| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ftc1 | Structured version Visualization version GIF version | ||
| Description: The Fundamental Theorem of Calculus, part one. The function formed by varying the right endpoint of an integral is differentiable at 𝐶 with derivative 𝐹(𝐶) if the original function is continuous at 𝐶. This is part of Metamath 100 proof #15. (Contributed by Mario Carneiro, 1-Sep-2014.) |
| Ref | Expression |
|---|---|
| ftc1.g | ⊢ 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹‘𝑡) d𝑡) |
| ftc1.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| ftc1.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| ftc1.le | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| ftc1.s | ⊢ (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷) |
| ftc1.d | ⊢ (𝜑 → 𝐷 ⊆ ℝ) |
| ftc1.i | ⊢ (𝜑 → 𝐹 ∈ 𝐿1) |
| ftc1.c | ⊢ (𝜑 → 𝐶 ∈ (𝐴(,)𝐵)) |
| ftc1.f | ⊢ (𝜑 → 𝐹 ∈ ((𝐾 CnP 𝐿)‘𝐶)) |
| ftc1.j | ⊢ 𝐽 = (𝐿 ↾t ℝ) |
| ftc1.k | ⊢ 𝐾 = (𝐿 ↾t 𝐷) |
| ftc1.l | ⊢ 𝐿 = (TopOpen‘ℂfld) |
| Ref | Expression |
|---|---|
| ftc1 | ⊢ (𝜑 → 𝐶(ℝ D 𝐺)(𝐹‘𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ftc1.j | . . . . . . 7 ⊢ 𝐽 = (𝐿 ↾t ℝ) | |
| 2 | ftc1.l | . . . . . . . 8 ⊢ 𝐿 = (TopOpen‘ℂfld) | |
| 3 | 2 | tgioo2 24738 | . . . . . . 7 ⊢ (topGen‘ran (,)) = (𝐿 ↾t ℝ) |
| 4 | 1, 3 | eqtr4i 2759 | . . . . . 6 ⊢ 𝐽 = (topGen‘ran (,)) |
| 5 | retop 24696 | . . . . . 6 ⊢ (topGen‘ran (,)) ∈ Top | |
| 6 | 4, 5 | eqeltri 2829 | . . . . 5 ⊢ 𝐽 ∈ Top |
| 7 | 6 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝐽 ∈ Top) |
| 8 | ftc1.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 9 | ftc1.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 10 | iccssre 13336 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ) | |
| 11 | 8, 9, 10 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ℝ) |
| 12 | iooretop 24700 | . . . . . 6 ⊢ (𝐴(,)𝐵) ∈ (topGen‘ran (,)) | |
| 13 | 12, 4 | eleqtrri 2832 | . . . . 5 ⊢ (𝐴(,)𝐵) ∈ 𝐽 |
| 14 | 13 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝐴(,)𝐵) ∈ 𝐽) |
| 15 | ioossicc 13340 | . . . . 5 ⊢ (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵) | |
| 16 | 15 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)) |
| 17 | uniretop 24697 | . . . . . 6 ⊢ ℝ = ∪ (topGen‘ran (,)) | |
| 18 | 4 | unieqi 4872 | . . . . . 6 ⊢ ∪ 𝐽 = ∪ (topGen‘ran (,)) |
| 19 | 17, 18 | eqtr4i 2759 | . . . . 5 ⊢ ℝ = ∪ 𝐽 |
| 20 | 19 | ssntr 22993 | . . . 4 ⊢ (((𝐽 ∈ Top ∧ (𝐴[,]𝐵) ⊆ ℝ) ∧ ((𝐴(,)𝐵) ∈ 𝐽 ∧ (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵))) → (𝐴(,)𝐵) ⊆ ((int‘𝐽)‘(𝐴[,]𝐵))) |
| 21 | 7, 11, 14, 16, 20 | syl22anc 838 | . . 3 ⊢ (𝜑 → (𝐴(,)𝐵) ⊆ ((int‘𝐽)‘(𝐴[,]𝐵))) |
| 22 | ftc1.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ (𝐴(,)𝐵)) | |
| 23 | 21, 22 | sseldd 3931 | . 2 ⊢ (𝜑 → 𝐶 ∈ ((int‘𝐽)‘(𝐴[,]𝐵))) |
| 24 | ftc1.g | . . 3 ⊢ 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹‘𝑡) d𝑡) | |
| 25 | ftc1.le | . . 3 ⊢ (𝜑 → 𝐴 ≤ 𝐵) | |
| 26 | ftc1.s | . . 3 ⊢ (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷) | |
| 27 | ftc1.d | . . 3 ⊢ (𝜑 → 𝐷 ⊆ ℝ) | |
| 28 | ftc1.i | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝐿1) | |
| 29 | ftc1.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ ((𝐾 CnP 𝐿)‘𝐶)) | |
| 30 | ftc1.k | . . 3 ⊢ 𝐾 = (𝐿 ↾t 𝐷) | |
| 31 | eqid 2733 | . . 3 ⊢ (𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ↦ (((𝐺‘𝑧) − (𝐺‘𝐶)) / (𝑧 − 𝐶))) = (𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ↦ (((𝐺‘𝑧) − (𝐺‘𝐶)) / (𝑧 − 𝐶))) | |
| 32 | 24, 8, 9, 25, 26, 27, 28, 22, 29, 1, 30, 2, 31 | ftc1lem6 25995 | . 2 ⊢ (𝜑 → (𝐹‘𝐶) ∈ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ↦ (((𝐺‘𝑧) − (𝐺‘𝐶)) / (𝑧 − 𝐶))) limℂ 𝐶)) |
| 33 | ax-resscn 11074 | . . . 4 ⊢ ℝ ⊆ ℂ | |
| 34 | 33 | a1i 11 | . . 3 ⊢ (𝜑 → ℝ ⊆ ℂ) |
| 35 | 24, 8, 9, 25, 26, 27, 28, 22, 29, 1, 30, 2 | ftc1lem3 25992 | . . . 4 ⊢ (𝜑 → 𝐹:𝐷⟶ℂ) |
| 36 | 24, 8, 9, 25, 26, 27, 28, 35 | ftc1lem2 25990 | . . 3 ⊢ (𝜑 → 𝐺:(𝐴[,]𝐵)⟶ℂ) |
| 37 | 1, 2, 31, 34, 36, 11 | eldv 25846 | . 2 ⊢ (𝜑 → (𝐶(ℝ D 𝐺)(𝐹‘𝐶) ↔ (𝐶 ∈ ((int‘𝐽)‘(𝐴[,]𝐵)) ∧ (𝐹‘𝐶) ∈ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ↦ (((𝐺‘𝑧) − (𝐺‘𝐶)) / (𝑧 − 𝐶))) limℂ 𝐶)))) |
| 38 | 23, 32, 37 | mpbir2and 713 | 1 ⊢ (𝜑 → 𝐶(ℝ D 𝐺)(𝐹‘𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ∖ cdif 3895 ⊆ wss 3898 {csn 4577 ∪ cuni 4860 class class class wbr 5095 ↦ cmpt 5176 ran crn 5622 ‘cfv 6489 (class class class)co 7355 ℂcc 11015 ℝcr 11016 ≤ cle 11158 − cmin 11355 / cdiv 11785 (,)cioo 13252 [,]cicc 13255 ↾t crest 17331 TopOpenctopn 17332 topGenctg 17348 ℂfldccnfld 21300 Topctop 22828 intcnt 22952 CnP ccnp 23160 𝐿1cibl 25565 ∫citg 25566 limℂ climc 25810 D cdv 25811 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-inf2 9542 ax-cc 10337 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 ax-pre-sup 11095 ax-addf 11096 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-symdif 4202 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-iin 4946 df-disj 5063 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-isom 6498 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-of 7619 df-ofr 7620 df-om 7806 df-1st 7930 df-2nd 7931 df-supp 8100 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-2o 8395 df-oadd 8398 df-omul 8399 df-er 8631 df-map 8761 df-pm 8762 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fsupp 9257 df-fi 9306 df-sup 9337 df-inf 9338 df-oi 9407 df-dju 9805 df-card 9843 df-acn 9846 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-div 11786 df-nn 12137 df-2 12199 df-3 12200 df-4 12201 df-5 12202 df-6 12203 df-7 12204 df-8 12205 df-9 12206 df-n0 12393 df-z 12480 df-dec 12599 df-uz 12743 df-q 12853 df-rp 12897 df-xneg 13017 df-xadd 13018 df-xmul 13019 df-ioo 13256 df-ioc 13257 df-ico 13258 df-icc 13259 df-fz 13415 df-fzo 13562 df-fl 13703 df-mod 13781 df-seq 13916 df-exp 13976 df-hash 14245 df-cj 15013 df-re 15014 df-im 15015 df-sqrt 15149 df-abs 15150 df-clim 15402 df-rlim 15403 df-sum 15601 df-struct 17065 df-sets 17082 df-slot 17100 df-ndx 17112 df-base 17128 df-ress 17149 df-plusg 17181 df-mulr 17182 df-starv 17183 df-sca 17184 df-vsca 17185 df-ip 17186 df-tset 17187 df-ple 17188 df-ds 17190 df-unif 17191 df-hom 17192 df-cco 17193 df-rest 17333 df-topn 17334 df-0g 17352 df-gsum 17353 df-topgen 17354 df-pt 17355 df-prds 17358 df-xrs 17414 df-qtop 17419 df-imas 17420 df-xps 17422 df-mre 17496 df-mrc 17497 df-acs 17499 df-mgm 18556 df-sgrp 18635 df-mnd 18651 df-submnd 18700 df-mulg 18989 df-cntz 19237 df-cmn 19702 df-psmet 21292 df-xmet 21293 df-met 21294 df-bl 21295 df-mopn 21296 df-cnfld 21301 df-top 22829 df-topon 22846 df-topsp 22868 df-bases 22881 df-ntr 22955 df-cn 23162 df-cnp 23163 df-cmp 23322 df-tx 23497 df-hmeo 23690 df-xms 24255 df-ms 24256 df-tms 24257 df-cncf 24818 df-ovol 25412 df-vol 25413 df-mbf 25567 df-itg1 25568 df-itg2 25569 df-ibl 25570 df-itg 25571 df-0p 25618 df-limc 25814 df-dv 25815 |
| This theorem is referenced by: ftc1cn 25997 |
| Copyright terms: Public domain | W3C validator |