| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ftc1 | Structured version Visualization version GIF version | ||
| Description: The Fundamental Theorem of Calculus, part one. The function formed by varying the right endpoint of an integral is differentiable at 𝐶 with derivative 𝐹(𝐶) if the original function is continuous at 𝐶. This is part of Metamath 100 proof #15. (Contributed by Mario Carneiro, 1-Sep-2014.) |
| Ref | Expression |
|---|---|
| ftc1.g | ⊢ 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹‘𝑡) d𝑡) |
| ftc1.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| ftc1.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| ftc1.le | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| ftc1.s | ⊢ (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷) |
| ftc1.d | ⊢ (𝜑 → 𝐷 ⊆ ℝ) |
| ftc1.i | ⊢ (𝜑 → 𝐹 ∈ 𝐿1) |
| ftc1.c | ⊢ (𝜑 → 𝐶 ∈ (𝐴(,)𝐵)) |
| ftc1.f | ⊢ (𝜑 → 𝐹 ∈ ((𝐾 CnP 𝐿)‘𝐶)) |
| ftc1.j | ⊢ 𝐽 = (𝐿 ↾t ℝ) |
| ftc1.k | ⊢ 𝐾 = (𝐿 ↾t 𝐷) |
| ftc1.l | ⊢ 𝐿 = (TopOpen‘ℂfld) |
| Ref | Expression |
|---|---|
| ftc1 | ⊢ (𝜑 → 𝐶(ℝ D 𝐺)(𝐹‘𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ftc1.j | . . . . . . 7 ⊢ 𝐽 = (𝐿 ↾t ℝ) | |
| 2 | ftc1.l | . . . . . . . 8 ⊢ 𝐿 = (TopOpen‘ℂfld) | |
| 3 | 2 | tgioo2 24713 | . . . . . . 7 ⊢ (topGen‘ran (,)) = (𝐿 ↾t ℝ) |
| 4 | 1, 3 | eqtr4i 2757 | . . . . . 6 ⊢ 𝐽 = (topGen‘ran (,)) |
| 5 | retop 24671 | . . . . . 6 ⊢ (topGen‘ran (,)) ∈ Top | |
| 6 | 4, 5 | eqeltri 2827 | . . . . 5 ⊢ 𝐽 ∈ Top |
| 7 | 6 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝐽 ∈ Top) |
| 8 | ftc1.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 9 | ftc1.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 10 | iccssre 13324 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ) | |
| 11 | 8, 9, 10 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ℝ) |
| 12 | iooretop 24675 | . . . . . 6 ⊢ (𝐴(,)𝐵) ∈ (topGen‘ran (,)) | |
| 13 | 12, 4 | eleqtrri 2830 | . . . . 5 ⊢ (𝐴(,)𝐵) ∈ 𝐽 |
| 14 | 13 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝐴(,)𝐵) ∈ 𝐽) |
| 15 | ioossicc 13328 | . . . . 5 ⊢ (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵) | |
| 16 | 15 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)) |
| 17 | uniretop 24672 | . . . . . 6 ⊢ ℝ = ∪ (topGen‘ran (,)) | |
| 18 | 4 | unieqi 4866 | . . . . . 6 ⊢ ∪ 𝐽 = ∪ (topGen‘ran (,)) |
| 19 | 17, 18 | eqtr4i 2757 | . . . . 5 ⊢ ℝ = ∪ 𝐽 |
| 20 | 19 | ssntr 22968 | . . . 4 ⊢ (((𝐽 ∈ Top ∧ (𝐴[,]𝐵) ⊆ ℝ) ∧ ((𝐴(,)𝐵) ∈ 𝐽 ∧ (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵))) → (𝐴(,)𝐵) ⊆ ((int‘𝐽)‘(𝐴[,]𝐵))) |
| 21 | 7, 11, 14, 16, 20 | syl22anc 838 | . . 3 ⊢ (𝜑 → (𝐴(,)𝐵) ⊆ ((int‘𝐽)‘(𝐴[,]𝐵))) |
| 22 | ftc1.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ (𝐴(,)𝐵)) | |
| 23 | 21, 22 | sseldd 3930 | . 2 ⊢ (𝜑 → 𝐶 ∈ ((int‘𝐽)‘(𝐴[,]𝐵))) |
| 24 | ftc1.g | . . 3 ⊢ 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹‘𝑡) d𝑡) | |
| 25 | ftc1.le | . . 3 ⊢ (𝜑 → 𝐴 ≤ 𝐵) | |
| 26 | ftc1.s | . . 3 ⊢ (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷) | |
| 27 | ftc1.d | . . 3 ⊢ (𝜑 → 𝐷 ⊆ ℝ) | |
| 28 | ftc1.i | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝐿1) | |
| 29 | ftc1.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ ((𝐾 CnP 𝐿)‘𝐶)) | |
| 30 | ftc1.k | . . 3 ⊢ 𝐾 = (𝐿 ↾t 𝐷) | |
| 31 | eqid 2731 | . . 3 ⊢ (𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ↦ (((𝐺‘𝑧) − (𝐺‘𝐶)) / (𝑧 − 𝐶))) = (𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ↦ (((𝐺‘𝑧) − (𝐺‘𝐶)) / (𝑧 − 𝐶))) | |
| 32 | 24, 8, 9, 25, 26, 27, 28, 22, 29, 1, 30, 2, 31 | ftc1lem6 25970 | . 2 ⊢ (𝜑 → (𝐹‘𝐶) ∈ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ↦ (((𝐺‘𝑧) − (𝐺‘𝐶)) / (𝑧 − 𝐶))) limℂ 𝐶)) |
| 33 | ax-resscn 11058 | . . . 4 ⊢ ℝ ⊆ ℂ | |
| 34 | 33 | a1i 11 | . . 3 ⊢ (𝜑 → ℝ ⊆ ℂ) |
| 35 | 24, 8, 9, 25, 26, 27, 28, 22, 29, 1, 30, 2 | ftc1lem3 25967 | . . . 4 ⊢ (𝜑 → 𝐹:𝐷⟶ℂ) |
| 36 | 24, 8, 9, 25, 26, 27, 28, 35 | ftc1lem2 25965 | . . 3 ⊢ (𝜑 → 𝐺:(𝐴[,]𝐵)⟶ℂ) |
| 37 | 1, 2, 31, 34, 36, 11 | eldv 25821 | . 2 ⊢ (𝜑 → (𝐶(ℝ D 𝐺)(𝐹‘𝐶) ↔ (𝐶 ∈ ((int‘𝐽)‘(𝐴[,]𝐵)) ∧ (𝐹‘𝐶) ∈ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ↦ (((𝐺‘𝑧) − (𝐺‘𝐶)) / (𝑧 − 𝐶))) limℂ 𝐶)))) |
| 38 | 23, 32, 37 | mpbir2and 713 | 1 ⊢ (𝜑 → 𝐶(ℝ D 𝐺)(𝐹‘𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ∖ cdif 3894 ⊆ wss 3897 {csn 4571 ∪ cuni 4854 class class class wbr 5086 ↦ cmpt 5167 ran crn 5612 ‘cfv 6476 (class class class)co 7341 ℂcc 10999 ℝcr 11000 ≤ cle 11142 − cmin 11339 / cdiv 11769 (,)cioo 13240 [,]cicc 13243 ↾t crest 17319 TopOpenctopn 17320 topGenctg 17336 ℂfldccnfld 21286 Topctop 22803 intcnt 22927 CnP ccnp 23135 𝐿1cibl 25540 ∫citg 25541 limℂ climc 25785 D cdv 25786 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-inf2 9526 ax-cc 10321 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 ax-pre-sup 11079 ax-addf 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-symdif 4198 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-iin 4939 df-disj 5054 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-se 5565 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-isom 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-of 7605 df-ofr 7606 df-om 7792 df-1st 7916 df-2nd 7917 df-supp 8086 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-2o 8381 df-oadd 8384 df-omul 8385 df-er 8617 df-map 8747 df-pm 8748 df-ixp 8817 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-fsupp 9241 df-fi 9290 df-sup 9321 df-inf 9322 df-oi 9391 df-dju 9789 df-card 9827 df-acn 9830 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-div 11770 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-5 12186 df-6 12187 df-7 12188 df-8 12189 df-9 12190 df-n0 12377 df-z 12464 df-dec 12584 df-uz 12728 df-q 12842 df-rp 12886 df-xneg 13006 df-xadd 13007 df-xmul 13008 df-ioo 13244 df-ioc 13245 df-ico 13246 df-icc 13247 df-fz 13403 df-fzo 13550 df-fl 13691 df-mod 13769 df-seq 13904 df-exp 13964 df-hash 14233 df-cj 15001 df-re 15002 df-im 15003 df-sqrt 15137 df-abs 15138 df-clim 15390 df-rlim 15391 df-sum 15589 df-struct 17053 df-sets 17070 df-slot 17088 df-ndx 17100 df-base 17116 df-ress 17137 df-plusg 17169 df-mulr 17170 df-starv 17171 df-sca 17172 df-vsca 17173 df-ip 17174 df-tset 17175 df-ple 17176 df-ds 17178 df-unif 17179 df-hom 17180 df-cco 17181 df-rest 17321 df-topn 17322 df-0g 17340 df-gsum 17341 df-topgen 17342 df-pt 17343 df-prds 17346 df-xrs 17401 df-qtop 17406 df-imas 17407 df-xps 17409 df-mre 17483 df-mrc 17484 df-acs 17486 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-submnd 18687 df-mulg 18976 df-cntz 19224 df-cmn 19689 df-psmet 21278 df-xmet 21279 df-met 21280 df-bl 21281 df-mopn 21282 df-cnfld 21287 df-top 22804 df-topon 22821 df-topsp 22843 df-bases 22856 df-ntr 22930 df-cn 23137 df-cnp 23138 df-cmp 23297 df-tx 23472 df-hmeo 23665 df-xms 24230 df-ms 24231 df-tms 24232 df-cncf 24793 df-ovol 25387 df-vol 25388 df-mbf 25542 df-itg1 25543 df-itg2 25544 df-ibl 25545 df-itg 25546 df-0p 25593 df-limc 25789 df-dv 25790 |
| This theorem is referenced by: ftc1cn 25972 |
| Copyright terms: Public domain | W3C validator |