MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ftc1 Structured version   Visualization version   GIF version

Theorem ftc1 25949
Description: The Fundamental Theorem of Calculus, part one. The function formed by varying the right endpoint of an integral is differentiable at 𝐶 with derivative 𝐹(𝐶) if the original function is continuous at 𝐶. This is part of Metamath 100 proof #15. (Contributed by Mario Carneiro, 1-Sep-2014.)
Hypotheses
Ref Expression
ftc1.g 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡)
ftc1.a (𝜑𝐴 ∈ ℝ)
ftc1.b (𝜑𝐵 ∈ ℝ)
ftc1.le (𝜑𝐴𝐵)
ftc1.s (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷)
ftc1.d (𝜑𝐷 ⊆ ℝ)
ftc1.i (𝜑𝐹 ∈ 𝐿1)
ftc1.c (𝜑𝐶 ∈ (𝐴(,)𝐵))
ftc1.f (𝜑𝐹 ∈ ((𝐾 CnP 𝐿)‘𝐶))
ftc1.j 𝐽 = (𝐿t ℝ)
ftc1.k 𝐾 = (𝐿t 𝐷)
ftc1.l 𝐿 = (TopOpen‘ℂfld)
Assertion
Ref Expression
ftc1 (𝜑𝐶(ℝ D 𝐺)(𝐹𝐶))
Distinct variable groups:   𝑥,𝑡,𝐶   𝑡,𝐷,𝑥   𝑡,𝐴,𝑥   𝑡,𝐵,𝑥   𝜑,𝑡,𝑥   𝑡,𝐹,𝑥   𝑥,𝐿
Allowed substitution hints:   𝐺(𝑥,𝑡)   𝐽(𝑥,𝑡)   𝐾(𝑥,𝑡)   𝐿(𝑡)

Proof of Theorem ftc1
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ftc1.j . . . . . . 7 𝐽 = (𝐿t ℝ)
2 ftc1.l . . . . . . . 8 𝐿 = (TopOpen‘ℂfld)
32tgioo2 24691 . . . . . . 7 (topGen‘ran (,)) = (𝐿t ℝ)
41, 3eqtr4i 2755 . . . . . 6 𝐽 = (topGen‘ran (,))
5 retop 24649 . . . . . 6 (topGen‘ran (,)) ∈ Top
64, 5eqeltri 2824 . . . . 5 𝐽 ∈ Top
76a1i 11 . . . 4 (𝜑𝐽 ∈ Top)
8 ftc1.a . . . . 5 (𝜑𝐴 ∈ ℝ)
9 ftc1.b . . . . 5 (𝜑𝐵 ∈ ℝ)
10 iccssre 13390 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
118, 9, 10syl2anc 584 . . . 4 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
12 iooretop 24653 . . . . . 6 (𝐴(,)𝐵) ∈ (topGen‘ran (,))
1312, 4eleqtrri 2827 . . . . 5 (𝐴(,)𝐵) ∈ 𝐽
1413a1i 11 . . . 4 (𝜑 → (𝐴(,)𝐵) ∈ 𝐽)
15 ioossicc 13394 . . . . 5 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
1615a1i 11 . . . 4 (𝜑 → (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵))
17 uniretop 24650 . . . . . 6 ℝ = (topGen‘ran (,))
184unieqi 4883 . . . . . 6 𝐽 = (topGen‘ran (,))
1917, 18eqtr4i 2755 . . . . 5 ℝ = 𝐽
2019ssntr 22945 . . . 4 (((𝐽 ∈ Top ∧ (𝐴[,]𝐵) ⊆ ℝ) ∧ ((𝐴(,)𝐵) ∈ 𝐽 ∧ (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵))) → (𝐴(,)𝐵) ⊆ ((int‘𝐽)‘(𝐴[,]𝐵)))
217, 11, 14, 16, 20syl22anc 838 . . 3 (𝜑 → (𝐴(,)𝐵) ⊆ ((int‘𝐽)‘(𝐴[,]𝐵)))
22 ftc1.c . . 3 (𝜑𝐶 ∈ (𝐴(,)𝐵))
2321, 22sseldd 3947 . 2 (𝜑𝐶 ∈ ((int‘𝐽)‘(𝐴[,]𝐵)))
24 ftc1.g . . 3 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡)
25 ftc1.le . . 3 (𝜑𝐴𝐵)
26 ftc1.s . . 3 (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷)
27 ftc1.d . . 3 (𝜑𝐷 ⊆ ℝ)
28 ftc1.i . . 3 (𝜑𝐹 ∈ 𝐿1)
29 ftc1.f . . 3 (𝜑𝐹 ∈ ((𝐾 CnP 𝐿)‘𝐶))
30 ftc1.k . . 3 𝐾 = (𝐿t 𝐷)
31 eqid 2729 . . 3 (𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) = (𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)))
3224, 8, 9, 25, 26, 27, 28, 22, 29, 1, 30, 2, 31ftc1lem6 25948 . 2 (𝜑 → (𝐹𝐶) ∈ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) lim 𝐶))
33 ax-resscn 11125 . . . 4 ℝ ⊆ ℂ
3433a1i 11 . . 3 (𝜑 → ℝ ⊆ ℂ)
3524, 8, 9, 25, 26, 27, 28, 22, 29, 1, 30, 2ftc1lem3 25945 . . . 4 (𝜑𝐹:𝐷⟶ℂ)
3624, 8, 9, 25, 26, 27, 28, 35ftc1lem2 25943 . . 3 (𝜑𝐺:(𝐴[,]𝐵)⟶ℂ)
371, 2, 31, 34, 36, 11eldv 25799 . 2 (𝜑 → (𝐶(ℝ D 𝐺)(𝐹𝐶) ↔ (𝐶 ∈ ((int‘𝐽)‘(𝐴[,]𝐵)) ∧ (𝐹𝐶) ∈ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) lim 𝐶))))
3823, 32, 37mpbir2and 713 1 (𝜑𝐶(ℝ D 𝐺)(𝐹𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cdif 3911  wss 3914  {csn 4589   cuni 4871   class class class wbr 5107  cmpt 5188  ran crn 5639  cfv 6511  (class class class)co 7387  cc 11066  cr 11067  cle 11209  cmin 11405   / cdiv 11835  (,)cioo 13306  [,]cicc 13309  t crest 17383  TopOpenctopn 17384  topGenctg 17400  fldccnfld 21264  Topctop 22780  intcnt 22904   CnP ccnp 23112  𝐿1cibl 25518  citg 25519   lim climc 25763   D cdv 25764
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cc 10388  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-symdif 4216  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-disj 5075  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-ofr 7654  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-omul 8439  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-dju 9854  df-card 9892  df-acn 9895  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ioc 13311  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-rlim 15455  df-sum 15653  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-mulg 19000  df-cntz 19249  df-cmn 19712  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-ntr 22907  df-cn 23114  df-cnp 23115  df-cmp 23274  df-tx 23449  df-hmeo 23642  df-xms 24208  df-ms 24209  df-tms 24210  df-cncf 24771  df-ovol 25365  df-vol 25366  df-mbf 25520  df-itg1 25521  df-itg2 25522  df-ibl 25523  df-itg 25524  df-0p 25571  df-limc 25767  df-dv 25768
This theorem is referenced by:  ftc1cn  25950
  Copyright terms: Public domain W3C validator