆ (𝐷𝐵)))
34 oveq1 7157 . . . . . . . . . . . . . 14 (𝑦 = (𝑥𝐵) → (𝑦 (𝐶𝐵)) = ((𝑥𝐵) ∨ (𝐶𝐵)))
3534ineq1d 4116 . . . . . . . . . . . . 13 (𝑦 = (𝑥𝐵) → ((𝑦 (𝐶𝐵)) ∩ (𝐷𝐵)) = (((𝑥𝐵) ∨ (𝐶𝐵)) ∩ (𝐷𝐵)))
36 oveq1 7157 . . . . . . . . . . . . 13 (𝑦 = (𝑥𝐵) → (𝑦 ((𝐶𝐵) ∩ (𝐷𝐵))) = ((𝑥𝐵) ∨ ((𝐶𝐵) ∩ (𝐷𝐵))))
3735, 36sseq12d 3925 . . . . . . . . . . . 12 (𝑦 = (𝑥𝐵) → (((𝑦 (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ (𝑦 ((𝐶𝐵) ∩ (𝐷𝐵))) ↔ (((𝑥𝐵) ∨ (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ ((𝑥𝐵) ∨ ((𝐶𝐵) ∩ (𝐷𝐵)))))
3833, 37imbi12d 348 . . . . . . . . . . 11 (𝑦 = (𝑥𝐵) → ((𝑦 ⊆ (𝐷𝐵) → ((𝑦 (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ (𝑦 ((𝐶𝐵) ∩ (𝐷𝐵)))) ↔ ((𝑥𝐵) ⊆ (𝐷𝐵) → (((𝑥𝐵) ∨ (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ ((𝑥𝐵) ∨ ((𝐶𝐵) ∩ (𝐷𝐵))))))
3938rspcv 3536 . . . . . . . . . 10 ((𝑥𝐵) ∈ C → (∀𝑦C (𝑦 ⊆ (𝐷𝐵) → ((𝑦 (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ (𝑦 ((𝐶𝐵) ∩ (𝐷𝐵)))) → ((𝑥𝐵) ⊆ (𝐷𝐵) → (((𝑥𝐵) ∨ (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ ((𝑥𝐵) ∨ ((𝐶𝐵) ∩ (𝐷𝐵))))))
4032, 39syl 17 . . . . . . . . 9 (𝑥C → (∀𝑦C (𝑦 ⊆ (𝐷𝐵) → ((𝑦 (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ (𝑦 ((𝐶𝐵) ∩ (𝐷𝐵)))) → ((𝑥𝐵) ⊆ (𝐷𝐵) → (((𝑥𝐵) ∨ (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ ((𝑥𝐵) ∨ ((𝐶𝐵) ∩ (𝐷𝐵))))))
4140adantr 484 . . . . . . . 8 ((𝑥C ∧ ((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))))) → (∀𝑦C (𝑦 ⊆ (𝐷𝐵) → ((𝑦 (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ (𝑦 ((𝐶𝐵) ∩ (𝐷𝐵)))) → ((𝑥𝐵) ⊆ (𝐷𝐵) → (((𝑥𝐵) ∨ (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ ((𝑥𝐵) ∨ ((𝐶𝐵) ∩ (𝐷𝐵))))))
424, 5, 2, 3mdslmd1lem4 30210 . . . . . . . 8 ((𝑥C ∧ ((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))))) → (((𝑥𝐵) ⊆ (𝐷𝐵) → (((𝑥𝐵) ∨ (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ ((𝑥𝐵) ∨ ((𝐶𝐵) ∩ (𝐷𝐵)))) → (((𝐶𝐷) ⊆ 𝑥𝑥𝐷) → ((𝑥 𝐶) ∩ 𝐷) ⊆ (𝑥 (𝐶𝐷)))))
4341, 42syld 47 . . . . . . 7 ((𝑥C ∧ ((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))))) → (∀𝑦C (𝑦 ⊆ (𝐷𝐵) → ((𝑦 (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ (𝑦 ((𝐶𝐵) ∩ (𝐷𝐵)))) → (((𝐶𝐷) ⊆ 𝑥𝑥𝐷) → ((𝑥 𝐶) ∩ 𝐷) ⊆ (𝑥 (𝐶𝐷)))))
4443ex 416 . . . . . 6 (𝑥C → (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) → (∀𝑦C (𝑦 ⊆ (𝐷𝐵) → ((𝑦 (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ (𝑦 ((𝐶𝐵) ∩ (𝐷𝐵)))) → (((𝐶𝐷) ⊆ 𝑥𝑥𝐷) → ((𝑥 𝐶) ∩ 𝐷) ⊆ (𝑥 (𝐶𝐷))))))
4544com3l 89 . . . . 5 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) → (∀𝑦C (𝑦 ⊆ (𝐷𝐵) → ((𝑦 (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ (𝑦 ((𝐶𝐵) ∩ (𝐷𝐵)))) → (𝑥C → (((𝐶𝐷) ⊆ 𝑥𝑥𝐷) → ((𝑥 𝐶) ∩ 𝐷) ⊆ (𝑥 (𝐶𝐷))))))
4645ralrimdv 3117 . . . 4 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) → (∀𝑦C (𝑦 ⊆ (𝐷𝐵) → ((𝑦 (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ (𝑦 ((𝐶𝐵) ∩ (𝐷𝐵)))) → ∀𝑥C (((𝐶𝐷) ⊆ 𝑥𝑥𝐷) → ((𝑥 𝐶) ∩ 𝐷) ⊆ (𝑥 (𝐶𝐷)))))
47 mdbr2 30178 . . . . 5 (((𝐶𝐵) ∈ C ∧ (𝐷𝐵) ∈ C ) → ((𝐶𝐵) 𝑀 (𝐷𝐵) ↔ ∀𝑦C (𝑦 ⊆ (𝐷𝐵) → ((𝑦 (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ (𝑦 ((𝐶𝐵) ∩ (𝐷𝐵))))))
4827, 28, 47mp2an 691 . . . 4 ((𝐶𝐵) 𝑀 (𝐷𝐵) ↔ ∀𝑦C (𝑦 ⊆ (𝐷𝐵) → ((𝑦 (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ (𝑦 ((𝐶𝐵) ∩ (𝐷𝐵)))))
492, 3mdsl2i 30204 . . . 4 (𝐶 𝑀 𝐷 ↔ ∀𝑥C (((𝐶𝐷) ⊆ 𝑥𝑥𝐷) → ((𝑥 𝐶) ∩ 𝐷) ⊆ (𝑥 (𝐶𝐷))))
5046, 48, 493imtr4g 299 . . 3 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) → ((𝐶𝐵) 𝑀 (𝐷𝐵) → 𝐶 𝑀 𝐷))
5130, 50impbid 215 . 2 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) → (𝐶 𝑀 𝐷 ↔ (𝐶𝐵) 𝑀 (𝐷𝐵)))
528, 51sylan2br 597 1 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ (𝐴 ⊆ (𝐶𝐷) ∧ (𝐶 𝐷) ⊆ (𝐴 𝐵))) → (𝐶 𝑀 𝐷 ↔ (𝐶𝐵) 𝑀 (𝐷𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wral 3070  cin 3857  wss 3858   class class class wbr 5032  (class class class)co 7150   C cch 28811   chj 28815   𝑀 cmd 28848   𝑀* cdmd 28849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-inf2 9137  ax-cc 9895  ax-cnex 10631  ax-resscn 10632  ax-1cn 10633  ax-icn 10634  ax-addcl 10635  ax-addrcl 10636  ax-mulcl 10637  ax-mulrcl 10638  ax-mulcom 10639  ax-addass 10640  ax-mulass 10641  ax-distr 10642  ax-i2m1 10643  ax-1ne0 10644  ax-1rid 10645  ax-rnegex 10646  ax-rrecex 10647  ax-cnre 10648  ax-pre-lttri 10649  ax-pre-lttrn 10650  ax-pre-ltadd 10651  ax-pre-mulgt0 10652  ax-pre-sup 10653  ax-addf 10654  ax-mulf 10655  ax-hilex 28881  ax-hfvadd 28882  ax-hvcom 28883  ax-hvass 28884  ax-hv0cl 28885  ax-hvaddid 28886  ax-hfvmul 28887  ax-hvmulid 28888  ax-hvmulass 28889  ax-hvdistr1 28890  ax-hvdistr2 28891  ax-hvmul0 28892  ax-hfi 28961  ax-his1 28964  ax-his2 28965  ax-his3 28966  ax-his4 28967  ax-hcompl 29084
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-int 4839  df-iun 4885  df-iin 4886  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-se 5484  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-isom 6344  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7405  df-om 7580  df-1st 7693  df-2nd 7694  df-supp 7836  df-wrecs 7957  df-recs 8018  df-rdg 8056  df-1o 8112  df-2o 8113  df-oadd 8116  df-omul 8117  df-er 8299  df-map 8418  df-pm 8419  df-ixp 8480  df-en 8528  df-dom 8529  df-sdom 8530  df-fin 8531  df-fsupp 8867  df-fi 8908  df-sup 8939  df-inf 8940  df-oi 9007  df-card 9401  df-acn 9404  df-pnf 10715  df-mnf 10716  df-xr 10717  df-ltxr 10718  df-le 10719  df-sub 10910  df-neg 10911  df-div 11336  df-nn 11675  df-2 11737  df-3 11738  df-4 11739  df-5 11740  df-6 11741  df-7 11742  df-8 11743  df-9 11744  df-n0 11935  df-z 12021  df-dec 12138  df-uz 12283  df-q 12389  df-rp 12431  df-xneg 12548  df-xadd 12549  df-xmul 12550  df-ioo 12783  df-ico 12785  df-icc 12786  df-fz 12940  df-fzo 13083  df-fl 13211  df-seq 13419  df-exp 13480  df-hash 13741  df-cj 14506  df-re 14507  df-im 14508  df-sqrt 14642  df-abs 14643  df-clim 14893  df-rlim 14894  df-sum 15091  df-struct 16543  df-ndx 16544  df-slot 16545  df-base 16547  df-sets 16548  df-ress 16549  df-plusg 16636  df-mulr 16637  df-starv 16638  df-sca 16639  df-vsca 16640  df-ip 16641  df-tset 16642  df-ple 16643  df-ds 16645  df-unif 16646  df-hom 16647  df-cco 16648  df-rest 16754  df-topn 16755  df-0g 16773  df-gsum 16774  df-topgen 16775  df-pt 16776  df-prds 16779  df-xrs 16833  df-qtop 16838  df-imas 16839  df-xps 16841  df-mre 16915  df-mrc 16916  df-acs 16918  df-mgm 17918  df-sgrp 17967  df-mnd 17978  df-submnd 18023  df-mulg 18292  df-cntz 18514  df-cmn 18975  df-psmet 20158  df-xmet 20159  df-met 20160  df-bl 20161  df-mopn 20162  df-fbas 20163  df-fg 20164  df-cnfld 20167  df-top 21594  df-topon 21611  df-topsp 21633  df-bases 21646  df-cld 21719  df-ntr 21720  df-cls 21721  df-nei 21798  df-cn 21927  df-cnp 21928  df-lm 21929  df-haus 22015  df-tx 22262  df-hmeo 22455  df-fil 22546  df-fm 22638  df-flim 22639  df-flf 22640  df-xms 23022  df-ms 23023  df-tms 23024  df-cfil 23955  df-cau 23956  df-cmet 23957  df-grpo 28375  df-gid 28376  df-ginv 28377  df-gdiv 28378  df-ablo 28427  df-vc 28441  df-nv 28474  df-va 28477  df-ba 28478  df-sm 28479  df-0v 28480  df-vs 28481  df-nmcv 28482  df-ims 28483  df-dip 28583  df-ssp 28604  df-ph 28695  df-cbn 28745  df-hnorm 28850  df-hba 28851  df-hvsub 28853  df-hlim 28854  df-hcau 28855  df-sh 29089  df-ch 29103  df-oc 29134  df-ch0 29135  df-shs 29190  df-chj 29192  df-md 30162  df-dmd 30163
This theorem is referenced by:  mdslmd2i  30212  mdcompli  30311
  Copyright terms: Public domain W3C validator