MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ftc1 Structured version   Visualization version   GIF version

Theorem ftc1 24242
Description: The Fundamental Theorem of Calculus, part one. The function formed by varying the right endpoint of an integral is differentiable at 𝐶 with derivative 𝐹(𝐶) if the original function is continuous at 𝐶. This is part of Metamath 100 proof #15. (Contributed by Mario Carneiro, 1-Sep-2014.)
Hypotheses
Ref Expression
ftc1.g 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡)
ftc1.a (𝜑𝐴 ∈ ℝ)
ftc1.b (𝜑𝐵 ∈ ℝ)
ftc1.le (𝜑𝐴𝐵)
ftc1.s (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷)
ftc1.d (𝜑𝐷 ⊆ ℝ)
ftc1.i (𝜑𝐹 ∈ 𝐿1)
ftc1.c (𝜑𝐶 ∈ (𝐴(,)𝐵))
ftc1.f (𝜑𝐹 ∈ ((𝐾 CnP 𝐿)‘𝐶))
ftc1.j 𝐽 = (𝐿t ℝ)
ftc1.k 𝐾 = (𝐿t 𝐷)
ftc1.l 𝐿 = (TopOpen‘ℂfld)
Assertion
Ref Expression
ftc1 (𝜑𝐶(ℝ D 𝐺)(𝐹𝐶))
Distinct variable groups:   𝑥,𝑡,𝐶   𝑡,𝐷,𝑥   𝑡,𝐴,𝑥   𝑡,𝐵,𝑥   𝜑,𝑡,𝑥   𝑡,𝐹,𝑥   𝑥,𝐿
Allowed substitution hints:   𝐺(𝑥,𝑡)   𝐽(𝑥,𝑡)   𝐾(𝑥,𝑡)   𝐿(𝑡)

Proof of Theorem ftc1
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ftc1.j . . . . . . 7 𝐽 = (𝐿t ℝ)
2 ftc1.l . . . . . . . 8 𝐿 = (TopOpen‘ℂfld)
32tgioo2 23014 . . . . . . 7 (topGen‘ran (,)) = (𝐿t ℝ)
41, 3eqtr4i 2804 . . . . . 6 𝐽 = (topGen‘ran (,))
5 retop 22973 . . . . . 6 (topGen‘ran (,)) ∈ Top
64, 5eqeltri 2854 . . . . 5 𝐽 ∈ Top
76a1i 11 . . . 4 (𝜑𝐽 ∈ Top)
8 ftc1.a . . . . 5 (𝜑𝐴 ∈ ℝ)
9 ftc1.b . . . . 5 (𝜑𝐵 ∈ ℝ)
10 iccssre 12567 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
118, 9, 10syl2anc 579 . . . 4 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
12 iooretop 22977 . . . . . 6 (𝐴(,)𝐵) ∈ (topGen‘ran (,))
1312, 4eleqtrri 2857 . . . . 5 (𝐴(,)𝐵) ∈ 𝐽
1413a1i 11 . . . 4 (𝜑 → (𝐴(,)𝐵) ∈ 𝐽)
15 ioossicc 12571 . . . . 5 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
1615a1i 11 . . . 4 (𝜑 → (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵))
17 uniretop 22974 . . . . . 6 ℝ = (topGen‘ran (,))
184unieqi 4680 . . . . . 6 𝐽 = (topGen‘ran (,))
1917, 18eqtr4i 2804 . . . . 5 ℝ = 𝐽
2019ssntr 21270 . . . 4 (((𝐽 ∈ Top ∧ (𝐴[,]𝐵) ⊆ ℝ) ∧ ((𝐴(,)𝐵) ∈ 𝐽 ∧ (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵))) → (𝐴(,)𝐵) ⊆ ((int‘𝐽)‘(𝐴[,]𝐵)))
217, 11, 14, 16, 20syl22anc 829 . . 3 (𝜑 → (𝐴(,)𝐵) ⊆ ((int‘𝐽)‘(𝐴[,]𝐵)))
22 ftc1.c . . 3 (𝜑𝐶 ∈ (𝐴(,)𝐵))
2321, 22sseldd 3821 . 2 (𝜑𝐶 ∈ ((int‘𝐽)‘(𝐴[,]𝐵)))
24 ftc1.g . . 3 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡)
25 ftc1.le . . 3 (𝜑𝐴𝐵)
26 ftc1.s . . 3 (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷)
27 ftc1.d . . 3 (𝜑𝐷 ⊆ ℝ)
28 ftc1.i . . 3 (𝜑𝐹 ∈ 𝐿1)
29 ftc1.f . . 3 (𝜑𝐹 ∈ ((𝐾 CnP 𝐿)‘𝐶))
30 ftc1.k . . 3 𝐾 = (𝐿t 𝐷)
31 eqid 2777 . . 3 (𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) = (𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)))
3224, 8, 9, 25, 26, 27, 28, 22, 29, 1, 30, 2, 31ftc1lem6 24241 . 2 (𝜑 → (𝐹𝐶) ∈ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) lim 𝐶))
33 ax-resscn 10329 . . . 4 ℝ ⊆ ℂ
3433a1i 11 . . 3 (𝜑 → ℝ ⊆ ℂ)
3524, 8, 9, 25, 26, 27, 28, 22, 29, 1, 30, 2ftc1lem3 24238 . . . 4 (𝜑𝐹:𝐷⟶ℂ)
3624, 8, 9, 25, 26, 27, 28, 35ftc1lem2 24236 . . 3 (𝜑𝐺:(𝐴[,]𝐵)⟶ℂ)
371, 2, 31, 34, 36, 11eldv 24099 . 2 (𝜑 → (𝐶(ℝ D 𝐺)(𝐹𝐶) ↔ (𝐶 ∈ ((int‘𝐽)‘(𝐴[,]𝐵)) ∧ (𝐹𝐶) ∈ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) lim 𝐶))))
3823, 32, 37mpbir2and 703 1 (𝜑𝐶(ℝ D 𝐺)(𝐹𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1601  wcel 2106  cdif 3788  wss 3791  {csn 4397   cuni 4671   class class class wbr 4886  cmpt 4965  ran crn 5356  cfv 6135  (class class class)co 6922  cc 10270  cr 10271  cle 10412  cmin 10606   / cdiv 11032  (,)cioo 12487  [,]cicc 12490  t crest 16467  TopOpenctopn 16468  topGenctg 16484  fldccnfld 20142  Topctop 21105  intcnt 21229   CnP ccnp 21437  𝐿1cibl 23821  citg 23822   lim climc 24063   D cdv 24064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-8 2108  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-inf2 8835  ax-cc 9592  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349  ax-pre-sup 10350  ax-addf 10351  ax-mulf 10352
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-fal 1615  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2550  df-eu 2586  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ne 2969  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3399  df-sbc 3652  df-csb 3751  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-pss 3807  df-symdif 4066  df-nul 4141  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4672  df-int 4711  df-iun 4755  df-iin 4756  df-disj 4855  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-se 5315  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-isom 6144  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-of 7174  df-ofr 7175  df-om 7344  df-1st 7445  df-2nd 7446  df-supp 7577  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-2o 7844  df-oadd 7847  df-omul 7848  df-er 8026  df-map 8142  df-pm 8143  df-ixp 8195  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-fsupp 8564  df-fi 8605  df-sup 8636  df-inf 8637  df-oi 8704  df-card 9098  df-acn 9101  df-cda 9325  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-div 11033  df-nn 11375  df-2 11438  df-3 11439  df-4 11440  df-5 11441  df-6 11442  df-7 11443  df-8 11444  df-9 11445  df-n0 11643  df-z 11729  df-dec 11846  df-uz 11993  df-q 12096  df-rp 12138  df-xneg 12257  df-xadd 12258  df-xmul 12259  df-ioo 12491  df-ioc 12492  df-ico 12493  df-icc 12494  df-fz 12644  df-fzo 12785  df-fl 12912  df-mod 12988  df-seq 13120  df-exp 13179  df-hash 13436  df-cj 14246  df-re 14247  df-im 14248  df-sqrt 14382  df-abs 14383  df-clim 14627  df-rlim 14628  df-sum 14825  df-struct 16257  df-ndx 16258  df-slot 16259  df-base 16261  df-sets 16262  df-ress 16263  df-plusg 16351  df-mulr 16352  df-starv 16353  df-sca 16354  df-vsca 16355  df-ip 16356  df-tset 16357  df-ple 16358  df-ds 16360  df-unif 16361  df-hom 16362  df-cco 16363  df-rest 16469  df-topn 16470  df-0g 16488  df-gsum 16489  df-topgen 16490  df-pt 16491  df-prds 16494  df-xrs 16548  df-qtop 16553  df-imas 16554  df-xps 16556  df-mre 16632  df-mrc 16633  df-acs 16635  df-mgm 17628  df-sgrp 17670  df-mnd 17681  df-submnd 17722  df-mulg 17928  df-cntz 18133  df-cmn 18581  df-psmet 20134  df-xmet 20135  df-met 20136  df-bl 20137  df-mopn 20138  df-cnfld 20143  df-top 21106  df-topon 21123  df-topsp 21145  df-bases 21158  df-ntr 21232  df-cn 21439  df-cnp 21440  df-cmp 21599  df-tx 21774  df-hmeo 21967  df-xms 22533  df-ms 22534  df-tms 22535  df-cncf 23089  df-ovol 23668  df-vol 23669  df-mbf 23823  df-itg1 23824  df-itg2 23825  df-ibl 23826  df-itg 23827  df-0p 23874  df-limc 24067  df-dv 24068
This theorem is referenced by:  ftc1cn  24243
  Copyright terms: Public domain W3C validator