Step | Hyp | Ref
| Expression |
1 | | ssin 4135 |
. . 3
⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐴 ⊆ 𝐷) ↔ 𝐴 ⊆ (𝐶 ∩ 𝐷)) |
2 | | mdslmd.3 |
. . . 4
⊢ 𝐶 ∈
Cℋ |
3 | | mdslmd.4 |
. . . 4
⊢ 𝐷 ∈
Cℋ |
4 | | mdslmd.1 |
. . . . 5
⊢ 𝐴 ∈
Cℋ |
5 | | mdslmd.2 |
. . . . 5
⊢ 𝐵 ∈
Cℋ |
6 | 4, 5 | chjcli 29339 |
. . . 4
⊢ (𝐴 ∨ℋ 𝐵) ∈
Cℋ |
7 | 2, 3, 6 | chlubi 29353 |
. . 3
⊢ ((𝐶 ⊆ (𝐴 ∨ℋ 𝐵) ∧ 𝐷 ⊆ (𝐴 ∨ℋ 𝐵)) ↔ (𝐶 ∨ℋ 𝐷) ⊆ (𝐴 ∨ℋ 𝐵)) |
8 | 1, 7 | anbi12i 629 |
. 2
⊢ (((𝐴 ⊆ 𝐶 ∧ 𝐴 ⊆ 𝐷) ∧ (𝐶 ⊆ (𝐴 ∨ℋ 𝐵) ∧ 𝐷 ⊆ (𝐴 ∨ℋ 𝐵))) ↔ (𝐴 ⊆ (𝐶 ∩ 𝐷) ∧ (𝐶 ∨ℋ 𝐷) ⊆ (𝐴 ∨ℋ 𝐵))) |
9 | | chjcl 29239 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈
Cℋ ∧ 𝐴 ∈ Cℋ )
→ (𝑥
∨ℋ 𝐴)
∈ Cℋ ) |
10 | 4, 9 | mpan2 690 |
. . . . . . . . . 10
⊢ (𝑥 ∈
Cℋ → (𝑥 ∨ℋ 𝐴) ∈ Cℋ
) |
11 | | sseq1 3917 |
. . . . . . . . . . . 12
⊢ (𝑦 = (𝑥 ∨ℋ 𝐴) → (𝑦 ⊆ 𝐷 ↔ (𝑥 ∨ℋ 𝐴) ⊆ 𝐷)) |
12 | | oveq1 7157 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = (𝑥 ∨ℋ 𝐴) → (𝑦 ∨ℋ 𝐶) = ((𝑥 ∨ℋ 𝐴) ∨ℋ 𝐶)) |
13 | 12 | ineq1d 4116 |
. . . . . . . . . . . . 13
⊢ (𝑦 = (𝑥 ∨ℋ 𝐴) → ((𝑦 ∨ℋ 𝐶) ∩ 𝐷) = (((𝑥 ∨ℋ 𝐴) ∨ℋ 𝐶) ∩ 𝐷)) |
14 | | oveq1 7157 |
. . . . . . . . . . . . 13
⊢ (𝑦 = (𝑥 ∨ℋ 𝐴) → (𝑦 ∨ℋ (𝐶 ∩ 𝐷)) = ((𝑥 ∨ℋ 𝐴) ∨ℋ (𝐶 ∩ 𝐷))) |
15 | 13, 14 | sseq12d 3925 |
. . . . . . . . . . . 12
⊢ (𝑦 = (𝑥 ∨ℋ 𝐴) → (((𝑦 ∨ℋ 𝐶) ∩ 𝐷) ⊆ (𝑦 ∨ℋ (𝐶 ∩ 𝐷)) ↔ (((𝑥 ∨ℋ 𝐴) ∨ℋ 𝐶) ∩ 𝐷) ⊆ ((𝑥 ∨ℋ 𝐴) ∨ℋ (𝐶 ∩ 𝐷)))) |
16 | 11, 15 | imbi12d 348 |
. . . . . . . . . . 11
⊢ (𝑦 = (𝑥 ∨ℋ 𝐴) → ((𝑦 ⊆ 𝐷 → ((𝑦 ∨ℋ 𝐶) ∩ 𝐷) ⊆ (𝑦 ∨ℋ (𝐶 ∩ 𝐷))) ↔ ((𝑥 ∨ℋ 𝐴) ⊆ 𝐷 → (((𝑥 ∨ℋ 𝐴) ∨ℋ 𝐶) ∩ 𝐷) ⊆ ((𝑥 ∨ℋ 𝐴) ∨ℋ (𝐶 ∩ 𝐷))))) |
17 | 16 | rspcv 3536 |
. . . . . . . . . 10
⊢ ((𝑥 ∨ℋ 𝐴) ∈
Cℋ → (∀𝑦 ∈ Cℋ
(𝑦 ⊆ 𝐷 → ((𝑦 ∨ℋ 𝐶) ∩ 𝐷) ⊆ (𝑦 ∨ℋ (𝐶 ∩ 𝐷))) → ((𝑥 ∨ℋ 𝐴) ⊆ 𝐷 → (((𝑥 ∨ℋ 𝐴) ∨ℋ 𝐶) ∩ 𝐷) ⊆ ((𝑥 ∨ℋ 𝐴) ∨ℋ (𝐶 ∩ 𝐷))))) |
18 | 10, 17 | syl 17 |
. . . . . . . . 9
⊢ (𝑥 ∈
Cℋ → (∀𝑦 ∈ Cℋ
(𝑦 ⊆ 𝐷 → ((𝑦 ∨ℋ 𝐶) ∩ 𝐷) ⊆ (𝑦 ∨ℋ (𝐶 ∩ 𝐷))) → ((𝑥 ∨ℋ 𝐴) ⊆ 𝐷 → (((𝑥 ∨ℋ 𝐴) ∨ℋ 𝐶) ∩ 𝐷) ⊆ ((𝑥 ∨ℋ 𝐴) ∨ℋ (𝐶 ∩ 𝐷))))) |
19 | 18 | adantr 484 |
. . . . . . . 8
⊢ ((𝑥 ∈
Cℋ ∧ ((𝐴 𝑀ℋ 𝐵 ∧ 𝐵 𝑀ℋ*
𝐴) ∧ ((𝐴 ⊆ 𝐶 ∧ 𝐴 ⊆ 𝐷) ∧ (𝐶 ⊆ (𝐴 ∨ℋ 𝐵) ∧ 𝐷 ⊆ (𝐴 ∨ℋ 𝐵))))) → (∀𝑦 ∈ Cℋ
(𝑦 ⊆ 𝐷 → ((𝑦 ∨ℋ 𝐶) ∩ 𝐷) ⊆ (𝑦 ∨ℋ (𝐶 ∩ 𝐷))) → ((𝑥 ∨ℋ 𝐴) ⊆ 𝐷 → (((𝑥 ∨ℋ 𝐴) ∨ℋ 𝐶) ∩ 𝐷) ⊆ ((𝑥 ∨ℋ 𝐴) ∨ℋ (𝐶 ∩ 𝐷))))) |
20 | 4, 5, 2, 3 | mdslmd1lem3 30209 |
. . . . . . . 8
⊢ ((𝑥 ∈
Cℋ ∧ ((𝐴 𝑀ℋ 𝐵 ∧ 𝐵 𝑀ℋ*
𝐴) ∧ ((𝐴 ⊆ 𝐶 ∧ 𝐴 ⊆ 𝐷) ∧ (𝐶 ⊆ (𝐴 ∨ℋ 𝐵) ∧ 𝐷 ⊆ (𝐴 ∨ℋ 𝐵))))) → (((𝑥 ∨ℋ 𝐴) ⊆ 𝐷 → (((𝑥 ∨ℋ 𝐴) ∨ℋ 𝐶) ∩ 𝐷) ⊆ ((𝑥 ∨ℋ 𝐴) ∨ℋ (𝐶 ∩ 𝐷))) → ((((𝐶 ∩ 𝐵) ∩ (𝐷 ∩ 𝐵)) ⊆ 𝑥 ∧ 𝑥 ⊆ (𝐷 ∩ 𝐵)) → ((𝑥 ∨ℋ (𝐶 ∩ 𝐵)) ∩ (𝐷 ∩ 𝐵)) ⊆ (𝑥 ∨ℋ ((𝐶 ∩ 𝐵) ∩ (𝐷 ∩ 𝐵)))))) |
21 | 19, 20 | syld 47 |
. . . . . . 7
⊢ ((𝑥 ∈
Cℋ ∧ ((𝐴 𝑀ℋ 𝐵 ∧ 𝐵 𝑀ℋ*
𝐴) ∧ ((𝐴 ⊆ 𝐶 ∧ 𝐴 ⊆ 𝐷) ∧ (𝐶 ⊆ (𝐴 ∨ℋ 𝐵) ∧ 𝐷 ⊆ (𝐴 ∨ℋ 𝐵))))) → (∀𝑦 ∈ Cℋ
(𝑦 ⊆ 𝐷 → ((𝑦 ∨ℋ 𝐶) ∩ 𝐷) ⊆ (𝑦 ∨ℋ (𝐶 ∩ 𝐷))) → ((((𝐶 ∩ 𝐵) ∩ (𝐷 ∩ 𝐵)) ⊆ 𝑥 ∧ 𝑥 ⊆ (𝐷 ∩ 𝐵)) → ((𝑥 ∨ℋ (𝐶 ∩ 𝐵)) ∩ (𝐷 ∩ 𝐵)) ⊆ (𝑥 ∨ℋ ((𝐶 ∩ 𝐵) ∩ (𝐷 ∩ 𝐵)))))) |
22 | 21 | ex 416 |
. . . . . 6
⊢ (𝑥 ∈
Cℋ → (((𝐴 𝑀ℋ 𝐵 ∧ 𝐵 𝑀ℋ*
𝐴) ∧ ((𝐴 ⊆ 𝐶 ∧ 𝐴 ⊆ 𝐷) ∧ (𝐶 ⊆ (𝐴 ∨ℋ 𝐵) ∧ 𝐷 ⊆ (𝐴 ∨ℋ 𝐵)))) → (∀𝑦 ∈ Cℋ
(𝑦 ⊆ 𝐷 → ((𝑦 ∨ℋ 𝐶) ∩ 𝐷) ⊆ (𝑦 ∨ℋ (𝐶 ∩ 𝐷))) → ((((𝐶 ∩ 𝐵) ∩ (𝐷 ∩ 𝐵)) ⊆ 𝑥 ∧ 𝑥 ⊆ (𝐷 ∩ 𝐵)) → ((𝑥 ∨ℋ (𝐶 ∩ 𝐵)) ∩ (𝐷 ∩ 𝐵)) ⊆ (𝑥 ∨ℋ ((𝐶 ∩ 𝐵) ∩ (𝐷 ∩ 𝐵))))))) |
23 | 22 | com3l 89 |
. . . . 5
⊢ (((𝐴 𝑀ℋ
𝐵 ∧ 𝐵 𝑀ℋ*
𝐴) ∧ ((𝐴 ⊆ 𝐶 ∧ 𝐴 ⊆ 𝐷) ∧ (𝐶 ⊆ (𝐴 ∨ℋ 𝐵) ∧ 𝐷 ⊆ (𝐴 ∨ℋ 𝐵)))) → (∀𝑦 ∈ Cℋ
(𝑦 ⊆ 𝐷 → ((𝑦 ∨ℋ 𝐶) ∩ 𝐷) ⊆ (𝑦 ∨ℋ (𝐶 ∩ 𝐷))) → (𝑥 ∈ Cℋ
→ ((((𝐶 ∩ 𝐵) ∩ (𝐷 ∩ 𝐵)) ⊆ 𝑥 ∧ 𝑥 ⊆ (𝐷 ∩ 𝐵)) → ((𝑥 ∨ℋ (𝐶 ∩ 𝐵)) ∩ (𝐷 ∩ 𝐵)) ⊆ (𝑥 ∨ℋ ((𝐶 ∩ 𝐵) ∩ (𝐷 ∩ 𝐵))))))) |
24 | 23 | ralrimdv 3117 |
. . . 4
⊢ (((𝐴 𝑀ℋ
𝐵 ∧ 𝐵 𝑀ℋ*
𝐴) ∧ ((𝐴 ⊆ 𝐶 ∧ 𝐴 ⊆ 𝐷) ∧ (𝐶 ⊆ (𝐴 ∨ℋ 𝐵) ∧ 𝐷 ⊆ (𝐴 ∨ℋ 𝐵)))) → (∀𝑦 ∈ Cℋ
(𝑦 ⊆ 𝐷 → ((𝑦 ∨ℋ 𝐶) ∩ 𝐷) ⊆ (𝑦 ∨ℋ (𝐶 ∩ 𝐷))) → ∀𝑥 ∈ Cℋ
((((𝐶 ∩ 𝐵) ∩ (𝐷 ∩ 𝐵)) ⊆ 𝑥 ∧ 𝑥 ⊆ (𝐷 ∩ 𝐵)) → ((𝑥 ∨ℋ (𝐶 ∩ 𝐵)) ∩ (𝐷 ∩ 𝐵)) ⊆ (𝑥 ∨ℋ ((𝐶 ∩ 𝐵) ∩ (𝐷 ∩ 𝐵)))))) |
25 | | mdbr2 30178 |
. . . . 5
⊢ ((𝐶 ∈
Cℋ ∧ 𝐷 ∈ Cℋ )
→ (𝐶
𝑀ℋ 𝐷 ↔ ∀𝑦 ∈ Cℋ
(𝑦 ⊆ 𝐷 → ((𝑦 ∨ℋ 𝐶) ∩ 𝐷) ⊆ (𝑦 ∨ℋ (𝐶 ∩ 𝐷))))) |
26 | 2, 3, 25 | mp2an 691 |
. . . 4
⊢ (𝐶 𝑀ℋ
𝐷 ↔ ∀𝑦 ∈
Cℋ (𝑦 ⊆ 𝐷 → ((𝑦 ∨ℋ 𝐶) ∩ 𝐷) ⊆ (𝑦 ∨ℋ (𝐶 ∩ 𝐷)))) |
27 | 2, 5 | chincli 29342 |
. . . . 5
⊢ (𝐶 ∩ 𝐵) ∈
Cℋ |
28 | 3, 5 | chincli 29342 |
. . . . 5
⊢ (𝐷 ∩ 𝐵) ∈
Cℋ |
29 | 27, 28 | mdsl2i 30204 |
. . . 4
⊢ ((𝐶 ∩ 𝐵) 𝑀ℋ (𝐷 ∩ 𝐵) ↔ ∀𝑥 ∈ Cℋ
((((𝐶 ∩ 𝐵) ∩ (𝐷 ∩ 𝐵)) ⊆ 𝑥 ∧ 𝑥 ⊆ (𝐷 ∩ 𝐵)) → ((𝑥 ∨ℋ (𝐶 ∩ 𝐵)) ∩ (𝐷 ∩ 𝐵)) ⊆ (𝑥 ∨ℋ ((𝐶 ∩ 𝐵) ∩ (𝐷 ∩ 𝐵))))) |
30 | 24, 26, 29 | 3imtr4g 299 |
. . 3
⊢ (((𝐴 𝑀ℋ
𝐵 ∧ 𝐵 𝑀ℋ*
𝐴) ∧ ((𝐴 ⊆ 𝐶 ∧ 𝐴 ⊆ 𝐷) ∧ (𝐶 ⊆ (𝐴 ∨ℋ 𝐵) ∧ 𝐷 ⊆ (𝐴 ∨ℋ 𝐵)))) → (𝐶 𝑀ℋ 𝐷 → (𝐶 ∩ 𝐵) 𝑀ℋ (𝐷 ∩ 𝐵))) |
31 | | chincl 29381 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈
Cℋ ∧ 𝐵 ∈ Cℋ )
→ (𝑥 ∩ 𝐵) ∈
Cℋ ) |
32 | 5, 31 | mpan2 690 |
. . . . . . . . . 10
⊢ (𝑥 ∈
Cℋ → (𝑥 ∩ 𝐵) ∈ Cℋ
) |
33 | | sseq1 3917 |
. . . . . . . . . . . 12
⊢ (𝑦 = (𝑥 ∩ 𝐵) → (𝑦 ⊆ (𝐷 ∩ 𝐵) ↔ (𝑥 ∩ 𝐵) ⊆ (𝐷 ∩ 𝐵))) |
34 | | oveq1 7157 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = (𝑥 ∩ 𝐵) → (𝑦 ∨ℋ (𝐶 ∩ 𝐵)) = ((𝑥 ∩ 𝐵) ∨ℋ (𝐶 ∩ 𝐵))) |
35 | 34 | ineq1d 4116 |
. . . . . . . . . . . . 13
⊢ (𝑦 = (𝑥 ∩ 𝐵) → ((𝑦 ∨ℋ (𝐶 ∩ 𝐵)) ∩ (𝐷 ∩ 𝐵)) = (((𝑥 ∩ 𝐵) ∨ℋ (𝐶 ∩ 𝐵)) ∩ (𝐷 ∩ 𝐵))) |
36 | | oveq1 7157 |
. . . . . . . . . . . . 13
⊢ (𝑦 = (𝑥 ∩ 𝐵) → (𝑦 ∨ℋ ((𝐶 ∩ 𝐵) ∩ (𝐷 ∩ 𝐵))) = ((𝑥 ∩ 𝐵) ∨ℋ ((𝐶 ∩ 𝐵) ∩ (𝐷 ∩ 𝐵)))) |
37 | 35, 36 | sseq12d 3925 |
. . . . . . . . . . . 12
⊢ (𝑦 = (𝑥 ∩ 𝐵) → (((𝑦 ∨ℋ (𝐶 ∩ 𝐵)) ∩ (𝐷 ∩ 𝐵)) ⊆ (𝑦 ∨ℋ ((𝐶 ∩ 𝐵) ∩ (𝐷 ∩ 𝐵))) ↔ (((𝑥 ∩ 𝐵) ∨ℋ (𝐶 ∩ 𝐵)) ∩ (𝐷 ∩ 𝐵)) ⊆ ((𝑥 ∩ 𝐵) ∨ℋ ((𝐶 ∩ 𝐵) ∩ (𝐷 ∩ 𝐵))))) |
38 | 33, 37 | imbi12d 348 |
. . . . . . . . . . 11
⊢ (𝑦 = (𝑥 ∩ 𝐵) → ((𝑦 ⊆ (𝐷 ∩ 𝐵) → ((𝑦 ∨ℋ (𝐶 ∩ 𝐵)) ∩ (𝐷 ∩ 𝐵)) ⊆ (𝑦 ∨ℋ ((𝐶 ∩ 𝐵) ∩ (𝐷 ∩ 𝐵)))) ↔ ((𝑥 ∩ 𝐵) ⊆ (𝐷 ∩ 𝐵) → (((𝑥 ∩ 𝐵) ∨ℋ (𝐶 ∩ 𝐵)) ∩ (𝐷 ∩ 𝐵)) ⊆ ((𝑥 ∩ 𝐵) ∨ℋ ((𝐶 ∩ 𝐵) ∩ (𝐷 ∩ 𝐵)))))) |
39 | 38 | rspcv 3536 |
. . . . . . . . . 10
⊢ ((𝑥 ∩ 𝐵) ∈ Cℋ
→ (∀𝑦 ∈
Cℋ (𝑦 ⊆ (𝐷 ∩ 𝐵) → ((𝑦 ∨ℋ (𝐶 ∩ 𝐵)) ∩ (𝐷 ∩ 𝐵)) ⊆ (𝑦 ∨ℋ ((𝐶 ∩ 𝐵) ∩ (𝐷 ∩ 𝐵)))) → ((𝑥 ∩ 𝐵) ⊆ (𝐷 ∩ 𝐵) → (((𝑥 ∩ 𝐵) ∨ℋ (𝐶 ∩ 𝐵)) ∩ (𝐷 ∩ 𝐵)) ⊆ ((𝑥 ∩ 𝐵) ∨ℋ ((𝐶 ∩ 𝐵) ∩ (𝐷 ∩ 𝐵)))))) |
40 | 32, 39 | syl 17 |
. . . . . . . . 9
⊢ (𝑥 ∈
Cℋ → (∀𝑦 ∈ Cℋ
(𝑦 ⊆ (𝐷 ∩ 𝐵) → ((𝑦 ∨ℋ (𝐶 ∩ 𝐵)) ∩ (𝐷 ∩ 𝐵)) ⊆ (𝑦 ∨ℋ ((𝐶 ∩ 𝐵) ∩ (𝐷 ∩ 𝐵)))) → ((𝑥 ∩ 𝐵) ⊆ (𝐷 ∩ 𝐵) → (((𝑥 ∩ 𝐵) ∨ℋ (𝐶 ∩ 𝐵)) ∩ (𝐷 ∩ 𝐵)) ⊆ ((𝑥 ∩ 𝐵) ∨ℋ ((𝐶 ∩ 𝐵) ∩ (𝐷 ∩ 𝐵)))))) |
41 | 40 | adantr 484 |
. . . . . . . 8
⊢ ((𝑥 ∈
Cℋ ∧ ((𝐴 𝑀ℋ 𝐵 ∧ 𝐵 𝑀ℋ*
𝐴) ∧ ((𝐴 ⊆ 𝐶 ∧ 𝐴 ⊆ 𝐷) ∧ (𝐶 ⊆ (𝐴 ∨ℋ 𝐵) ∧ 𝐷 ⊆ (𝐴 ∨ℋ 𝐵))))) → (∀𝑦 ∈ Cℋ
(𝑦 ⊆ (𝐷 ∩ 𝐵) → ((𝑦 ∨ℋ (𝐶 ∩ 𝐵)) ∩ (𝐷 ∩ 𝐵)) ⊆ (𝑦 ∨ℋ ((𝐶 ∩ 𝐵) ∩ (𝐷 ∩ 𝐵)))) → ((𝑥 ∩ 𝐵) ⊆ (𝐷 ∩ 𝐵) → (((𝑥 ∩ 𝐵) ∨ℋ (𝐶 ∩ 𝐵)) ∩ (𝐷 ∩ 𝐵)) ⊆ ((𝑥 ∩ 𝐵) ∨ℋ ((𝐶 ∩ 𝐵) ∩ (𝐷 ∩ 𝐵)))))) |
42 | 4, 5, 2, 3 | mdslmd1lem4 30210 |
. . . . . . . 8
⊢ ((𝑥 ∈
Cℋ ∧ ((𝐴 𝑀ℋ 𝐵 ∧ 𝐵 𝑀ℋ*
𝐴) ∧ ((𝐴 ⊆ 𝐶 ∧ 𝐴 ⊆ 𝐷) ∧ (𝐶 ⊆ (𝐴 ∨ℋ 𝐵) ∧ 𝐷 ⊆ (𝐴 ∨ℋ 𝐵))))) → (((𝑥 ∩ 𝐵) ⊆ (𝐷 ∩ 𝐵) → (((𝑥 ∩ 𝐵) ∨ℋ (𝐶 ∩ 𝐵)) ∩ (𝐷 ∩ 𝐵)) ⊆ ((𝑥 ∩ 𝐵) ∨ℋ ((𝐶 ∩ 𝐵) ∩ (𝐷 ∩ 𝐵)))) → (((𝐶 ∩ 𝐷) ⊆ 𝑥 ∧ 𝑥 ⊆ 𝐷) → ((𝑥 ∨ℋ 𝐶) ∩ 𝐷) ⊆ (𝑥 ∨ℋ (𝐶 ∩ 𝐷))))) |
43 | 41, 42 | syld 47 |
. . . . . . 7
⊢ ((𝑥 ∈
Cℋ ∧ ((𝐴 𝑀ℋ 𝐵 ∧ 𝐵 𝑀ℋ*
𝐴) ∧ ((𝐴 ⊆ 𝐶 ∧ 𝐴 ⊆ 𝐷) ∧ (𝐶 ⊆ (𝐴 ∨ℋ 𝐵) ∧ 𝐷 ⊆ (𝐴 ∨ℋ 𝐵))))) → (∀𝑦 ∈ Cℋ
(𝑦 ⊆ (𝐷 ∩ 𝐵) → ((𝑦 ∨ℋ (𝐶 ∩ 𝐵)) ∩ (𝐷 ∩ 𝐵)) ⊆ (𝑦 ∨ℋ ((𝐶 ∩ 𝐵) ∩ (𝐷 ∩ 𝐵)))) → (((𝐶 ∩ 𝐷) ⊆ 𝑥 ∧ 𝑥 ⊆ 𝐷) → ((𝑥 ∨ℋ 𝐶) ∩ 𝐷) ⊆ (𝑥 ∨ℋ (𝐶 ∩ 𝐷))))) |
44 | 43 | ex 416 |
. . . . . 6
⊢ (𝑥 ∈
Cℋ → (((𝐴 𝑀ℋ 𝐵 ∧ 𝐵 𝑀ℋ*
𝐴) ∧ ((𝐴 ⊆ 𝐶 ∧ 𝐴 ⊆ 𝐷) ∧ (𝐶 ⊆ (𝐴 ∨ℋ 𝐵) ∧ 𝐷 ⊆ (𝐴 ∨ℋ 𝐵)))) → (∀𝑦 ∈ Cℋ
(𝑦 ⊆ (𝐷 ∩ 𝐵) → ((𝑦 ∨ℋ (𝐶 ∩ 𝐵)) ∩ (𝐷 ∩ 𝐵)) ⊆ (𝑦 ∨ℋ ((𝐶 ∩ 𝐵) ∩ (𝐷 ∩ 𝐵)))) → (((𝐶 ∩ 𝐷) ⊆ 𝑥 ∧ 𝑥 ⊆ 𝐷) → ((𝑥 ∨ℋ 𝐶) ∩ 𝐷) ⊆ (𝑥 ∨ℋ (𝐶 ∩ 𝐷)))))) |
45 | 44 | com3l 89 |
. . . . 5
⊢ (((𝐴 𝑀ℋ
𝐵 ∧ 𝐵 𝑀ℋ*
𝐴) ∧ ((𝐴 ⊆ 𝐶 ∧ 𝐴 ⊆ 𝐷) ∧ (𝐶 ⊆ (𝐴 ∨ℋ 𝐵) ∧ 𝐷 ⊆ (𝐴 ∨ℋ 𝐵)))) → (∀𝑦 ∈ Cℋ
(𝑦 ⊆ (𝐷 ∩ 𝐵) → ((𝑦 ∨ℋ (𝐶 ∩ 𝐵)) ∩ (𝐷 ∩ 𝐵)) ⊆ (𝑦 ∨ℋ ((𝐶 ∩ 𝐵) ∩ (𝐷 ∩ 𝐵)))) → (𝑥 ∈ Cℋ
→ (((𝐶 ∩ 𝐷) ⊆ 𝑥 ∧ 𝑥 ⊆ 𝐷) → ((𝑥 ∨ℋ 𝐶) ∩ 𝐷) ⊆ (𝑥 ∨ℋ (𝐶 ∩ 𝐷)))))) |
46 | 45 | ralrimdv 3117 |
. . . 4
⊢ (((𝐴 𝑀ℋ
𝐵 ∧ 𝐵 𝑀ℋ*
𝐴) ∧ ((𝐴 ⊆ 𝐶 ∧ 𝐴 ⊆ 𝐷) ∧ (𝐶 ⊆ (𝐴 ∨ℋ 𝐵) ∧ 𝐷 ⊆ (𝐴 ∨ℋ 𝐵)))) → (∀𝑦 ∈ Cℋ
(𝑦 ⊆ (𝐷 ∩ 𝐵) → ((𝑦 ∨ℋ (𝐶 ∩ 𝐵)) ∩ (𝐷 ∩ 𝐵)) ⊆ (𝑦 ∨ℋ ((𝐶 ∩ 𝐵) ∩ (𝐷 ∩ 𝐵)))) → ∀𝑥 ∈ Cℋ
(((𝐶 ∩ 𝐷) ⊆ 𝑥 ∧ 𝑥 ⊆ 𝐷) → ((𝑥 ∨ℋ 𝐶) ∩ 𝐷) ⊆ (𝑥 ∨ℋ (𝐶 ∩ 𝐷))))) |
47 | | mdbr2 30178 |
. . . . 5
⊢ (((𝐶 ∩ 𝐵) ∈ Cℋ
∧ (𝐷 ∩ 𝐵) ∈
Cℋ ) → ((𝐶 ∩ 𝐵) 𝑀ℋ (𝐷 ∩ 𝐵) ↔ ∀𝑦 ∈ Cℋ
(𝑦 ⊆ (𝐷 ∩ 𝐵) → ((𝑦 ∨ℋ (𝐶 ∩ 𝐵)) ∩ (𝐷 ∩ 𝐵)) ⊆ (𝑦 ∨ℋ ((𝐶 ∩ 𝐵) ∩ (𝐷 ∩ 𝐵)))))) |
48 | 27, 28, 47 | mp2an 691 |
. . . 4
⊢ ((𝐶 ∩ 𝐵) 𝑀ℋ (𝐷 ∩ 𝐵) ↔ ∀𝑦 ∈ Cℋ
(𝑦 ⊆ (𝐷 ∩ 𝐵) → ((𝑦 ∨ℋ (𝐶 ∩ 𝐵)) ∩ (𝐷 ∩ 𝐵)) ⊆ (𝑦 ∨ℋ ((𝐶 ∩ 𝐵) ∩ (𝐷 ∩ 𝐵))))) |
49 | 2, 3 | mdsl2i 30204 |
. . . 4
⊢ (𝐶 𝑀ℋ
𝐷 ↔ ∀𝑥 ∈
Cℋ (((𝐶 ∩ 𝐷) ⊆ 𝑥 ∧ 𝑥 ⊆ 𝐷) → ((𝑥 ∨ℋ 𝐶) ∩ 𝐷) ⊆ (𝑥 ∨ℋ (𝐶 ∩ 𝐷)))) |
50 | 46, 48, 49 | 3imtr4g 299 |
. . 3
⊢ (((𝐴 𝑀ℋ
𝐵 ∧ 𝐵 𝑀ℋ*
𝐴) ∧ ((𝐴 ⊆ 𝐶 ∧ 𝐴 ⊆ 𝐷) ∧ (𝐶 ⊆ (𝐴 ∨ℋ 𝐵) ∧ 𝐷 ⊆ (𝐴 ∨ℋ 𝐵)))) → ((𝐶 ∩ 𝐵) 𝑀ℋ (𝐷 ∩ 𝐵) → 𝐶 𝑀ℋ 𝐷)) |
51 | 30, 50 | impbid 215 |
. 2
⊢ (((𝐴 𝑀ℋ
𝐵 ∧ 𝐵 𝑀ℋ*
𝐴) ∧ ((𝐴 ⊆ 𝐶 ∧ 𝐴 ⊆ 𝐷) ∧ (𝐶 ⊆ (𝐴 ∨ℋ 𝐵) ∧ 𝐷 ⊆ (𝐴 ∨ℋ 𝐵)))) → (𝐶 𝑀ℋ 𝐷 ↔ (𝐶 ∩ 𝐵) 𝑀ℋ (𝐷 ∩ 𝐵))) |
52 | 8, 51 | sylan2br 597 |
1
⊢ (((𝐴 𝑀ℋ
𝐵 ∧ 𝐵 𝑀ℋ*
𝐴) ∧ (𝐴 ⊆ (𝐶 ∩ 𝐷) ∧ (𝐶 ∨ℋ 𝐷) ⊆ (𝐴 ∨ℋ 𝐵))) → (𝐶 𝑀ℋ 𝐷 ↔ (𝐶 ∩ 𝐵) 𝑀ℋ (𝐷 ∩ 𝐵))) |