![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ftc1 | Structured version Visualization version GIF version |
Description: The Fundamental Theorem of Calculus, part one. The function formed by varying the right endpoint of an integral is differentiable at 𝐶 with derivative 𝐹(𝐶) if the original function is continuous at 𝐶. This is part of Metamath 100 proof #15. (Contributed by Mario Carneiro, 1-Sep-2014.) |
Ref | Expression |
---|---|
ftc1.g | ⊢ 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹‘𝑡) d𝑡) |
ftc1.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ftc1.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
ftc1.le | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
ftc1.s | ⊢ (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷) |
ftc1.d | ⊢ (𝜑 → 𝐷 ⊆ ℝ) |
ftc1.i | ⊢ (𝜑 → 𝐹 ∈ 𝐿1) |
ftc1.c | ⊢ (𝜑 → 𝐶 ∈ (𝐴(,)𝐵)) |
ftc1.f | ⊢ (𝜑 → 𝐹 ∈ ((𝐾 CnP 𝐿)‘𝐶)) |
ftc1.j | ⊢ 𝐽 = (𝐿 ↾t ℝ) |
ftc1.k | ⊢ 𝐾 = (𝐿 ↾t 𝐷) |
ftc1.l | ⊢ 𝐿 = (TopOpen‘ℂfld) |
Ref | Expression |
---|---|
ftc1 | ⊢ (𝜑 → 𝐶(ℝ D 𝐺)(𝐹‘𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ftc1.j | . . . . . . 7 ⊢ 𝐽 = (𝐿 ↾t ℝ) | |
2 | ftc1.l | . . . . . . . 8 ⊢ 𝐿 = (TopOpen‘ℂfld) | |
3 | 2 | tgioo2 24844 | . . . . . . 7 ⊢ (topGen‘ran (,)) = (𝐿 ↾t ℝ) |
4 | 1, 3 | eqtr4i 2771 | . . . . . 6 ⊢ 𝐽 = (topGen‘ran (,)) |
5 | retop 24803 | . . . . . 6 ⊢ (topGen‘ran (,)) ∈ Top | |
6 | 4, 5 | eqeltri 2840 | . . . . 5 ⊢ 𝐽 ∈ Top |
7 | 6 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝐽 ∈ Top) |
8 | ftc1.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
9 | ftc1.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
10 | iccssre 13489 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ) | |
11 | 8, 9, 10 | syl2anc 583 | . . . 4 ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ℝ) |
12 | iooretop 24807 | . . . . . 6 ⊢ (𝐴(,)𝐵) ∈ (topGen‘ran (,)) | |
13 | 12, 4 | eleqtrri 2843 | . . . . 5 ⊢ (𝐴(,)𝐵) ∈ 𝐽 |
14 | 13 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝐴(,)𝐵) ∈ 𝐽) |
15 | ioossicc 13493 | . . . . 5 ⊢ (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵) | |
16 | 15 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)) |
17 | uniretop 24804 | . . . . . 6 ⊢ ℝ = ∪ (topGen‘ran (,)) | |
18 | 4 | unieqi 4943 | . . . . . 6 ⊢ ∪ 𝐽 = ∪ (topGen‘ran (,)) |
19 | 17, 18 | eqtr4i 2771 | . . . . 5 ⊢ ℝ = ∪ 𝐽 |
20 | 19 | ssntr 23087 | . . . 4 ⊢ (((𝐽 ∈ Top ∧ (𝐴[,]𝐵) ⊆ ℝ) ∧ ((𝐴(,)𝐵) ∈ 𝐽 ∧ (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵))) → (𝐴(,)𝐵) ⊆ ((int‘𝐽)‘(𝐴[,]𝐵))) |
21 | 7, 11, 14, 16, 20 | syl22anc 838 | . . 3 ⊢ (𝜑 → (𝐴(,)𝐵) ⊆ ((int‘𝐽)‘(𝐴[,]𝐵))) |
22 | ftc1.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ (𝐴(,)𝐵)) | |
23 | 21, 22 | sseldd 4009 | . 2 ⊢ (𝜑 → 𝐶 ∈ ((int‘𝐽)‘(𝐴[,]𝐵))) |
24 | ftc1.g | . . 3 ⊢ 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹‘𝑡) d𝑡) | |
25 | ftc1.le | . . 3 ⊢ (𝜑 → 𝐴 ≤ 𝐵) | |
26 | ftc1.s | . . 3 ⊢ (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷) | |
27 | ftc1.d | . . 3 ⊢ (𝜑 → 𝐷 ⊆ ℝ) | |
28 | ftc1.i | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝐿1) | |
29 | ftc1.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ ((𝐾 CnP 𝐿)‘𝐶)) | |
30 | ftc1.k | . . 3 ⊢ 𝐾 = (𝐿 ↾t 𝐷) | |
31 | eqid 2740 | . . 3 ⊢ (𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ↦ (((𝐺‘𝑧) − (𝐺‘𝐶)) / (𝑧 − 𝐶))) = (𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ↦ (((𝐺‘𝑧) − (𝐺‘𝐶)) / (𝑧 − 𝐶))) | |
32 | 24, 8, 9, 25, 26, 27, 28, 22, 29, 1, 30, 2, 31 | ftc1lem6 26102 | . 2 ⊢ (𝜑 → (𝐹‘𝐶) ∈ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ↦ (((𝐺‘𝑧) − (𝐺‘𝐶)) / (𝑧 − 𝐶))) limℂ 𝐶)) |
33 | ax-resscn 11241 | . . . 4 ⊢ ℝ ⊆ ℂ | |
34 | 33 | a1i 11 | . . 3 ⊢ (𝜑 → ℝ ⊆ ℂ) |
35 | 24, 8, 9, 25, 26, 27, 28, 22, 29, 1, 30, 2 | ftc1lem3 26099 | . . . 4 ⊢ (𝜑 → 𝐹:𝐷⟶ℂ) |
36 | 24, 8, 9, 25, 26, 27, 28, 35 | ftc1lem2 26097 | . . 3 ⊢ (𝜑 → 𝐺:(𝐴[,]𝐵)⟶ℂ) |
37 | 1, 2, 31, 34, 36, 11 | eldv 25953 | . 2 ⊢ (𝜑 → (𝐶(ℝ D 𝐺)(𝐹‘𝐶) ↔ (𝐶 ∈ ((int‘𝐽)‘(𝐴[,]𝐵)) ∧ (𝐹‘𝐶) ∈ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ↦ (((𝐺‘𝑧) − (𝐺‘𝐶)) / (𝑧 − 𝐶))) limℂ 𝐶)))) |
38 | 23, 32, 37 | mpbir2and 712 | 1 ⊢ (𝜑 → 𝐶(ℝ D 𝐺)(𝐹‘𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ∖ cdif 3973 ⊆ wss 3976 {csn 4648 ∪ cuni 4931 class class class wbr 5166 ↦ cmpt 5249 ran crn 5701 ‘cfv 6573 (class class class)co 7448 ℂcc 11182 ℝcr 11183 ≤ cle 11325 − cmin 11520 / cdiv 11947 (,)cioo 13407 [,]cicc 13410 ↾t crest 17480 TopOpenctopn 17481 topGenctg 17497 ℂfldccnfld 21387 Topctop 22920 intcnt 23046 CnP ccnp 23254 𝐿1cibl 25671 ∫citg 25672 limℂ climc 25917 D cdv 25918 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 ax-cc 10504 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 ax-addf 11263 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-symdif 4272 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-disj 5134 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 df-ofr 7715 df-om 7904 df-1st 8030 df-2nd 8031 df-supp 8202 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-oadd 8526 df-omul 8527 df-er 8763 df-map 8886 df-pm 8887 df-ixp 8956 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-fsupp 9432 df-fi 9480 df-sup 9511 df-inf 9512 df-oi 9579 df-dju 9970 df-card 10008 df-acn 10011 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-q 13014 df-rp 13058 df-xneg 13175 df-xadd 13176 df-xmul 13177 df-ioo 13411 df-ioc 13412 df-ico 13413 df-icc 13414 df-fz 13568 df-fzo 13712 df-fl 13843 df-mod 13921 df-seq 14053 df-exp 14113 df-hash 14380 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-clim 15534 df-rlim 15535 df-sum 15735 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-starv 17326 df-sca 17327 df-vsca 17328 df-ip 17329 df-tset 17330 df-ple 17331 df-ds 17333 df-unif 17334 df-hom 17335 df-cco 17336 df-rest 17482 df-topn 17483 df-0g 17501 df-gsum 17502 df-topgen 17503 df-pt 17504 df-prds 17507 df-xrs 17562 df-qtop 17567 df-imas 17568 df-xps 17570 df-mre 17644 df-mrc 17645 df-acs 17647 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-submnd 18819 df-mulg 19108 df-cntz 19357 df-cmn 19824 df-psmet 21379 df-xmet 21380 df-met 21381 df-bl 21382 df-mopn 21383 df-cnfld 21388 df-top 22921 df-topon 22938 df-topsp 22960 df-bases 22974 df-ntr 23049 df-cn 23256 df-cnp 23257 df-cmp 23416 df-tx 23591 df-hmeo 23784 df-xms 24351 df-ms 24352 df-tms 24353 df-cncf 24923 df-ovol 25518 df-vol 25519 df-mbf 25673 df-itg1 25674 df-itg2 25675 df-ibl 25676 df-itg 25677 df-0p 25724 df-limc 25921 df-dv 25922 |
This theorem is referenced by: ftc1cn 26104 |
Copyright terms: Public domain | W3C validator |