MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ftc1 Structured version   Visualization version   GIF version

Theorem ftc1 25111
Description: The Fundamental Theorem of Calculus, part one. The function formed by varying the right endpoint of an integral is differentiable at 𝐶 with derivative 𝐹(𝐶) if the original function is continuous at 𝐶. This is part of Metamath 100 proof #15. (Contributed by Mario Carneiro, 1-Sep-2014.)
Hypotheses
Ref Expression
ftc1.g 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡)
ftc1.a (𝜑𝐴 ∈ ℝ)
ftc1.b (𝜑𝐵 ∈ ℝ)
ftc1.le (𝜑𝐴𝐵)
ftc1.s (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷)
ftc1.d (𝜑𝐷 ⊆ ℝ)
ftc1.i (𝜑𝐹 ∈ 𝐿1)
ftc1.c (𝜑𝐶 ∈ (𝐴(,)𝐵))
ftc1.f (𝜑𝐹 ∈ ((𝐾 CnP 𝐿)‘𝐶))
ftc1.j 𝐽 = (𝐿t ℝ)
ftc1.k 𝐾 = (𝐿t 𝐷)
ftc1.l 𝐿 = (TopOpen‘ℂfld)
Assertion
Ref Expression
ftc1 (𝜑𝐶(ℝ D 𝐺)(𝐹𝐶))
Distinct variable groups:   𝑥,𝑡,𝐶   𝑡,𝐷,𝑥   𝑡,𝐴,𝑥   𝑡,𝐵,𝑥   𝜑,𝑡,𝑥   𝑡,𝐹,𝑥   𝑥,𝐿
Allowed substitution hints:   𝐺(𝑥,𝑡)   𝐽(𝑥,𝑡)   𝐾(𝑥,𝑡)   𝐿(𝑡)

Proof of Theorem ftc1
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ftc1.j . . . . . . 7 𝐽 = (𝐿t ℝ)
2 ftc1.l . . . . . . . 8 𝐿 = (TopOpen‘ℂfld)
32tgioo2 23872 . . . . . . 7 (topGen‘ran (,)) = (𝐿t ℝ)
41, 3eqtr4i 2769 . . . . . 6 𝐽 = (topGen‘ran (,))
5 retop 23831 . . . . . 6 (topGen‘ran (,)) ∈ Top
64, 5eqeltri 2835 . . . . 5 𝐽 ∈ Top
76a1i 11 . . . 4 (𝜑𝐽 ∈ Top)
8 ftc1.a . . . . 5 (𝜑𝐴 ∈ ℝ)
9 ftc1.b . . . . 5 (𝜑𝐵 ∈ ℝ)
10 iccssre 13090 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
118, 9, 10syl2anc 583 . . . 4 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
12 iooretop 23835 . . . . . 6 (𝐴(,)𝐵) ∈ (topGen‘ran (,))
1312, 4eleqtrri 2838 . . . . 5 (𝐴(,)𝐵) ∈ 𝐽
1413a1i 11 . . . 4 (𝜑 → (𝐴(,)𝐵) ∈ 𝐽)
15 ioossicc 13094 . . . . 5 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
1615a1i 11 . . . 4 (𝜑 → (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵))
17 uniretop 23832 . . . . . 6 ℝ = (topGen‘ran (,))
184unieqi 4849 . . . . . 6 𝐽 = (topGen‘ran (,))
1917, 18eqtr4i 2769 . . . . 5 ℝ = 𝐽
2019ssntr 22117 . . . 4 (((𝐽 ∈ Top ∧ (𝐴[,]𝐵) ⊆ ℝ) ∧ ((𝐴(,)𝐵) ∈ 𝐽 ∧ (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵))) → (𝐴(,)𝐵) ⊆ ((int‘𝐽)‘(𝐴[,]𝐵)))
217, 11, 14, 16, 20syl22anc 835 . . 3 (𝜑 → (𝐴(,)𝐵) ⊆ ((int‘𝐽)‘(𝐴[,]𝐵)))
22 ftc1.c . . 3 (𝜑𝐶 ∈ (𝐴(,)𝐵))
2321, 22sseldd 3918 . 2 (𝜑𝐶 ∈ ((int‘𝐽)‘(𝐴[,]𝐵)))
24 ftc1.g . . 3 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡)
25 ftc1.le . . 3 (𝜑𝐴𝐵)
26 ftc1.s . . 3 (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷)
27 ftc1.d . . 3 (𝜑𝐷 ⊆ ℝ)
28 ftc1.i . . 3 (𝜑𝐹 ∈ 𝐿1)
29 ftc1.f . . 3 (𝜑𝐹 ∈ ((𝐾 CnP 𝐿)‘𝐶))
30 ftc1.k . . 3 𝐾 = (𝐿t 𝐷)
31 eqid 2738 . . 3 (𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) = (𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)))
3224, 8, 9, 25, 26, 27, 28, 22, 29, 1, 30, 2, 31ftc1lem6 25110 . 2 (𝜑 → (𝐹𝐶) ∈ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) lim 𝐶))
33 ax-resscn 10859 . . . 4 ℝ ⊆ ℂ
3433a1i 11 . . 3 (𝜑 → ℝ ⊆ ℂ)
3524, 8, 9, 25, 26, 27, 28, 22, 29, 1, 30, 2ftc1lem3 25107 . . . 4 (𝜑𝐹:𝐷⟶ℂ)
3624, 8, 9, 25, 26, 27, 28, 35ftc1lem2 25105 . . 3 (𝜑𝐺:(𝐴[,]𝐵)⟶ℂ)
371, 2, 31, 34, 36, 11eldv 24967 . 2 (𝜑 → (𝐶(ℝ D 𝐺)(𝐹𝐶) ↔ (𝐶 ∈ ((int‘𝐽)‘(𝐴[,]𝐵)) ∧ (𝐹𝐶) ∈ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) lim 𝐶))))
3823, 32, 37mpbir2and 709 1 (𝜑𝐶(ℝ D 𝐺)(𝐹𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  cdif 3880  wss 3883  {csn 4558   cuni 4836   class class class wbr 5070  cmpt 5153  ran crn 5581  cfv 6418  (class class class)co 7255  cc 10800  cr 10801  cle 10941  cmin 11135   / cdiv 11562  (,)cioo 13008  [,]cicc 13011  t crest 17048  TopOpenctopn 17049  topGenctg 17065  fldccnfld 20510  Topctop 21950  intcnt 22076   CnP ccnp 22284  𝐿1cibl 24686  citg 24687   lim climc 24931   D cdv 24932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cc 10122  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-symdif 4173  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-disj 5036  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-ofr 7512  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-oadd 8271  df-omul 8272  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-dju 9590  df-card 9628  df-acn 9631  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ioc 13013  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-rlim 15126  df-sum 15326  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-pt 17072  df-prds 17075  df-xrs 17130  df-qtop 17135  df-imas 17136  df-xps 17138  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-mulg 18616  df-cntz 18838  df-cmn 19303  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-ntr 22079  df-cn 22286  df-cnp 22287  df-cmp 22446  df-tx 22621  df-hmeo 22814  df-xms 23381  df-ms 23382  df-tms 23383  df-cncf 23947  df-ovol 24533  df-vol 24534  df-mbf 24688  df-itg1 24689  df-itg2 24690  df-ibl 24691  df-itg 24692  df-0p 24739  df-limc 24935  df-dv 24936
This theorem is referenced by:  ftc1cn  25112
  Copyright terms: Public domain W3C validator