HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  mdslmd1i Structured version   Visualization version   GIF version

Theorem mdslmd1i 29717
Description: Preservation of the modular pair property in the one-to-one onto mapping between the two sublattices in Lemma 1.3 of [MaedaMaeda] p. 2 (meet version). (Contributed by NM, 27-Apr-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
mdslmd.1 𝐴C
mdslmd.2 𝐵C
mdslmd.3 𝐶C
mdslmd.4 𝐷C
Assertion
Ref Expression
mdslmd1i (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ (𝐴 ⊆ (𝐶𝐷) ∧ (𝐶 𝐷) ⊆ (𝐴 𝐵))) → (𝐶 𝑀 𝐷 ↔ (𝐶𝐵) 𝑀 (𝐷𝐵)))

Proof of Theorem mdslmd1i
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssin 4034 . . 3 ((𝐴𝐶𝐴𝐷) ↔ 𝐴 ⊆ (𝐶𝐷))
2 mdslmd.3 . . . 4 𝐶C
3 mdslmd.4 . . . 4 𝐷C
4 mdslmd.1 . . . . 5 𝐴C
5 mdslmd.2 . . . . 5 𝐵C
64, 5chjcli 28845 . . . 4 (𝐴 𝐵) ∈ C
72, 3, 6chlubi 28859 . . 3 ((𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)) ↔ (𝐶 𝐷) ⊆ (𝐴 𝐵))
81, 7anbi12i 621 . 2 (((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))) ↔ (𝐴 ⊆ (𝐶𝐷) ∧ (𝐶 𝐷) ⊆ (𝐴 𝐵)))
9 chjcl 28745 . . . . . . . . . . 11 ((𝑥C𝐴C ) → (𝑥 𝐴) ∈ C )
104, 9mpan2 683 . . . . . . . . . 10 (𝑥C → (𝑥 𝐴) ∈ C )
11 sseq1 3826 . . . . . . . . . . . 12 (𝑦 = (𝑥 𝐴) → (𝑦𝐷 ↔ (𝑥 𝐴) ⊆ 𝐷))
12 oveq1 6889 . . . . . . . . . . . . . 14 (𝑦 = (𝑥 𝐴) → (𝑦 𝐶) = ((𝑥 𝐴) ∨ 𝐶))
1312ineq1d 4015 . . . . . . . . . . . . 13 (𝑦 = (𝑥 𝐴) → ((𝑦 𝐶) ∩ 𝐷) = (((𝑥 𝐴) ∨ 𝐶) ∩ 𝐷))
14 oveq1 6889 . . . . . . . . . . . . 13 (𝑦 = (𝑥 𝐴) → (𝑦 (𝐶𝐷)) = ((𝑥 𝐴) ∨ (𝐶𝐷)))
1513, 14sseq12d 3834 . . . . . . . . . . . 12 (𝑦 = (𝑥 𝐴) → (((𝑦 𝐶) ∩ 𝐷) ⊆ (𝑦 (𝐶𝐷)) ↔ (((𝑥 𝐴) ∨ 𝐶) ∩ 𝐷) ⊆ ((𝑥 𝐴) ∨ (𝐶𝐷))))
1611, 15imbi12d 336 . . . . . . . . . . 11 (𝑦 = (𝑥 𝐴) → ((𝑦𝐷 → ((𝑦 𝐶) ∩ 𝐷) ⊆ (𝑦 (𝐶𝐷))) ↔ ((𝑥 𝐴) ⊆ 𝐷 → (((𝑥 𝐴) ∨ 𝐶) ∩ 𝐷) ⊆ ((𝑥 𝐴) ∨ (𝐶𝐷)))))
1716rspcv 3497 . . . . . . . . . 10 ((𝑥 𝐴) ∈ C → (∀𝑦C (𝑦𝐷 → ((𝑦 𝐶) ∩ 𝐷) ⊆ (𝑦 (𝐶𝐷))) → ((𝑥 𝐴) ⊆ 𝐷 → (((𝑥 𝐴) ∨ 𝐶) ∩ 𝐷) ⊆ ((𝑥 𝐴) ∨ (𝐶𝐷)))))
1810, 17syl 17 . . . . . . . . 9 (𝑥C → (∀𝑦C (𝑦𝐷 → ((𝑦 𝐶) ∩ 𝐷) ⊆ (𝑦 (𝐶𝐷))) → ((𝑥 𝐴) ⊆ 𝐷 → (((𝑥 𝐴) ∨ 𝐶) ∩ 𝐷) ⊆ ((𝑥 𝐴) ∨ (𝐶𝐷)))))
1918adantr 473 . . . . . . . 8 ((𝑥C ∧ ((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))))) → (∀𝑦C (𝑦𝐷 → ((𝑦 𝐶) ∩ 𝐷) ⊆ (𝑦 (𝐶𝐷))) → ((𝑥 𝐴) ⊆ 𝐷 → (((𝑥 𝐴) ∨ 𝐶) ∩ 𝐷) ⊆ ((𝑥 𝐴) ∨ (𝐶𝐷)))))
204, 5, 2, 3mdslmd1lem3 29715 . . . . . . . 8 ((𝑥C ∧ ((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))))) → (((𝑥 𝐴) ⊆ 𝐷 → (((𝑥 𝐴) ∨ 𝐶) ∩ 𝐷) ⊆ ((𝑥 𝐴) ∨ (𝐶𝐷))) → ((((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑥𝑥 ⊆ (𝐷𝐵)) → ((𝑥 (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ (𝑥 ((𝐶𝐵) ∩ (𝐷𝐵))))))
2119, 20syld 47 . . . . . . 7 ((𝑥C ∧ ((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))))) → (∀𝑦C (𝑦𝐷 → ((𝑦 𝐶) ∩ 𝐷) ⊆ (𝑦 (𝐶𝐷))) → ((((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑥𝑥 ⊆ (𝐷𝐵)) → ((𝑥 (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ (𝑥 ((𝐶𝐵) ∩ (𝐷𝐵))))))
2221ex 402 . . . . . 6 (𝑥C → (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) → (∀𝑦C (𝑦𝐷 → ((𝑦 𝐶) ∩ 𝐷) ⊆ (𝑦 (𝐶𝐷))) → ((((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑥𝑥 ⊆ (𝐷𝐵)) → ((𝑥 (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ (𝑥 ((𝐶𝐵) ∩ (𝐷𝐵)))))))
2322com3l 89 . . . . 5 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) → (∀𝑦C (𝑦𝐷 → ((𝑦 𝐶) ∩ 𝐷) ⊆ (𝑦 (𝐶𝐷))) → (𝑥C → ((((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑥𝑥 ⊆ (𝐷𝐵)) → ((𝑥 (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ (𝑥 ((𝐶𝐵) ∩ (𝐷𝐵)))))))
2423ralrimdv 3153 . . . 4 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) → (∀𝑦C (𝑦𝐷 → ((𝑦 𝐶) ∩ 𝐷) ⊆ (𝑦 (𝐶𝐷))) → ∀𝑥C ((((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑥𝑥 ⊆ (𝐷𝐵)) → ((𝑥 (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ (𝑥 ((𝐶𝐵) ∩ (𝐷𝐵))))))
25 mdbr2 29684 . . . . 5 ((𝐶C𝐷C ) → (𝐶 𝑀 𝐷 ↔ ∀𝑦C (𝑦𝐷 → ((𝑦 𝐶) ∩ 𝐷) ⊆ (𝑦 (𝐶𝐷)))))
262, 3, 25mp2an 684 . . . 4 (𝐶 𝑀 𝐷 ↔ ∀𝑦C (𝑦𝐷 → ((𝑦 𝐶) ∩ 𝐷) ⊆ (𝑦 (𝐶𝐷))))
272, 5chincli 28848 . . . . 5 (𝐶𝐵) ∈ C
283, 5chincli 28848 . . . . 5 (𝐷𝐵) ∈ C
2927, 28mdsl2i 29710 . . . 4 ((𝐶𝐵) 𝑀 (𝐷𝐵) ↔ ∀𝑥C ((((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑥𝑥 ⊆ (𝐷𝐵)) → ((𝑥 (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ (𝑥 ((𝐶𝐵) ∩ (𝐷𝐵)))))
3024, 26, 293imtr4g 288 . . 3 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) → (𝐶 𝑀 𝐷 → (𝐶𝐵) 𝑀 (𝐷𝐵)))
31 chincl 28887 . . . . . . . . . . 11 ((𝑥C𝐵C ) → (𝑥𝐵) ∈ C )
325, 31mpan2 683 . . . . . . . . . 10 (𝑥C → (𝑥𝐵) ∈ C )
33 sseq1 3826 . . . . . . . . . . . 12 (𝑦 = (𝑥𝐵) → (𝑦 ⊆ (𝐷𝐵) ↔ (𝑥𝐵) ⊆ (𝐷𝐵)))
34 oveq1 6889 . . . . . . . . . . . . . 14 (𝑦 = (𝑥𝐵) → (𝑦 (𝐶𝐵)) = ((𝑥𝐵) ∨ (𝐶𝐵)))
3534ineq1d 4015 . . . . . . . . . . . . 13 (𝑦 = (𝑥𝐵) → ((𝑦 (𝐶𝐵)) ∩ (𝐷𝐵)) = (((𝑥𝐵) ∨ (𝐶𝐵)) ∩ (𝐷𝐵)))
36 oveq1 6889 . . . . . . . . . . . . 13 (𝑦 = (𝑥𝐵) → (𝑦 ((𝐶𝐵) ∩ (𝐷𝐵))) = ((𝑥𝐵) ∨ ((𝐶𝐵) ∩ (𝐷𝐵))))
3735, 36sseq12d 3834 . . . . . . . . . . . 12 (𝑦 = (𝑥𝐵) → (((𝑦 (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ (𝑦 ((𝐶𝐵) ∩ (𝐷𝐵))) ↔ (((𝑥𝐵) ∨ (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ ((𝑥𝐵) ∨ ((𝐶𝐵) ∩ (𝐷𝐵)))))
3833, 37imbi12d 336 . . . . . . . . . . 11 (𝑦 = (𝑥𝐵) → ((𝑦 ⊆ (𝐷𝐵) → ((𝑦 (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ (𝑦 ((𝐶𝐵) ∩ (𝐷𝐵)))) ↔ ((𝑥𝐵) ⊆ (𝐷𝐵) → (((𝑥𝐵) ∨ (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ ((𝑥𝐵) ∨ ((𝐶𝐵) ∩ (𝐷𝐵))))))
3938rspcv 3497 . . . . . . . . . 10 ((𝑥𝐵) ∈ C → (∀𝑦C (𝑦 ⊆ (𝐷𝐵) → ((𝑦 (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ (𝑦 ((𝐶𝐵) ∩ (𝐷𝐵)))) → ((𝑥𝐵) ⊆ (𝐷𝐵) → (((𝑥𝐵) ∨ (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ ((𝑥𝐵) ∨ ((𝐶𝐵) ∩ (𝐷𝐵))))))
4032, 39syl 17 . . . . . . . . 9 (𝑥C → (∀𝑦C (𝑦 ⊆ (𝐷𝐵) → ((𝑦 (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ (𝑦 ((𝐶𝐵) ∩ (𝐷𝐵)))) → ((𝑥𝐵) ⊆ (𝐷𝐵) → (((𝑥𝐵) ∨ (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ ((𝑥𝐵) ∨ ((𝐶𝐵) ∩ (𝐷𝐵))))))
4140adantr 473 . . . . . . . 8 ((𝑥C ∧ ((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))))) → (∀𝑦C (𝑦 ⊆ (𝐷𝐵) → ((𝑦 (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ (𝑦 ((𝐶𝐵) ∩ (𝐷𝐵)))) → ((𝑥𝐵) ⊆ (𝐷𝐵) → (((𝑥𝐵) ∨ (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ ((𝑥𝐵) ∨ ((𝐶𝐵) ∩ (𝐷𝐵))))))
424, 5, 2, 3mdslmd1lem4 29716 . . . . . . . 8 ((𝑥C ∧ ((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))))) → (((𝑥𝐵) ⊆ (𝐷𝐵) → (((𝑥𝐵) ∨ (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ ((𝑥𝐵) ∨ ((𝐶𝐵) ∩ (𝐷𝐵)))) → (((𝐶𝐷) ⊆ 𝑥𝑥𝐷) → ((𝑥 𝐶) ∩ 𝐷) ⊆ (𝑥 (𝐶𝐷)))))
4341, 42syld 47 . . . . . . 7 ((𝑥C ∧ ((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))))) → (∀𝑦C (𝑦 ⊆ (𝐷𝐵) → ((𝑦 (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ (𝑦 ((𝐶𝐵) ∩ (𝐷𝐵)))) → (((𝐶𝐷) ⊆ 𝑥𝑥𝐷) → ((𝑥 𝐶) ∩ 𝐷) ⊆ (𝑥 (𝐶𝐷)))))
4443ex 402 . . . . . 6 (𝑥C → (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) → (∀𝑦C (𝑦 ⊆ (𝐷𝐵) → ((𝑦 (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ (𝑦 ((𝐶𝐵) ∩ (𝐷𝐵)))) → (((𝐶𝐷) ⊆ 𝑥𝑥𝐷) → ((𝑥 𝐶) ∩ 𝐷) ⊆ (𝑥 (𝐶𝐷))))))
4544com3l 89 . . . . 5 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) → (∀𝑦C (𝑦 ⊆ (𝐷𝐵) → ((𝑦 (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ (𝑦 ((𝐶𝐵) ∩ (𝐷𝐵)))) → (𝑥C → (((𝐶𝐷) ⊆ 𝑥𝑥𝐷) → ((𝑥 𝐶) ∩ 𝐷) ⊆ (𝑥 (𝐶𝐷))))))
4645ralrimdv 3153 . . . 4 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) → (∀𝑦C (𝑦 ⊆ (𝐷𝐵) → ((𝑦 (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ (𝑦 ((𝐶𝐵) ∩ (𝐷𝐵)))) → ∀𝑥C (((𝐶𝐷) ⊆ 𝑥𝑥𝐷) → ((𝑥 𝐶) ∩ 𝐷) ⊆ (𝑥 (𝐶𝐷)))))
47 mdbr2 29684 . . . . 5 (((𝐶𝐵) ∈ C ∧ (𝐷𝐵) ∈ C ) → ((𝐶𝐵) 𝑀 (𝐷𝐵) ↔ ∀𝑦C (𝑦 ⊆ (𝐷𝐵) → ((𝑦 (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ (𝑦 ((𝐶𝐵) ∩ (𝐷𝐵))))))
4827, 28, 47mp2an 684 . . . 4 ((𝐶𝐵) 𝑀 (𝐷𝐵) ↔ ∀𝑦C (𝑦 ⊆ (𝐷𝐵) → ((𝑦 (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ (𝑦 ((𝐶𝐵) ∩ (𝐷𝐵)))))
492, 3mdsl2i 29710 . . . 4 (𝐶 𝑀 𝐷 ↔ ∀𝑥C (((𝐶𝐷) ⊆ 𝑥𝑥𝐷) → ((𝑥 𝐶) ∩ 𝐷) ⊆ (𝑥 (𝐶𝐷))))
5046, 48, 493imtr4g 288 . . 3 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) → ((𝐶𝐵) 𝑀 (𝐷𝐵) → 𝐶 𝑀 𝐷))
5130, 50impbid 204 . 2 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) → (𝐶 𝑀 𝐷 ↔ (𝐶𝐵) 𝑀 (𝐷𝐵)))
528, 51sylan2br 589 1 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ (𝐴 ⊆ (𝐶𝐷) ∧ (𝐶 𝐷) ⊆ (𝐴 𝐵))) → (𝐶 𝑀 𝐷 ↔ (𝐶𝐵) 𝑀 (𝐷𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 385   = wceq 1653  wcel 2157  wral 3093  cin 3772  wss 3773   class class class wbr 4847  (class class class)co 6882   C cch 28315   chj 28319   𝑀 cmd 28352   𝑀* cdmd 28353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2379  ax-ext 2781  ax-rep 4968  ax-sep 4979  ax-nul 4987  ax-pow 5039  ax-pr 5101  ax-un 7187  ax-inf2 8792  ax-cc 9549  ax-cnex 10284  ax-resscn 10285  ax-1cn 10286  ax-icn 10287  ax-addcl 10288  ax-addrcl 10289  ax-mulcl 10290  ax-mulrcl 10291  ax-mulcom 10292  ax-addass 10293  ax-mulass 10294  ax-distr 10295  ax-i2m1 10296  ax-1ne0 10297  ax-1rid 10298  ax-rnegex 10299  ax-rrecex 10300  ax-cnre 10301  ax-pre-lttri 10302  ax-pre-lttrn 10303  ax-pre-ltadd 10304  ax-pre-mulgt0 10305  ax-pre-sup 10306  ax-addf 10307  ax-mulf 10308  ax-hilex 28385  ax-hfvadd 28386  ax-hvcom 28387  ax-hvass 28388  ax-hv0cl 28389  ax-hvaddid 28390  ax-hfvmul 28391  ax-hvmulid 28392  ax-hvmulass 28393  ax-hvdistr1 28394  ax-hvdistr2 28395  ax-hvmul0 28396  ax-hfi 28465  ax-his1 28468  ax-his2 28469  ax-his3 28470  ax-his4 28471  ax-hcompl 28588
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-fal 1667  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2593  df-eu 2611  df-clab 2790  df-cleq 2796  df-clel 2799  df-nfc 2934  df-ne 2976  df-nel 3079  df-ral 3098  df-rex 3099  df-reu 3100  df-rmo 3101  df-rab 3102  df-v 3391  df-sbc 3638  df-csb 3733  df-dif 3776  df-un 3778  df-in 3780  df-ss 3787  df-pss 3789  df-nul 4120  df-if 4282  df-pw 4355  df-sn 4373  df-pr 4375  df-tp 4377  df-op 4379  df-uni 4633  df-int 4672  df-iun 4716  df-iin 4717  df-br 4848  df-opab 4910  df-mpt 4927  df-tr 4950  df-id 5224  df-eprel 5229  df-po 5237  df-so 5238  df-fr 5275  df-se 5276  df-we 5277  df-xp 5322  df-rel 5323  df-cnv 5324  df-co 5325  df-dm 5326  df-rn 5327  df-res 5328  df-ima 5329  df-pred 5902  df-ord 5948  df-on 5949  df-lim 5950  df-suc 5951  df-iota 6068  df-fun 6107  df-fn 6108  df-f 6109  df-f1 6110  df-fo 6111  df-f1o 6112  df-fv 6113  df-isom 6114  df-riota 6843  df-ov 6885  df-oprab 6886  df-mpt2 6887  df-of 7135  df-om 7304  df-1st 7405  df-2nd 7406  df-supp 7537  df-wrecs 7649  df-recs 7711  df-rdg 7749  df-1o 7803  df-2o 7804  df-oadd 7807  df-omul 7808  df-er 7986  df-map 8101  df-pm 8102  df-ixp 8153  df-en 8200  df-dom 8201  df-sdom 8202  df-fin 8203  df-fsupp 8522  df-fi 8563  df-sup 8594  df-inf 8595  df-oi 8661  df-card 9055  df-acn 9058  df-cda 9282  df-pnf 10369  df-mnf 10370  df-xr 10371  df-ltxr 10372  df-le 10373  df-sub 10562  df-neg 10563  df-div 10981  df-nn 11317  df-2 11380  df-3 11381  df-4 11382  df-5 11383  df-6 11384  df-7 11385  df-8 11386  df-9 11387  df-n0 11585  df-z 11671  df-dec 11788  df-uz 11935  df-q 12038  df-rp 12079  df-xneg 12197  df-xadd 12198  df-xmul 12199  df-ioo 12432  df-ico 12434  df-icc 12435  df-fz 12585  df-fzo 12725  df-fl 12852  df-seq 13060  df-exp 13119  df-hash 13375  df-cj 14184  df-re 14185  df-im 14186  df-sqrt 14320  df-abs 14321  df-clim 14564  df-rlim 14565  df-sum 14762  df-struct 16190  df-ndx 16191  df-slot 16192  df-base 16194  df-sets 16195  df-ress 16196  df-plusg 16284  df-mulr 16285  df-starv 16286  df-sca 16287  df-vsca 16288  df-ip 16289  df-tset 16290  df-ple 16291  df-ds 16293  df-unif 16294  df-hom 16295  df-cco 16296  df-rest 16402  df-topn 16403  df-0g 16421  df-gsum 16422  df-topgen 16423  df-pt 16424  df-prds 16427  df-xrs 16481  df-qtop 16486  df-imas 16487  df-xps 16489  df-mre 16565  df-mrc 16566  df-acs 16568  df-mgm 17561  df-sgrp 17603  df-mnd 17614  df-submnd 17655  df-mulg 17861  df-cntz 18066  df-cmn 18514  df-psmet 20064  df-xmet 20065  df-met 20066  df-bl 20067  df-mopn 20068  df-fbas 20069  df-fg 20070  df-cnfld 20073  df-top 21031  df-topon 21048  df-topsp 21070  df-bases 21083  df-cld 21156  df-ntr 21157  df-cls 21158  df-nei 21235  df-cn 21364  df-cnp 21365  df-lm 21366  df-haus 21452  df-tx 21698  df-hmeo 21891  df-fil 21982  df-fm 22074  df-flim 22075  df-flf 22076  df-xms 22457  df-ms 22458  df-tms 22459  df-cfil 23385  df-cau 23386  df-cmet 23387  df-grpo 27877  df-gid 27878  df-ginv 27879  df-gdiv 27880  df-ablo 27929  df-vc 27943  df-nv 27976  df-va 27979  df-ba 27980  df-sm 27981  df-0v 27982  df-vs 27983  df-nmcv 27984  df-ims 27985  df-dip 28085  df-ssp 28106  df-ph 28197  df-cbn 28248  df-hnorm 28354  df-hba 28355  df-hvsub 28357  df-hlim 28358  df-hcau 28359  df-sh 28593  df-ch 28607  df-oc 28638  df-ch0 28639  df-shs 28696  df-chj 28698  df-md 29668  df-dmd 29669
This theorem is referenced by:  mdslmd2i  29718  mdcompli  29817
  Copyright terms: Public domain W3C validator