| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ftc1 | Structured version Visualization version GIF version | ||
| Description: The Fundamental Theorem of Calculus, part one. The function formed by varying the right endpoint of an integral is differentiable at 𝐶 with derivative 𝐹(𝐶) if the original function is continuous at 𝐶. This is part of Metamath 100 proof #15. (Contributed by Mario Carneiro, 1-Sep-2014.) |
| Ref | Expression |
|---|---|
| ftc1.g | ⊢ 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹‘𝑡) d𝑡) |
| ftc1.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| ftc1.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| ftc1.le | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| ftc1.s | ⊢ (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷) |
| ftc1.d | ⊢ (𝜑 → 𝐷 ⊆ ℝ) |
| ftc1.i | ⊢ (𝜑 → 𝐹 ∈ 𝐿1) |
| ftc1.c | ⊢ (𝜑 → 𝐶 ∈ (𝐴(,)𝐵)) |
| ftc1.f | ⊢ (𝜑 → 𝐹 ∈ ((𝐾 CnP 𝐿)‘𝐶)) |
| ftc1.j | ⊢ 𝐽 = (𝐿 ↾t ℝ) |
| ftc1.k | ⊢ 𝐾 = (𝐿 ↾t 𝐷) |
| ftc1.l | ⊢ 𝐿 = (TopOpen‘ℂfld) |
| Ref | Expression |
|---|---|
| ftc1 | ⊢ (𝜑 → 𝐶(ℝ D 𝐺)(𝐹‘𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ftc1.j | . . . . . . 7 ⊢ 𝐽 = (𝐿 ↾t ℝ) | |
| 2 | ftc1.l | . . . . . . . 8 ⊢ 𝐿 = (TopOpen‘ℂfld) | |
| 3 | 2 | tgioo2 24747 | . . . . . . 7 ⊢ (topGen‘ran (,)) = (𝐿 ↾t ℝ) |
| 4 | 1, 3 | eqtr4i 2762 | . . . . . 6 ⊢ 𝐽 = (topGen‘ran (,)) |
| 5 | retop 24705 | . . . . . 6 ⊢ (topGen‘ran (,)) ∈ Top | |
| 6 | 4, 5 | eqeltri 2831 | . . . . 5 ⊢ 𝐽 ∈ Top |
| 7 | 6 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝐽 ∈ Top) |
| 8 | ftc1.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 9 | ftc1.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 10 | iccssre 13451 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ) | |
| 11 | 8, 9, 10 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ℝ) |
| 12 | iooretop 24709 | . . . . . 6 ⊢ (𝐴(,)𝐵) ∈ (topGen‘ran (,)) | |
| 13 | 12, 4 | eleqtrri 2834 | . . . . 5 ⊢ (𝐴(,)𝐵) ∈ 𝐽 |
| 14 | 13 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝐴(,)𝐵) ∈ 𝐽) |
| 15 | ioossicc 13455 | . . . . 5 ⊢ (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵) | |
| 16 | 15 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)) |
| 17 | uniretop 24706 | . . . . . 6 ⊢ ℝ = ∪ (topGen‘ran (,)) | |
| 18 | 4 | unieqi 4900 | . . . . . 6 ⊢ ∪ 𝐽 = ∪ (topGen‘ran (,)) |
| 19 | 17, 18 | eqtr4i 2762 | . . . . 5 ⊢ ℝ = ∪ 𝐽 |
| 20 | 19 | ssntr 23001 | . . . 4 ⊢ (((𝐽 ∈ Top ∧ (𝐴[,]𝐵) ⊆ ℝ) ∧ ((𝐴(,)𝐵) ∈ 𝐽 ∧ (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵))) → (𝐴(,)𝐵) ⊆ ((int‘𝐽)‘(𝐴[,]𝐵))) |
| 21 | 7, 11, 14, 16, 20 | syl22anc 838 | . . 3 ⊢ (𝜑 → (𝐴(,)𝐵) ⊆ ((int‘𝐽)‘(𝐴[,]𝐵))) |
| 22 | ftc1.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ (𝐴(,)𝐵)) | |
| 23 | 21, 22 | sseldd 3964 | . 2 ⊢ (𝜑 → 𝐶 ∈ ((int‘𝐽)‘(𝐴[,]𝐵))) |
| 24 | ftc1.g | . . 3 ⊢ 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹‘𝑡) d𝑡) | |
| 25 | ftc1.le | . . 3 ⊢ (𝜑 → 𝐴 ≤ 𝐵) | |
| 26 | ftc1.s | . . 3 ⊢ (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷) | |
| 27 | ftc1.d | . . 3 ⊢ (𝜑 → 𝐷 ⊆ ℝ) | |
| 28 | ftc1.i | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝐿1) | |
| 29 | ftc1.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ ((𝐾 CnP 𝐿)‘𝐶)) | |
| 30 | ftc1.k | . . 3 ⊢ 𝐾 = (𝐿 ↾t 𝐷) | |
| 31 | eqid 2736 | . . 3 ⊢ (𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ↦ (((𝐺‘𝑧) − (𝐺‘𝐶)) / (𝑧 − 𝐶))) = (𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ↦ (((𝐺‘𝑧) − (𝐺‘𝐶)) / (𝑧 − 𝐶))) | |
| 32 | 24, 8, 9, 25, 26, 27, 28, 22, 29, 1, 30, 2, 31 | ftc1lem6 26005 | . 2 ⊢ (𝜑 → (𝐹‘𝐶) ∈ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ↦ (((𝐺‘𝑧) − (𝐺‘𝐶)) / (𝑧 − 𝐶))) limℂ 𝐶)) |
| 33 | ax-resscn 11191 | . . . 4 ⊢ ℝ ⊆ ℂ | |
| 34 | 33 | a1i 11 | . . 3 ⊢ (𝜑 → ℝ ⊆ ℂ) |
| 35 | 24, 8, 9, 25, 26, 27, 28, 22, 29, 1, 30, 2 | ftc1lem3 26002 | . . . 4 ⊢ (𝜑 → 𝐹:𝐷⟶ℂ) |
| 36 | 24, 8, 9, 25, 26, 27, 28, 35 | ftc1lem2 26000 | . . 3 ⊢ (𝜑 → 𝐺:(𝐴[,]𝐵)⟶ℂ) |
| 37 | 1, 2, 31, 34, 36, 11 | eldv 25856 | . 2 ⊢ (𝜑 → (𝐶(ℝ D 𝐺)(𝐹‘𝐶) ↔ (𝐶 ∈ ((int‘𝐽)‘(𝐴[,]𝐵)) ∧ (𝐹‘𝐶) ∈ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ↦ (((𝐺‘𝑧) − (𝐺‘𝐶)) / (𝑧 − 𝐶))) limℂ 𝐶)))) |
| 38 | 23, 32, 37 | mpbir2and 713 | 1 ⊢ (𝜑 → 𝐶(ℝ D 𝐺)(𝐹‘𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∖ cdif 3928 ⊆ wss 3931 {csn 4606 ∪ cuni 4888 class class class wbr 5124 ↦ cmpt 5206 ran crn 5660 ‘cfv 6536 (class class class)co 7410 ℂcc 11132 ℝcr 11133 ≤ cle 11275 − cmin 11471 / cdiv 11899 (,)cioo 13367 [,]cicc 13370 ↾t crest 17439 TopOpenctopn 17440 topGenctg 17456 ℂfldccnfld 21320 Topctop 22836 intcnt 22960 CnP ccnp 23168 𝐿1cibl 25575 ∫citg 25576 limℂ climc 25820 D cdv 25821 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-inf2 9660 ax-cc 10454 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 ax-pre-sup 11212 ax-addf 11213 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-symdif 4233 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-iin 4975 df-disj 5092 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-se 5612 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-of 7676 df-ofr 7677 df-om 7867 df-1st 7993 df-2nd 7994 df-supp 8165 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-2o 8486 df-oadd 8489 df-omul 8490 df-er 8724 df-map 8847 df-pm 8848 df-ixp 8917 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-fsupp 9379 df-fi 9428 df-sup 9459 df-inf 9460 df-oi 9529 df-dju 9920 df-card 9958 df-acn 9961 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12507 df-z 12594 df-dec 12714 df-uz 12858 df-q 12970 df-rp 13014 df-xneg 13133 df-xadd 13134 df-xmul 13135 df-ioo 13371 df-ioc 13372 df-ico 13373 df-icc 13374 df-fz 13530 df-fzo 13677 df-fl 13814 df-mod 13892 df-seq 14025 df-exp 14085 df-hash 14354 df-cj 15123 df-re 15124 df-im 15125 df-sqrt 15259 df-abs 15260 df-clim 15509 df-rlim 15510 df-sum 15708 df-struct 17171 df-sets 17188 df-slot 17206 df-ndx 17218 df-base 17234 df-ress 17257 df-plusg 17289 df-mulr 17290 df-starv 17291 df-sca 17292 df-vsca 17293 df-ip 17294 df-tset 17295 df-ple 17296 df-ds 17298 df-unif 17299 df-hom 17300 df-cco 17301 df-rest 17441 df-topn 17442 df-0g 17460 df-gsum 17461 df-topgen 17462 df-pt 17463 df-prds 17466 df-xrs 17521 df-qtop 17526 df-imas 17527 df-xps 17529 df-mre 17603 df-mrc 17604 df-acs 17606 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-submnd 18767 df-mulg 19056 df-cntz 19305 df-cmn 19768 df-psmet 21312 df-xmet 21313 df-met 21314 df-bl 21315 df-mopn 21316 df-cnfld 21321 df-top 22837 df-topon 22854 df-topsp 22876 df-bases 22889 df-ntr 22963 df-cn 23170 df-cnp 23171 df-cmp 23330 df-tx 23505 df-hmeo 23698 df-xms 24264 df-ms 24265 df-tms 24266 df-cncf 24827 df-ovol 25422 df-vol 25423 df-mbf 25577 df-itg1 25578 df-itg2 25579 df-ibl 25580 df-itg 25581 df-0p 25628 df-limc 25824 df-dv 25825 |
| This theorem is referenced by: ftc1cn 26007 |
| Copyright terms: Public domain | W3C validator |