![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ftc1 | Structured version Visualization version GIF version |
Description: The Fundamental Theorem of Calculus, part one. The function formed by varying the right endpoint of an integral is differentiable at 𝐶 with derivative 𝐹(𝐶) if the original function is continuous at 𝐶. This is part of Metamath 100 proof #15. (Contributed by Mario Carneiro, 1-Sep-2014.) |
Ref | Expression |
---|---|
ftc1.g | ⊢ 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹‘𝑡) d𝑡) |
ftc1.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ftc1.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
ftc1.le | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
ftc1.s | ⊢ (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷) |
ftc1.d | ⊢ (𝜑 → 𝐷 ⊆ ℝ) |
ftc1.i | ⊢ (𝜑 → 𝐹 ∈ 𝐿1) |
ftc1.c | ⊢ (𝜑 → 𝐶 ∈ (𝐴(,)𝐵)) |
ftc1.f | ⊢ (𝜑 → 𝐹 ∈ ((𝐾 CnP 𝐿)‘𝐶)) |
ftc1.j | ⊢ 𝐽 = (𝐿 ↾t ℝ) |
ftc1.k | ⊢ 𝐾 = (𝐿 ↾t 𝐷) |
ftc1.l | ⊢ 𝐿 = (TopOpen‘ℂfld) |
Ref | Expression |
---|---|
ftc1 | ⊢ (𝜑 → 𝐶(ℝ D 𝐺)(𝐹‘𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ftc1.j | . . . . . . 7 ⊢ 𝐽 = (𝐿 ↾t ℝ) | |
2 | ftc1.l | . . . . . . . 8 ⊢ 𝐿 = (TopOpen‘ℂfld) | |
3 | 2 | tgioo2 22819 | . . . . . . 7 ⊢ (topGen‘ran (,)) = (𝐿 ↾t ℝ) |
4 | 1, 3 | eqtr4i 2796 | . . . . . 6 ⊢ 𝐽 = (topGen‘ran (,)) |
5 | retop 22778 | . . . . . 6 ⊢ (topGen‘ran (,)) ∈ Top | |
6 | 4, 5 | eqeltri 2846 | . . . . 5 ⊢ 𝐽 ∈ Top |
7 | 6 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝐽 ∈ Top) |
8 | ftc1.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
9 | ftc1.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
10 | iccssre 12453 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ) | |
11 | 8, 9, 10 | syl2anc 573 | . . . 4 ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ℝ) |
12 | iooretop 22782 | . . . . . 6 ⊢ (𝐴(,)𝐵) ∈ (topGen‘ran (,)) | |
13 | 12, 4 | eleqtrri 2849 | . . . . 5 ⊢ (𝐴(,)𝐵) ∈ 𝐽 |
14 | 13 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝐴(,)𝐵) ∈ 𝐽) |
15 | ioossicc 12457 | . . . . 5 ⊢ (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵) | |
16 | 15 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)) |
17 | uniretop 22779 | . . . . . 6 ⊢ ℝ = ∪ (topGen‘ran (,)) | |
18 | 4 | unieqi 4583 | . . . . . 6 ⊢ ∪ 𝐽 = ∪ (topGen‘ran (,)) |
19 | 17, 18 | eqtr4i 2796 | . . . . 5 ⊢ ℝ = ∪ 𝐽 |
20 | 19 | ssntr 21076 | . . . 4 ⊢ (((𝐽 ∈ Top ∧ (𝐴[,]𝐵) ⊆ ℝ) ∧ ((𝐴(,)𝐵) ∈ 𝐽 ∧ (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵))) → (𝐴(,)𝐵) ⊆ ((int‘𝐽)‘(𝐴[,]𝐵))) |
21 | 7, 11, 14, 16, 20 | syl22anc 1477 | . . 3 ⊢ (𝜑 → (𝐴(,)𝐵) ⊆ ((int‘𝐽)‘(𝐴[,]𝐵))) |
22 | ftc1.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ (𝐴(,)𝐵)) | |
23 | 21, 22 | sseldd 3753 | . 2 ⊢ (𝜑 → 𝐶 ∈ ((int‘𝐽)‘(𝐴[,]𝐵))) |
24 | ftc1.g | . . 3 ⊢ 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹‘𝑡) d𝑡) | |
25 | ftc1.le | . . 3 ⊢ (𝜑 → 𝐴 ≤ 𝐵) | |
26 | ftc1.s | . . 3 ⊢ (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷) | |
27 | ftc1.d | . . 3 ⊢ (𝜑 → 𝐷 ⊆ ℝ) | |
28 | ftc1.i | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝐿1) | |
29 | ftc1.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ ((𝐾 CnP 𝐿)‘𝐶)) | |
30 | ftc1.k | . . 3 ⊢ 𝐾 = (𝐿 ↾t 𝐷) | |
31 | eqid 2771 | . . 3 ⊢ (𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ↦ (((𝐺‘𝑧) − (𝐺‘𝐶)) / (𝑧 − 𝐶))) = (𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ↦ (((𝐺‘𝑧) − (𝐺‘𝐶)) / (𝑧 − 𝐶))) | |
32 | 24, 8, 9, 25, 26, 27, 28, 22, 29, 1, 30, 2, 31 | ftc1lem6 24017 | . 2 ⊢ (𝜑 → (𝐹‘𝐶) ∈ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ↦ (((𝐺‘𝑧) − (𝐺‘𝐶)) / (𝑧 − 𝐶))) limℂ 𝐶)) |
33 | ax-resscn 10193 | . . . 4 ⊢ ℝ ⊆ ℂ | |
34 | 33 | a1i 11 | . . 3 ⊢ (𝜑 → ℝ ⊆ ℂ) |
35 | 24, 8, 9, 25, 26, 27, 28, 22, 29, 1, 30, 2 | ftc1lem3 24014 | . . . 4 ⊢ (𝜑 → 𝐹:𝐷⟶ℂ) |
36 | 24, 8, 9, 25, 26, 27, 28, 35 | ftc1lem2 24012 | . . 3 ⊢ (𝜑 → 𝐺:(𝐴[,]𝐵)⟶ℂ) |
37 | 1, 2, 31, 34, 36, 11 | eldv 23875 | . 2 ⊢ (𝜑 → (𝐶(ℝ D 𝐺)(𝐹‘𝐶) ↔ (𝐶 ∈ ((int‘𝐽)‘(𝐴[,]𝐵)) ∧ (𝐹‘𝐶) ∈ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ↦ (((𝐺‘𝑧) − (𝐺‘𝐶)) / (𝑧 − 𝐶))) limℂ 𝐶)))) |
38 | 23, 32, 37 | mpbir2and 692 | 1 ⊢ (𝜑 → 𝐶(ℝ D 𝐺)(𝐹‘𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1631 ∈ wcel 2145 ∖ cdif 3720 ⊆ wss 3723 {csn 4316 ∪ cuni 4574 class class class wbr 4786 ↦ cmpt 4863 ran crn 5250 ‘cfv 6029 (class class class)co 6791 ℂcc 10134 ℝcr 10135 ≤ cle 10275 − cmin 10466 / cdiv 10884 (,)cioo 12373 [,]cicc 12376 ↾t crest 16282 TopOpenctopn 16283 topGenctg 16299 ℂfldccnfld 19954 Topctop 20911 intcnt 21035 CnP ccnp 21243 𝐿1cibl 23598 ∫citg 23599 limℂ climc 23839 D cdv 23840 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7094 ax-inf2 8700 ax-cc 9457 ax-cnex 10192 ax-resscn 10193 ax-1cn 10194 ax-icn 10195 ax-addcl 10196 ax-addrcl 10197 ax-mulcl 10198 ax-mulrcl 10199 ax-mulcom 10200 ax-addass 10201 ax-mulass 10202 ax-distr 10203 ax-i2m1 10204 ax-1ne0 10205 ax-1rid 10206 ax-rnegex 10207 ax-rrecex 10208 ax-cnre 10209 ax-pre-lttri 10210 ax-pre-lttrn 10211 ax-pre-ltadd 10212 ax-pre-mulgt0 10213 ax-pre-sup 10214 ax-addf 10215 ax-mulf 10216 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-fal 1637 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-int 4612 df-iun 4656 df-iin 4657 df-disj 4755 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-se 5209 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5821 df-ord 5867 df-on 5868 df-lim 5869 df-suc 5870 df-iota 5992 df-fun 6031 df-fn 6032 df-f 6033 df-f1 6034 df-fo 6035 df-f1o 6036 df-fv 6037 df-isom 6038 df-riota 6752 df-ov 6794 df-oprab 6795 df-mpt2 6796 df-of 7042 df-ofr 7043 df-om 7211 df-1st 7313 df-2nd 7314 df-supp 7445 df-wrecs 7557 df-recs 7619 df-rdg 7657 df-1o 7711 df-2o 7712 df-oadd 7715 df-omul 7716 df-er 7894 df-map 8009 df-pm 8010 df-ixp 8061 df-en 8108 df-dom 8109 df-sdom 8110 df-fin 8111 df-fsupp 8430 df-fi 8471 df-sup 8502 df-inf 8503 df-oi 8569 df-card 8963 df-acn 8966 df-cda 9190 df-pnf 10276 df-mnf 10277 df-xr 10278 df-ltxr 10279 df-le 10280 df-sub 10468 df-neg 10469 df-div 10885 df-nn 11221 df-2 11279 df-3 11280 df-4 11281 df-5 11282 df-6 11283 df-7 11284 df-8 11285 df-9 11286 df-n0 11493 df-z 11578 df-dec 11694 df-uz 11887 df-q 11990 df-rp 12029 df-xneg 12144 df-xadd 12145 df-xmul 12146 df-ioo 12377 df-ioc 12378 df-ico 12379 df-icc 12380 df-fz 12527 df-fzo 12667 df-fl 12794 df-mod 12870 df-seq 13002 df-exp 13061 df-hash 13315 df-cj 14040 df-re 14041 df-im 14042 df-sqrt 14176 df-abs 14177 df-clim 14420 df-rlim 14421 df-sum 14618 df-struct 16059 df-ndx 16060 df-slot 16061 df-base 16063 df-sets 16064 df-ress 16065 df-plusg 16155 df-mulr 16156 df-starv 16157 df-sca 16158 df-vsca 16159 df-ip 16160 df-tset 16161 df-ple 16162 df-ds 16165 df-unif 16166 df-hom 16167 df-cco 16168 df-rest 16284 df-topn 16285 df-0g 16303 df-gsum 16304 df-topgen 16305 df-pt 16306 df-prds 16309 df-xrs 16363 df-qtop 16368 df-imas 16369 df-xps 16371 df-mre 16447 df-mrc 16448 df-acs 16450 df-mgm 17443 df-sgrp 17485 df-mnd 17496 df-submnd 17537 df-mulg 17742 df-cntz 17950 df-cmn 18395 df-psmet 19946 df-xmet 19947 df-met 19948 df-bl 19949 df-mopn 19950 df-cnfld 19955 df-top 20912 df-topon 20929 df-topsp 20951 df-bases 20964 df-ntr 21038 df-cn 21245 df-cnp 21246 df-cmp 21404 df-tx 21579 df-hmeo 21772 df-xms 22338 df-ms 22339 df-tms 22340 df-cncf 22894 df-ovol 23445 df-vol 23446 df-mbf 23600 df-itg1 23601 df-itg2 23602 df-ibl 23603 df-itg 23604 df-0p 23650 df-limc 23843 df-dv 23844 |
This theorem is referenced by: ftc1cn 24019 |
Copyright terms: Public domain | W3C validator |