Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  osumcllem2N Structured version   Visualization version   GIF version

Theorem osumcllem2N 39951
Description: Lemma for osumclN 39961. (Contributed by NM, 25-Mar-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
osumcllem.l = (le‘𝐾)
osumcllem.j = (join‘𝐾)
osumcllem.a 𝐴 = (Atoms‘𝐾)
osumcllem.p + = (+𝑃𝐾)
osumcllem.o = (⊥𝑃𝐾)
osumcllem.c 𝐶 = (PSubCl‘𝐾)
osumcllem.m 𝑀 = (𝑋 + {𝑝})
osumcllem.u 𝑈 = ( ‘( ‘(𝑋 + 𝑌)))
Assertion
Ref Expression
osumcllem2N (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑝𝑈) → 𝑋 ⊆ (𝑈𝑀))

Proof of Theorem osumcllem2N
StepHypRef Expression
1 simpl1 1192 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑝𝑈) → 𝐾 ∈ HL)
2 simpl2 1193 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑝𝑈) → 𝑋𝐴)
3 simpr 484 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑝𝑈) → 𝑝𝑈)
43snssd 4773 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑝𝑈) → {𝑝} ⊆ 𝑈)
5 osumcllem.u . . . . . 6 𝑈 = ( ‘( ‘(𝑋 + 𝑌)))
6 osumcllem.a . . . . . . . . . 10 𝐴 = (Atoms‘𝐾)
7 osumcllem.p . . . . . . . . . 10 + = (+𝑃𝐾)
86, 7paddssat 39808 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) → (𝑋 + 𝑌) ⊆ 𝐴)
98adantr 480 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑝𝑈) → (𝑋 + 𝑌) ⊆ 𝐴)
10 osumcllem.o . . . . . . . . 9 = (⊥𝑃𝐾)
116, 10polssatN 39902 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑋 + 𝑌) ⊆ 𝐴) → ( ‘(𝑋 + 𝑌)) ⊆ 𝐴)
121, 9, 11syl2anc 584 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑝𝑈) → ( ‘(𝑋 + 𝑌)) ⊆ 𝐴)
136, 10polssatN 39902 . . . . . . 7 ((𝐾 ∈ HL ∧ ( ‘(𝑋 + 𝑌)) ⊆ 𝐴) → ( ‘( ‘(𝑋 + 𝑌))) ⊆ 𝐴)
141, 12, 13syl2anc 584 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑝𝑈) → ( ‘( ‘(𝑋 + 𝑌))) ⊆ 𝐴)
155, 14eqsstrid 3985 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑝𝑈) → 𝑈𝐴)
164, 15sstrd 3957 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑝𝑈) → {𝑝} ⊆ 𝐴)
176, 7sspadd1 39809 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐴 ∧ {𝑝} ⊆ 𝐴) → 𝑋 ⊆ (𝑋 + {𝑝}))
181, 2, 16, 17syl3anc 1373 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑝𝑈) → 𝑋 ⊆ (𝑋 + {𝑝}))
19 osumcllem.m . . 3 𝑀 = (𝑋 + {𝑝})
2018, 19sseqtrrdi 3988 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑝𝑈) → 𝑋𝑀)
21 osumcllem.l . . 3 = (le‘𝐾)
22 osumcllem.j . . 3 = (join‘𝐾)
23 osumcllem.c . . 3 𝐶 = (PSubCl‘𝐾)
2421, 22, 6, 7, 10, 23, 19, 5osumcllem1N 39950 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑝𝑈) → (𝑈𝑀) = 𝑀)
2520, 24sseqtrrd 3984 1 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑝𝑈) → 𝑋 ⊆ (𝑈𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  cin 3913  wss 3914  {csn 4589  cfv 6511  (class class class)co 7387  lecple 17227  joincjn 18272  Atomscatm 39256  HLchlt 39343  +𝑃cpadd 39789  𝑃cpolN 39896  PSubClcpscN 39928
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-proset 18255  df-poset 18274  df-plt 18289  df-lub 18305  df-glb 18306  df-join 18307  df-meet 18308  df-p0 18384  df-p1 18385  df-lat 18391  df-clat 18458  df-oposet 39169  df-ol 39171  df-oml 39172  df-covers 39259  df-ats 39260  df-atl 39291  df-cvlat 39315  df-hlat 39344  df-psubsp 39497  df-pmap 39498  df-padd 39790  df-polarityN 39897
This theorem is referenced by:  osumcllem9N  39958
  Copyright terms: Public domain W3C validator