HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  mdslmd1i Structured version   Visualization version   GIF version

Theorem mdslmd1i 32358
Description: Preservation of the modular pair property in the one-to-one onto mapping between the two sublattices in Lemma 1.3 of [MaedaMaeda] p. 2 (meet version). (Contributed by NM, 27-Apr-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
mdslmd.1 𝐴C
mdslmd.2 𝐵C
mdslmd.3 𝐶C
mdslmd.4 𝐷C
Assertion
Ref Expression
mdslmd1i (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ (𝐴 ⊆ (𝐶𝐷) ∧ (𝐶 𝐷) ⊆ (𝐴 𝐵))) → (𝐶 𝑀 𝐷 ↔ (𝐶𝐵) 𝑀 (𝐷𝐵)))

Proof of Theorem mdslmd1i
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssin 4247 . . 3 ((𝐴𝐶𝐴𝐷) ↔ 𝐴 ⊆ (𝐶𝐷))
2 mdslmd.3 . . . 4 𝐶C
3 mdslmd.4 . . . 4 𝐷C
4 mdslmd.1 . . . . 5 𝐴C
5 mdslmd.2 . . . . 5 𝐵C
64, 5chjcli 31486 . . . 4 (𝐴 𝐵) ∈ C
72, 3, 6chlubi 31500 . . 3 ((𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)) ↔ (𝐶 𝐷) ⊆ (𝐴 𝐵))
81, 7anbi12i 628 . 2 (((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))) ↔ (𝐴 ⊆ (𝐶𝐷) ∧ (𝐶 𝐷) ⊆ (𝐴 𝐵)))
9 chjcl 31386 . . . . . . . . . . 11 ((𝑥C𝐴C ) → (𝑥 𝐴) ∈ C )
104, 9mpan2 691 . . . . . . . . . 10 (𝑥C → (𝑥 𝐴) ∈ C )
11 sseq1 4021 . . . . . . . . . . . 12 (𝑦 = (𝑥 𝐴) → (𝑦𝐷 ↔ (𝑥 𝐴) ⊆ 𝐷))
12 oveq1 7438 . . . . . . . . . . . . . 14 (𝑦 = (𝑥 𝐴) → (𝑦 𝐶) = ((𝑥 𝐴) ∨ 𝐶))
1312ineq1d 4227 . . . . . . . . . . . . 13 (𝑦 = (𝑥 𝐴) → ((𝑦 𝐶) ∩ 𝐷) = (((𝑥 𝐴) ∨ 𝐶) ∩ 𝐷))
14 oveq1 7438 . . . . . . . . . . . . 13 (𝑦 = (𝑥 𝐴) → (𝑦 (𝐶𝐷)) = ((𝑥 𝐴) ∨ (𝐶𝐷)))
1513, 14sseq12d 4029 . . . . . . . . . . . 12 (𝑦 = (𝑥 𝐴) → (((𝑦 𝐶) ∩ 𝐷) ⊆ (𝑦 (𝐶𝐷)) ↔ (((𝑥 𝐴) ∨ 𝐶) ∩ 𝐷) ⊆ ((𝑥 𝐴) ∨ (𝐶𝐷))))
1611, 15imbi12d 344 . . . . . . . . . . 11 (𝑦 = (𝑥 𝐴) → ((𝑦𝐷 → ((𝑦 𝐶) ∩ 𝐷) ⊆ (𝑦 (𝐶𝐷))) ↔ ((𝑥 𝐴) ⊆ 𝐷 → (((𝑥 𝐴) ∨ 𝐶) ∩ 𝐷) ⊆ ((𝑥 𝐴) ∨ (𝐶𝐷)))))
1716rspcv 3618 . . . . . . . . . 10 ((𝑥 𝐴) ∈ C → (∀𝑦C (𝑦𝐷 → ((𝑦 𝐶) ∩ 𝐷) ⊆ (𝑦 (𝐶𝐷))) → ((𝑥 𝐴) ⊆ 𝐷 → (((𝑥 𝐴) ∨ 𝐶) ∩ 𝐷) ⊆ ((𝑥 𝐴) ∨ (𝐶𝐷)))))
1810, 17syl 17 . . . . . . . . 9 (𝑥C → (∀𝑦C (𝑦𝐷 → ((𝑦 𝐶) ∩ 𝐷) ⊆ (𝑦 (𝐶𝐷))) → ((𝑥 𝐴) ⊆ 𝐷 → (((𝑥 𝐴) ∨ 𝐶) ∩ 𝐷) ⊆ ((𝑥 𝐴) ∨ (𝐶𝐷)))))
1918adantr 480 . . . . . . . 8 ((𝑥C ∧ ((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))))) → (∀𝑦C (𝑦𝐷 → ((𝑦 𝐶) ∩ 𝐷) ⊆ (𝑦 (𝐶𝐷))) → ((𝑥 𝐴) ⊆ 𝐷 → (((𝑥 𝐴) ∨ 𝐶) ∩ 𝐷) ⊆ ((𝑥 𝐴) ∨ (𝐶𝐷)))))
204, 5, 2, 3mdslmd1lem3 32356 . . . . . . . 8 ((𝑥C ∧ ((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))))) → (((𝑥 𝐴) ⊆ 𝐷 → (((𝑥 𝐴) ∨ 𝐶) ∩ 𝐷) ⊆ ((𝑥 𝐴) ∨ (𝐶𝐷))) → ((((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑥𝑥 ⊆ (𝐷𝐵)) → ((𝑥 (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ (𝑥 ((𝐶𝐵) ∩ (𝐷𝐵))))))
2119, 20syld 47 . . . . . . 7 ((𝑥C ∧ ((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))))) → (∀𝑦C (𝑦𝐷 → ((𝑦 𝐶) ∩ 𝐷) ⊆ (𝑦 (𝐶𝐷))) → ((((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑥𝑥 ⊆ (𝐷𝐵)) → ((𝑥 (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ (𝑥 ((𝐶𝐵) ∩ (𝐷𝐵))))))
2221ex 412 . . . . . 6 (𝑥C → (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) → (∀𝑦C (𝑦𝐷 → ((𝑦 𝐶) ∩ 𝐷) ⊆ (𝑦 (𝐶𝐷))) → ((((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑥𝑥 ⊆ (𝐷𝐵)) → ((𝑥 (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ (𝑥 ((𝐶𝐵) ∩ (𝐷𝐵)))))))
2322com3l 89 . . . . 5 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) → (∀𝑦C (𝑦𝐷 → ((𝑦 𝐶) ∩ 𝐷) ⊆ (𝑦 (𝐶𝐷))) → (𝑥C → ((((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑥𝑥 ⊆ (𝐷𝐵)) → ((𝑥 (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ (𝑥 ((𝐶𝐵) ∩ (𝐷𝐵)))))))
2423ralrimdv 3150 . . . 4 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) → (∀𝑦C (𝑦𝐷 → ((𝑦 𝐶) ∩ 𝐷) ⊆ (𝑦 (𝐶𝐷))) → ∀𝑥C ((((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑥𝑥 ⊆ (𝐷𝐵)) → ((𝑥 (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ (𝑥 ((𝐶𝐵) ∩ (𝐷𝐵))))))
25 mdbr2 32325 . . . . 5 ((𝐶C𝐷C ) → (𝐶 𝑀 𝐷 ↔ ∀𝑦C (𝑦𝐷 → ((𝑦 𝐶) ∩ 𝐷) ⊆ (𝑦 (𝐶𝐷)))))
262, 3, 25mp2an 692 . . . 4 (𝐶 𝑀 𝐷 ↔ ∀𝑦C (𝑦𝐷 → ((𝑦 𝐶) ∩ 𝐷) ⊆ (𝑦 (𝐶𝐷))))
272, 5chincli 31489 . . . . 5 (𝐶𝐵) ∈ C
283, 5chincli 31489 . . . . 5 (𝐷𝐵) ∈ C
2927, 28mdsl2i 32351 . . . 4 ((𝐶𝐵) 𝑀 (𝐷𝐵) ↔ ∀𝑥C ((((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑥𝑥 ⊆ (𝐷𝐵)) → ((𝑥 (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ (𝑥 ((𝐶𝐵) ∩ (𝐷𝐵)))))
3024, 26, 293imtr4g 296 . . 3 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) → (𝐶 𝑀 𝐷 → (𝐶𝐵) 𝑀 (𝐷𝐵)))
31 chincl 31528 . . . . . . . . . . 11 ((𝑥C𝐵C ) → (𝑥𝐵) ∈ C )
325, 31mpan2 691 . . . . . . . . . 10 (𝑥C → (𝑥𝐵) ∈ C )
33 sseq1 4021 . . . . . . . . . . . 12 (𝑦 = (𝑥𝐵) → (𝑦 ⊆ (𝐷𝐵) ↔ (𝑥𝐵) ⊆ (𝐷𝐵)))
34 oveq1 7438 . . . . . . . . . . . . . 14 (𝑦 = (𝑥𝐵) → (𝑦 (𝐶𝐵)) = ((𝑥𝐵) ∨ (𝐶𝐵)))
3534ineq1d 4227 . . . . . . . . . . . . 13 (𝑦 = (𝑥𝐵) → ((𝑦 (𝐶𝐵)) ∩ (𝐷𝐵)) = (((𝑥𝐵) ∨ (𝐶𝐵)) ∩ (𝐷𝐵)))
36 oveq1 7438 . . . . . . . . . . . . 13 (𝑦 = (𝑥𝐵) → (𝑦 ((𝐶𝐵) ∩ (𝐷𝐵))) = ((𝑥𝐵) ∨ ((𝐶𝐵) ∩ (𝐷𝐵))))
3735, 36sseq12d 4029 . . . . . . . . . . . 12 (𝑦 = (𝑥𝐵) → (((𝑦 (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ (𝑦 ((𝐶𝐵) ∩ (𝐷𝐵))) ↔ (((𝑥𝐵) ∨ (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ ((𝑥𝐵) ∨ ((𝐶𝐵) ∩ (𝐷𝐵)))))
3833, 37imbi12d 344 . . . . . . . . . . 11 (𝑦 = (𝑥𝐵) → ((𝑦 ⊆ (𝐷𝐵) → ((𝑦 (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ (𝑦 ((𝐶𝐵) ∩ (𝐷𝐵)))) ↔ ((𝑥𝐵) ⊆ (𝐷𝐵) → (((𝑥𝐵) ∨ (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ ((𝑥𝐵) ∨ ((𝐶𝐵) ∩ (𝐷𝐵))))))
3938rspcv 3618 . . . . . . . . . 10 ((𝑥𝐵) ∈ C → (∀𝑦C (𝑦 ⊆ (𝐷𝐵) → ((𝑦 (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ (𝑦 ((𝐶𝐵) ∩ (𝐷𝐵)))) → ((𝑥𝐵) ⊆ (𝐷𝐵) → (((𝑥𝐵) ∨ (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ ((𝑥𝐵) ∨ ((𝐶𝐵) ∩ (𝐷𝐵))))))
4032, 39syl 17 . . . . . . . . 9 (𝑥C → (∀𝑦C (𝑦 ⊆ (𝐷𝐵) → ((𝑦 (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ (𝑦 ((𝐶𝐵) ∩ (𝐷𝐵)))) → ((𝑥𝐵) ⊆ (𝐷𝐵) → (((𝑥𝐵) ∨ (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ ((𝑥𝐵) ∨ ((𝐶𝐵) ∩ (𝐷𝐵))))))
4140adantr 480 . . . . . . . 8 ((𝑥C ∧ ((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))))) → (∀𝑦C (𝑦 ⊆ (𝐷𝐵) → ((𝑦 (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ (𝑦 ((𝐶𝐵) ∩ (𝐷𝐵)))) → ((𝑥𝐵) ⊆ (𝐷𝐵) → (((𝑥𝐵) ∨ (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ ((𝑥𝐵) ∨ ((𝐶𝐵) ∩ (𝐷𝐵))))))
424, 5, 2, 3mdslmd1lem4 32357 . . . . . . . 8 ((𝑥C ∧ ((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))))) → (((𝑥𝐵) ⊆ (𝐷𝐵) → (((𝑥𝐵) ∨ (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ ((𝑥𝐵) ∨ ((𝐶𝐵) ∩ (𝐷𝐵)))) → (((𝐶𝐷) ⊆ 𝑥𝑥𝐷) → ((𝑥 𝐶) ∩ 𝐷) ⊆ (𝑥 (𝐶𝐷)))))
4341, 42syld 47 . . . . . . 7 ((𝑥C ∧ ((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))))) → (∀𝑦C (𝑦 ⊆ (𝐷𝐵) → ((𝑦 (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ (𝑦 ((𝐶𝐵) ∩ (𝐷𝐵)))) → (((𝐶𝐷) ⊆ 𝑥𝑥𝐷) → ((𝑥 𝐶) ∩ 𝐷) ⊆ (𝑥 (𝐶𝐷)))))
4443ex 412 . . . . . 6 (𝑥C → (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) → (∀𝑦C (𝑦 ⊆ (𝐷𝐵) → ((𝑦 (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ (𝑦 ((𝐶𝐵) ∩ (𝐷𝐵)))) → (((𝐶𝐷) ⊆ 𝑥𝑥𝐷) → ((𝑥 𝐶) ∩ 𝐷) ⊆ (𝑥 (𝐶𝐷))))))
4544com3l 89 . . . . 5 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) → (∀𝑦C (𝑦 ⊆ (𝐷𝐵) → ((𝑦 (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ (𝑦 ((𝐶𝐵) ∩ (𝐷𝐵)))) → (𝑥C → (((𝐶𝐷) ⊆ 𝑥𝑥𝐷) → ((𝑥 𝐶) ∩ 𝐷) ⊆ (𝑥 (𝐶𝐷))))))
4645ralrimdv 3150 . . . 4 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) → (∀𝑦C (𝑦 ⊆ (𝐷𝐵) → ((𝑦 (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ (𝑦 ((𝐶𝐵) ∩ (𝐷𝐵)))) → ∀𝑥C (((𝐶𝐷) ⊆ 𝑥𝑥𝐷) → ((𝑥 𝐶) ∩ 𝐷) ⊆ (𝑥 (𝐶𝐷)))))
47 mdbr2 32325 . . . . 5 (((𝐶𝐵) ∈ C ∧ (𝐷𝐵) ∈ C ) → ((𝐶𝐵) 𝑀 (𝐷𝐵) ↔ ∀𝑦C (𝑦 ⊆ (𝐷𝐵) → ((𝑦 (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ (𝑦 ((𝐶𝐵) ∩ (𝐷𝐵))))))
4827, 28, 47mp2an 692 . . . 4 ((𝐶𝐵) 𝑀 (𝐷𝐵) ↔ ∀𝑦C (𝑦 ⊆ (𝐷𝐵) → ((𝑦 (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ (𝑦 ((𝐶𝐵) ∩ (𝐷𝐵)))))
492, 3mdsl2i 32351 . . . 4 (𝐶 𝑀 𝐷 ↔ ∀𝑥C (((𝐶𝐷) ⊆ 𝑥𝑥𝐷) → ((𝑥 𝐶) ∩ 𝐷) ⊆ (𝑥 (𝐶𝐷))))
5046, 48, 493imtr4g 296 . . 3 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) → ((𝐶𝐵) 𝑀 (𝐷𝐵) → 𝐶 𝑀 𝐷))
5130, 50impbid 212 . 2 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) → (𝐶 𝑀 𝐷 ↔ (𝐶𝐵) 𝑀 (𝐷𝐵)))
528, 51sylan2br 595 1 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ (𝐴 ⊆ (𝐶𝐷) ∧ (𝐶 𝐷) ⊆ (𝐴 𝐵))) → (𝐶 𝑀 𝐷 ↔ (𝐶𝐵) 𝑀 (𝐷𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wral 3059  cin 3962  wss 3963   class class class wbr 5148  (class class class)co 7431   C cch 30958   chj 30962   𝑀 cmd 30995   𝑀* cdmd 30996
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cc 10473  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-addf 11232  ax-mulf 11233  ax-hilex 31028  ax-hfvadd 31029  ax-hvcom 31030  ax-hvass 31031  ax-hv0cl 31032  ax-hvaddid 31033  ax-hfvmul 31034  ax-hvmulid 31035  ax-hvmulass 31036  ax-hvdistr1 31037  ax-hvdistr2 31038  ax-hvmul0 31039  ax-hfi 31108  ax-his1 31111  ax-his2 31112  ax-his3 31113  ax-his4 31114  ax-hcompl 31231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-oadd 8509  df-omul 8510  df-er 8744  df-map 8867  df-pm 8868  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-fi 9449  df-sup 9480  df-inf 9481  df-oi 9548  df-card 9977  df-acn 9980  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-q 12989  df-rp 13033  df-xneg 13152  df-xadd 13153  df-xmul 13154  df-ioo 13388  df-ico 13390  df-icc 13391  df-fz 13545  df-fzo 13692  df-fl 13829  df-seq 14040  df-exp 14100  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521  df-rlim 15522  df-sum 15720  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-rest 17469  df-topn 17470  df-0g 17488  df-gsum 17489  df-topgen 17490  df-pt 17491  df-prds 17494  df-xrs 17549  df-qtop 17554  df-imas 17555  df-xps 17557  df-mre 17631  df-mrc 17632  df-acs 17634  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-submnd 18810  df-mulg 19099  df-cntz 19348  df-cmn 19815  df-psmet 21374  df-xmet 21375  df-met 21376  df-bl 21377  df-mopn 21378  df-fbas 21379  df-fg 21380  df-cnfld 21383  df-top 22916  df-topon 22933  df-topsp 22955  df-bases 22969  df-cld 23043  df-ntr 23044  df-cls 23045  df-nei 23122  df-cn 23251  df-cnp 23252  df-lm 23253  df-haus 23339  df-tx 23586  df-hmeo 23779  df-fil 23870  df-fm 23962  df-flim 23963  df-flf 23964  df-xms 24346  df-ms 24347  df-tms 24348  df-cfil 25303  df-cau 25304  df-cmet 25305  df-grpo 30522  df-gid 30523  df-ginv 30524  df-gdiv 30525  df-ablo 30574  df-vc 30588  df-nv 30621  df-va 30624  df-ba 30625  df-sm 30626  df-0v 30627  df-vs 30628  df-nmcv 30629  df-ims 30630  df-dip 30730  df-ssp 30751  df-ph 30842  df-cbn 30892  df-hnorm 30997  df-hba 30998  df-hvsub 31000  df-hlim 31001  df-hcau 31002  df-sh 31236  df-ch 31250  df-oc 31281  df-ch0 31282  df-shs 31337  df-chj 31339  df-md 32309  df-dmd 32310
This theorem is referenced by:  mdslmd2i  32359  mdcompli  32458
  Copyright terms: Public domain W3C validator