![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ftc1 | Structured version Visualization version GIF version |
Description: The Fundamental Theorem of Calculus, part one. The function formed by varying the right endpoint of an integral is differentiable at πΆ with derivative πΉ(πΆ) if the original function is continuous at πΆ. This is part of Metamath 100 proof #15. (Contributed by Mario Carneiro, 1-Sep-2014.) |
Ref | Expression |
---|---|
ftc1.g | β’ πΊ = (π₯ β (π΄[,]π΅) β¦ β«(π΄(,)π₯)(πΉβπ‘) dπ‘) |
ftc1.a | β’ (π β π΄ β β) |
ftc1.b | β’ (π β π΅ β β) |
ftc1.le | β’ (π β π΄ β€ π΅) |
ftc1.s | β’ (π β (π΄(,)π΅) β π·) |
ftc1.d | β’ (π β π· β β) |
ftc1.i | β’ (π β πΉ β πΏ1) |
ftc1.c | β’ (π β πΆ β (π΄(,)π΅)) |
ftc1.f | β’ (π β πΉ β ((πΎ CnP πΏ)βπΆ)) |
ftc1.j | β’ π½ = (πΏ βΎt β) |
ftc1.k | β’ πΎ = (πΏ βΎt π·) |
ftc1.l | β’ πΏ = (TopOpenββfld) |
Ref | Expression |
---|---|
ftc1 | β’ (π β πΆ(β D πΊ)(πΉβπΆ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ftc1.j | . . . . . . 7 β’ π½ = (πΏ βΎt β) | |
2 | ftc1.l | . . . . . . . 8 β’ πΏ = (TopOpenββfld) | |
3 | 2 | tgioo2 24552 | . . . . . . 7 β’ (topGenβran (,)) = (πΏ βΎt β) |
4 | 1, 3 | eqtr4i 2762 | . . . . . 6 β’ π½ = (topGenβran (,)) |
5 | retop 24511 | . . . . . 6 β’ (topGenβran (,)) β Top | |
6 | 4, 5 | eqeltri 2828 | . . . . 5 β’ π½ β Top |
7 | 6 | a1i 11 | . . . 4 β’ (π β π½ β Top) |
8 | ftc1.a | . . . . 5 β’ (π β π΄ β β) | |
9 | ftc1.b | . . . . 5 β’ (π β π΅ β β) | |
10 | iccssre 13413 | . . . . 5 β’ ((π΄ β β β§ π΅ β β) β (π΄[,]π΅) β β) | |
11 | 8, 9, 10 | syl2anc 583 | . . . 4 β’ (π β (π΄[,]π΅) β β) |
12 | iooretop 24515 | . . . . . 6 β’ (π΄(,)π΅) β (topGenβran (,)) | |
13 | 12, 4 | eleqtrri 2831 | . . . . 5 β’ (π΄(,)π΅) β π½ |
14 | 13 | a1i 11 | . . . 4 β’ (π β (π΄(,)π΅) β π½) |
15 | ioossicc 13417 | . . . . 5 β’ (π΄(,)π΅) β (π΄[,]π΅) | |
16 | 15 | a1i 11 | . . . 4 β’ (π β (π΄(,)π΅) β (π΄[,]π΅)) |
17 | uniretop 24512 | . . . . . 6 β’ β = βͺ (topGenβran (,)) | |
18 | 4 | unieqi 4921 | . . . . . 6 β’ βͺ π½ = βͺ (topGenβran (,)) |
19 | 17, 18 | eqtr4i 2762 | . . . . 5 β’ β = βͺ π½ |
20 | 19 | ssntr 22795 | . . . 4 β’ (((π½ β Top β§ (π΄[,]π΅) β β) β§ ((π΄(,)π΅) β π½ β§ (π΄(,)π΅) β (π΄[,]π΅))) β (π΄(,)π΅) β ((intβπ½)β(π΄[,]π΅))) |
21 | 7, 11, 14, 16, 20 | syl22anc 836 | . . 3 β’ (π β (π΄(,)π΅) β ((intβπ½)β(π΄[,]π΅))) |
22 | ftc1.c | . . 3 β’ (π β πΆ β (π΄(,)π΅)) | |
23 | 21, 22 | sseldd 3983 | . 2 β’ (π β πΆ β ((intβπ½)β(π΄[,]π΅))) |
24 | ftc1.g | . . 3 β’ πΊ = (π₯ β (π΄[,]π΅) β¦ β«(π΄(,)π₯)(πΉβπ‘) dπ‘) | |
25 | ftc1.le | . . 3 β’ (π β π΄ β€ π΅) | |
26 | ftc1.s | . . 3 β’ (π β (π΄(,)π΅) β π·) | |
27 | ftc1.d | . . 3 β’ (π β π· β β) | |
28 | ftc1.i | . . 3 β’ (π β πΉ β πΏ1) | |
29 | ftc1.f | . . 3 β’ (π β πΉ β ((πΎ CnP πΏ)βπΆ)) | |
30 | ftc1.k | . . 3 β’ πΎ = (πΏ βΎt π·) | |
31 | eqid 2731 | . . 3 β’ (π§ β ((π΄[,]π΅) β {πΆ}) β¦ (((πΊβπ§) β (πΊβπΆ)) / (π§ β πΆ))) = (π§ β ((π΄[,]π΅) β {πΆ}) β¦ (((πΊβπ§) β (πΊβπΆ)) / (π§ β πΆ))) | |
32 | 24, 8, 9, 25, 26, 27, 28, 22, 29, 1, 30, 2, 31 | ftc1lem6 25807 | . 2 β’ (π β (πΉβπΆ) β ((π§ β ((π΄[,]π΅) β {πΆ}) β¦ (((πΊβπ§) β (πΊβπΆ)) / (π§ β πΆ))) limβ πΆ)) |
33 | ax-resscn 11173 | . . . 4 β’ β β β | |
34 | 33 | a1i 11 | . . 3 β’ (π β β β β) |
35 | 24, 8, 9, 25, 26, 27, 28, 22, 29, 1, 30, 2 | ftc1lem3 25804 | . . . 4 β’ (π β πΉ:π·βΆβ) |
36 | 24, 8, 9, 25, 26, 27, 28, 35 | ftc1lem2 25802 | . . 3 β’ (π β πΊ:(π΄[,]π΅)βΆβ) |
37 | 1, 2, 31, 34, 36, 11 | eldv 25660 | . 2 β’ (π β (πΆ(β D πΊ)(πΉβπΆ) β (πΆ β ((intβπ½)β(π΄[,]π΅)) β§ (πΉβπΆ) β ((π§ β ((π΄[,]π΅) β {πΆ}) β¦ (((πΊβπ§) β (πΊβπΆ)) / (π§ β πΆ))) limβ πΆ)))) |
38 | 23, 32, 37 | mpbir2and 710 | 1 β’ (π β πΆ(β D πΊ)(πΉβπΆ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1540 β wcel 2105 β cdif 3945 β wss 3948 {csn 4628 βͺ cuni 4908 class class class wbr 5148 β¦ cmpt 5231 ran crn 5677 βcfv 6543 (class class class)co 7412 βcc 11114 βcr 11115 β€ cle 11256 β cmin 11451 / cdiv 11878 (,)cioo 13331 [,]cicc 13334 βΎt crest 17373 TopOpenctopn 17374 topGenctg 17390 βfldccnfld 21148 Topctop 22628 intcnt 22754 CnP ccnp 22962 πΏ1cibl 25379 β«citg 25380 limβ climc 25624 D cdv 25625 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-inf2 9642 ax-cc 10436 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 ax-pre-sup 11194 ax-addf 11195 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-symdif 4242 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-disj 5114 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-of 7674 df-ofr 7675 df-om 7860 df-1st 7979 df-2nd 7980 df-supp 8152 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-1o 8472 df-2o 8473 df-oadd 8476 df-omul 8477 df-er 8709 df-map 8828 df-pm 8829 df-ixp 8898 df-en 8946 df-dom 8947 df-sdom 8948 df-fin 8949 df-fsupp 9368 df-fi 9412 df-sup 9443 df-inf 9444 df-oi 9511 df-dju 9902 df-card 9940 df-acn 9943 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-div 11879 df-nn 12220 df-2 12282 df-3 12283 df-4 12284 df-5 12285 df-6 12286 df-7 12287 df-8 12288 df-9 12289 df-n0 12480 df-z 12566 df-dec 12685 df-uz 12830 df-q 12940 df-rp 12982 df-xneg 13099 df-xadd 13100 df-xmul 13101 df-ioo 13335 df-ioc 13336 df-ico 13337 df-icc 13338 df-fz 13492 df-fzo 13635 df-fl 13764 df-mod 13842 df-seq 13974 df-exp 14035 df-hash 14298 df-cj 15053 df-re 15054 df-im 15055 df-sqrt 15189 df-abs 15190 df-clim 15439 df-rlim 15440 df-sum 15640 df-struct 17087 df-sets 17104 df-slot 17122 df-ndx 17134 df-base 17152 df-ress 17181 df-plusg 17217 df-mulr 17218 df-starv 17219 df-sca 17220 df-vsca 17221 df-ip 17222 df-tset 17223 df-ple 17224 df-ds 17226 df-unif 17227 df-hom 17228 df-cco 17229 df-rest 17375 df-topn 17376 df-0g 17394 df-gsum 17395 df-topgen 17396 df-pt 17397 df-prds 17400 df-xrs 17455 df-qtop 17460 df-imas 17461 df-xps 17463 df-mre 17537 df-mrc 17538 df-acs 17540 df-mgm 18568 df-sgrp 18647 df-mnd 18663 df-submnd 18709 df-mulg 18991 df-cntz 19226 df-cmn 19695 df-psmet 21140 df-xmet 21141 df-met 21142 df-bl 21143 df-mopn 21144 df-cnfld 21149 df-top 22629 df-topon 22646 df-topsp 22668 df-bases 22682 df-ntr 22757 df-cn 22964 df-cnp 22965 df-cmp 23124 df-tx 23299 df-hmeo 23492 df-xms 24059 df-ms 24060 df-tms 24061 df-cncf 24631 df-ovol 25226 df-vol 25227 df-mbf 25381 df-itg1 25382 df-itg2 25383 df-ibl 25384 df-itg 25385 df-0p 25432 df-limc 25628 df-dv 25629 |
This theorem is referenced by: ftc1cn 25809 |
Copyright terms: Public domain | W3C validator |