MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ftc1 Structured version   Visualization version   GIF version

Theorem ftc1 25965
Description: The Fundamental Theorem of Calculus, part one. The function formed by varying the right endpoint of an integral is differentiable at 𝐶 with derivative 𝐹(𝐶) if the original function is continuous at 𝐶. This is part of Metamath 100 proof #15. (Contributed by Mario Carneiro, 1-Sep-2014.)
Hypotheses
Ref Expression
ftc1.g 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡)
ftc1.a (𝜑𝐴 ∈ ℝ)
ftc1.b (𝜑𝐵 ∈ ℝ)
ftc1.le (𝜑𝐴𝐵)
ftc1.s (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷)
ftc1.d (𝜑𝐷 ⊆ ℝ)
ftc1.i (𝜑𝐹 ∈ 𝐿1)
ftc1.c (𝜑𝐶 ∈ (𝐴(,)𝐵))
ftc1.f (𝜑𝐹 ∈ ((𝐾 CnP 𝐿)‘𝐶))
ftc1.j 𝐽 = (𝐿t ℝ)
ftc1.k 𝐾 = (𝐿t 𝐷)
ftc1.l 𝐿 = (TopOpen‘ℂfld)
Assertion
Ref Expression
ftc1 (𝜑𝐶(ℝ D 𝐺)(𝐹𝐶))
Distinct variable groups:   𝑥,𝑡,𝐶   𝑡,𝐷,𝑥   𝑡,𝐴,𝑥   𝑡,𝐵,𝑥   𝜑,𝑡,𝑥   𝑡,𝐹,𝑥   𝑥,𝐿
Allowed substitution hints:   𝐺(𝑥,𝑡)   𝐽(𝑥,𝑡)   𝐾(𝑥,𝑡)   𝐿(𝑡)

Proof of Theorem ftc1
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ftc1.j . . . . . . 7 𝐽 = (𝐿t ℝ)
2 ftc1.l . . . . . . . 8 𝐿 = (TopOpen‘ℂfld)
32tgioo2 24707 . . . . . . 7 (topGen‘ran (,)) = (𝐿t ℝ)
41, 3eqtr4i 2755 . . . . . 6 𝐽 = (topGen‘ran (,))
5 retop 24665 . . . . . 6 (topGen‘ran (,)) ∈ Top
64, 5eqeltri 2824 . . . . 5 𝐽 ∈ Top
76a1i 11 . . . 4 (𝜑𝐽 ∈ Top)
8 ftc1.a . . . . 5 (𝜑𝐴 ∈ ℝ)
9 ftc1.b . . . . 5 (𝜑𝐵 ∈ ℝ)
10 iccssre 13350 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
118, 9, 10syl2anc 584 . . . 4 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
12 iooretop 24669 . . . . . 6 (𝐴(,)𝐵) ∈ (topGen‘ran (,))
1312, 4eleqtrri 2827 . . . . 5 (𝐴(,)𝐵) ∈ 𝐽
1413a1i 11 . . . 4 (𝜑 → (𝐴(,)𝐵) ∈ 𝐽)
15 ioossicc 13354 . . . . 5 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
1615a1i 11 . . . 4 (𝜑 → (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵))
17 uniretop 24666 . . . . . 6 ℝ = (topGen‘ran (,))
184unieqi 4873 . . . . . 6 𝐽 = (topGen‘ran (,))
1917, 18eqtr4i 2755 . . . . 5 ℝ = 𝐽
2019ssntr 22961 . . . 4 (((𝐽 ∈ Top ∧ (𝐴[,]𝐵) ⊆ ℝ) ∧ ((𝐴(,)𝐵) ∈ 𝐽 ∧ (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵))) → (𝐴(,)𝐵) ⊆ ((int‘𝐽)‘(𝐴[,]𝐵)))
217, 11, 14, 16, 20syl22anc 838 . . 3 (𝜑 → (𝐴(,)𝐵) ⊆ ((int‘𝐽)‘(𝐴[,]𝐵)))
22 ftc1.c . . 3 (𝜑𝐶 ∈ (𝐴(,)𝐵))
2321, 22sseldd 3938 . 2 (𝜑𝐶 ∈ ((int‘𝐽)‘(𝐴[,]𝐵)))
24 ftc1.g . . 3 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡)
25 ftc1.le . . 3 (𝜑𝐴𝐵)
26 ftc1.s . . 3 (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷)
27 ftc1.d . . 3 (𝜑𝐷 ⊆ ℝ)
28 ftc1.i . . 3 (𝜑𝐹 ∈ 𝐿1)
29 ftc1.f . . 3 (𝜑𝐹 ∈ ((𝐾 CnP 𝐿)‘𝐶))
30 ftc1.k . . 3 𝐾 = (𝐿t 𝐷)
31 eqid 2729 . . 3 (𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) = (𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)))
3224, 8, 9, 25, 26, 27, 28, 22, 29, 1, 30, 2, 31ftc1lem6 25964 . 2 (𝜑 → (𝐹𝐶) ∈ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) lim 𝐶))
33 ax-resscn 11085 . . . 4 ℝ ⊆ ℂ
3433a1i 11 . . 3 (𝜑 → ℝ ⊆ ℂ)
3524, 8, 9, 25, 26, 27, 28, 22, 29, 1, 30, 2ftc1lem3 25961 . . . 4 (𝜑𝐹:𝐷⟶ℂ)
3624, 8, 9, 25, 26, 27, 28, 35ftc1lem2 25959 . . 3 (𝜑𝐺:(𝐴[,]𝐵)⟶ℂ)
371, 2, 31, 34, 36, 11eldv 25815 . 2 (𝜑 → (𝐶(ℝ D 𝐺)(𝐹𝐶) ↔ (𝐶 ∈ ((int‘𝐽)‘(𝐴[,]𝐵)) ∧ (𝐹𝐶) ∈ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) lim 𝐶))))
3823, 32, 37mpbir2and 713 1 (𝜑𝐶(ℝ D 𝐺)(𝐹𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cdif 3902  wss 3905  {csn 4579   cuni 4861   class class class wbr 5095  cmpt 5176  ran crn 5624  cfv 6486  (class class class)co 7353  cc 11026  cr 11027  cle 11169  cmin 11365   / cdiv 11795  (,)cioo 13266  [,]cicc 13269  t crest 17342  TopOpenctopn 17343  topGenctg 17359  fldccnfld 21279  Topctop 22796  intcnt 22920   CnP ccnp 23128  𝐿1cibl 25534  citg 25535   lim climc 25779   D cdv 25780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cc 10348  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106  ax-addf 11107
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-symdif 4206  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-disj 5063  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-ofr 7618  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-oadd 8399  df-omul 8400  df-er 8632  df-map 8762  df-pm 8763  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-fi 9320  df-sup 9351  df-inf 9352  df-oi 9421  df-dju 9816  df-card 9854  df-acn 9857  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-uz 12754  df-q 12868  df-rp 12912  df-xneg 13032  df-xadd 13033  df-xmul 13034  df-ioo 13270  df-ioc 13271  df-ico 13272  df-icc 13273  df-fz 13429  df-fzo 13576  df-fl 13714  df-mod 13792  df-seq 13927  df-exp 13987  df-hash 14256  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-clim 15413  df-rlim 15414  df-sum 15612  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-starv 17194  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ds 17201  df-unif 17202  df-hom 17203  df-cco 17204  df-rest 17344  df-topn 17345  df-0g 17363  df-gsum 17364  df-topgen 17365  df-pt 17366  df-prds 17369  df-xrs 17424  df-qtop 17429  df-imas 17430  df-xps 17432  df-mre 17506  df-mrc 17507  df-acs 17509  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-submnd 18676  df-mulg 18965  df-cntz 19214  df-cmn 19679  df-psmet 21271  df-xmet 21272  df-met 21273  df-bl 21274  df-mopn 21275  df-cnfld 21280  df-top 22797  df-topon 22814  df-topsp 22836  df-bases 22849  df-ntr 22923  df-cn 23130  df-cnp 23131  df-cmp 23290  df-tx 23465  df-hmeo 23658  df-xms 24224  df-ms 24225  df-tms 24226  df-cncf 24787  df-ovol 25381  df-vol 25382  df-mbf 25536  df-itg1 25537  df-itg2 25538  df-ibl 25539  df-itg 25540  df-0p 25587  df-limc 25783  df-dv 25784
This theorem is referenced by:  ftc1cn  25966
  Copyright terms: Public domain W3C validator