MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ftc1 Structured version   Visualization version   GIF version

Theorem ftc1 26006
Description: The Fundamental Theorem of Calculus, part one. The function formed by varying the right endpoint of an integral is differentiable at 𝐶 with derivative 𝐹(𝐶) if the original function is continuous at 𝐶. This is part of Metamath 100 proof #15. (Contributed by Mario Carneiro, 1-Sep-2014.)
Hypotheses
Ref Expression
ftc1.g 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡)
ftc1.a (𝜑𝐴 ∈ ℝ)
ftc1.b (𝜑𝐵 ∈ ℝ)
ftc1.le (𝜑𝐴𝐵)
ftc1.s (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷)
ftc1.d (𝜑𝐷 ⊆ ℝ)
ftc1.i (𝜑𝐹 ∈ 𝐿1)
ftc1.c (𝜑𝐶 ∈ (𝐴(,)𝐵))
ftc1.f (𝜑𝐹 ∈ ((𝐾 CnP 𝐿)‘𝐶))
ftc1.j 𝐽 = (𝐿t ℝ)
ftc1.k 𝐾 = (𝐿t 𝐷)
ftc1.l 𝐿 = (TopOpen‘ℂfld)
Assertion
Ref Expression
ftc1 (𝜑𝐶(ℝ D 𝐺)(𝐹𝐶))
Distinct variable groups:   𝑥,𝑡,𝐶   𝑡,𝐷,𝑥   𝑡,𝐴,𝑥   𝑡,𝐵,𝑥   𝜑,𝑡,𝑥   𝑡,𝐹,𝑥   𝑥,𝐿
Allowed substitution hints:   𝐺(𝑥,𝑡)   𝐽(𝑥,𝑡)   𝐾(𝑥,𝑡)   𝐿(𝑡)

Proof of Theorem ftc1
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ftc1.j . . . . . . 7 𝐽 = (𝐿t ℝ)
2 ftc1.l . . . . . . . 8 𝐿 = (TopOpen‘ℂfld)
32tgioo2 24747 . . . . . . 7 (topGen‘ran (,)) = (𝐿t ℝ)
41, 3eqtr4i 2762 . . . . . 6 𝐽 = (topGen‘ran (,))
5 retop 24705 . . . . . 6 (topGen‘ran (,)) ∈ Top
64, 5eqeltri 2831 . . . . 5 𝐽 ∈ Top
76a1i 11 . . . 4 (𝜑𝐽 ∈ Top)
8 ftc1.a . . . . 5 (𝜑𝐴 ∈ ℝ)
9 ftc1.b . . . . 5 (𝜑𝐵 ∈ ℝ)
10 iccssre 13451 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
118, 9, 10syl2anc 584 . . . 4 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
12 iooretop 24709 . . . . . 6 (𝐴(,)𝐵) ∈ (topGen‘ran (,))
1312, 4eleqtrri 2834 . . . . 5 (𝐴(,)𝐵) ∈ 𝐽
1413a1i 11 . . . 4 (𝜑 → (𝐴(,)𝐵) ∈ 𝐽)
15 ioossicc 13455 . . . . 5 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
1615a1i 11 . . . 4 (𝜑 → (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵))
17 uniretop 24706 . . . . . 6 ℝ = (topGen‘ran (,))
184unieqi 4900 . . . . . 6 𝐽 = (topGen‘ran (,))
1917, 18eqtr4i 2762 . . . . 5 ℝ = 𝐽
2019ssntr 23001 . . . 4 (((𝐽 ∈ Top ∧ (𝐴[,]𝐵) ⊆ ℝ) ∧ ((𝐴(,)𝐵) ∈ 𝐽 ∧ (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵))) → (𝐴(,)𝐵) ⊆ ((int‘𝐽)‘(𝐴[,]𝐵)))
217, 11, 14, 16, 20syl22anc 838 . . 3 (𝜑 → (𝐴(,)𝐵) ⊆ ((int‘𝐽)‘(𝐴[,]𝐵)))
22 ftc1.c . . 3 (𝜑𝐶 ∈ (𝐴(,)𝐵))
2321, 22sseldd 3964 . 2 (𝜑𝐶 ∈ ((int‘𝐽)‘(𝐴[,]𝐵)))
24 ftc1.g . . 3 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡)
25 ftc1.le . . 3 (𝜑𝐴𝐵)
26 ftc1.s . . 3 (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷)
27 ftc1.d . . 3 (𝜑𝐷 ⊆ ℝ)
28 ftc1.i . . 3 (𝜑𝐹 ∈ 𝐿1)
29 ftc1.f . . 3 (𝜑𝐹 ∈ ((𝐾 CnP 𝐿)‘𝐶))
30 ftc1.k . . 3 𝐾 = (𝐿t 𝐷)
31 eqid 2736 . . 3 (𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) = (𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)))
3224, 8, 9, 25, 26, 27, 28, 22, 29, 1, 30, 2, 31ftc1lem6 26005 . 2 (𝜑 → (𝐹𝐶) ∈ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) lim 𝐶))
33 ax-resscn 11191 . . . 4 ℝ ⊆ ℂ
3433a1i 11 . . 3 (𝜑 → ℝ ⊆ ℂ)
3524, 8, 9, 25, 26, 27, 28, 22, 29, 1, 30, 2ftc1lem3 26002 . . . 4 (𝜑𝐹:𝐷⟶ℂ)
3624, 8, 9, 25, 26, 27, 28, 35ftc1lem2 26000 . . 3 (𝜑𝐺:(𝐴[,]𝐵)⟶ℂ)
371, 2, 31, 34, 36, 11eldv 25856 . 2 (𝜑 → (𝐶(ℝ D 𝐺)(𝐹𝐶) ↔ (𝐶 ∈ ((int‘𝐽)‘(𝐴[,]𝐵)) ∧ (𝐹𝐶) ∈ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) lim 𝐶))))
3823, 32, 37mpbir2and 713 1 (𝜑𝐶(ℝ D 𝐺)(𝐹𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cdif 3928  wss 3931  {csn 4606   cuni 4888   class class class wbr 5124  cmpt 5206  ran crn 5660  cfv 6536  (class class class)co 7410  cc 11132  cr 11133  cle 11275  cmin 11471   / cdiv 11899  (,)cioo 13367  [,]cicc 13370  t crest 17439  TopOpenctopn 17440  topGenctg 17456  fldccnfld 21320  Topctop 22836  intcnt 22960   CnP ccnp 23168  𝐿1cibl 25575  citg 25576   lim climc 25820   D cdv 25821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-cc 10454  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212  ax-addf 11213
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-symdif 4233  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-disj 5092  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-ofr 7677  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-oadd 8489  df-omul 8490  df-er 8724  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-fi 9428  df-sup 9459  df-inf 9460  df-oi 9529  df-dju 9920  df-card 9958  df-acn 9961  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-q 12970  df-rp 13014  df-xneg 13133  df-xadd 13134  df-xmul 13135  df-ioo 13371  df-ioc 13372  df-ico 13373  df-icc 13374  df-fz 13530  df-fzo 13677  df-fl 13814  df-mod 13892  df-seq 14025  df-exp 14085  df-hash 14354  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-clim 15509  df-rlim 15510  df-sum 15708  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-starv 17291  df-sca 17292  df-vsca 17293  df-ip 17294  df-tset 17295  df-ple 17296  df-ds 17298  df-unif 17299  df-hom 17300  df-cco 17301  df-rest 17441  df-topn 17442  df-0g 17460  df-gsum 17461  df-topgen 17462  df-pt 17463  df-prds 17466  df-xrs 17521  df-qtop 17526  df-imas 17527  df-xps 17529  df-mre 17603  df-mrc 17604  df-acs 17606  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-submnd 18767  df-mulg 19056  df-cntz 19305  df-cmn 19768  df-psmet 21312  df-xmet 21313  df-met 21314  df-bl 21315  df-mopn 21316  df-cnfld 21321  df-top 22837  df-topon 22854  df-topsp 22876  df-bases 22889  df-ntr 22963  df-cn 23170  df-cnp 23171  df-cmp 23330  df-tx 23505  df-hmeo 23698  df-xms 24264  df-ms 24265  df-tms 24266  df-cncf 24827  df-ovol 25422  df-vol 25423  df-mbf 25577  df-itg1 25578  df-itg2 25579  df-ibl 25580  df-itg 25581  df-0p 25628  df-limc 25824  df-dv 25825
This theorem is referenced by:  ftc1cn  26007
  Copyright terms: Public domain W3C validator