![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > osumcllem2N | Structured version Visualization version GIF version |
Description: Lemma for osumclN 39950. (Contributed by NM, 25-Mar-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
osumcllem.l | ⊢ ≤ = (le‘𝐾) |
osumcllem.j | ⊢ ∨ = (join‘𝐾) |
osumcllem.a | ⊢ 𝐴 = (Atoms‘𝐾) |
osumcllem.p | ⊢ + = (+𝑃‘𝐾) |
osumcllem.o | ⊢ ⊥ = (⊥𝑃‘𝐾) |
osumcllem.c | ⊢ 𝐶 = (PSubCl‘𝐾) |
osumcllem.m | ⊢ 𝑀 = (𝑋 + {𝑝}) |
osumcllem.u | ⊢ 𝑈 = ( ⊥ ‘( ⊥ ‘(𝑋 + 𝑌))) |
Ref | Expression |
---|---|
osumcllem2N | ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ 𝑝 ∈ 𝑈) → 𝑋 ⊆ (𝑈 ∩ 𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl1 1190 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ 𝑝 ∈ 𝑈) → 𝐾 ∈ HL) | |
2 | simpl2 1191 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ 𝑝 ∈ 𝑈) → 𝑋 ⊆ 𝐴) | |
3 | simpr 484 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ 𝑝 ∈ 𝑈) → 𝑝 ∈ 𝑈) | |
4 | 3 | snssd 4814 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ 𝑝 ∈ 𝑈) → {𝑝} ⊆ 𝑈) |
5 | osumcllem.u | . . . . . 6 ⊢ 𝑈 = ( ⊥ ‘( ⊥ ‘(𝑋 + 𝑌))) | |
6 | osumcllem.a | . . . . . . . . . 10 ⊢ 𝐴 = (Atoms‘𝐾) | |
7 | osumcllem.p | . . . . . . . . . 10 ⊢ + = (+𝑃‘𝐾) | |
8 | 6, 7 | paddssat 39797 | . . . . . . . . 9 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) → (𝑋 + 𝑌) ⊆ 𝐴) |
9 | 8 | adantr 480 | . . . . . . . 8 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ 𝑝 ∈ 𝑈) → (𝑋 + 𝑌) ⊆ 𝐴) |
10 | osumcllem.o | . . . . . . . . 9 ⊢ ⊥ = (⊥𝑃‘𝐾) | |
11 | 6, 10 | polssatN 39891 | . . . . . . . 8 ⊢ ((𝐾 ∈ HL ∧ (𝑋 + 𝑌) ⊆ 𝐴) → ( ⊥ ‘(𝑋 + 𝑌)) ⊆ 𝐴) |
12 | 1, 9, 11 | syl2anc 584 | . . . . . . 7 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ 𝑝 ∈ 𝑈) → ( ⊥ ‘(𝑋 + 𝑌)) ⊆ 𝐴) |
13 | 6, 10 | polssatN 39891 | . . . . . . 7 ⊢ ((𝐾 ∈ HL ∧ ( ⊥ ‘(𝑋 + 𝑌)) ⊆ 𝐴) → ( ⊥ ‘( ⊥ ‘(𝑋 + 𝑌))) ⊆ 𝐴) |
14 | 1, 12, 13 | syl2anc 584 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ 𝑝 ∈ 𝑈) → ( ⊥ ‘( ⊥ ‘(𝑋 + 𝑌))) ⊆ 𝐴) |
15 | 5, 14 | eqsstrid 4044 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ 𝑝 ∈ 𝑈) → 𝑈 ⊆ 𝐴) |
16 | 4, 15 | sstrd 4006 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ 𝑝 ∈ 𝑈) → {𝑝} ⊆ 𝐴) |
17 | 6, 7 | sspadd1 39798 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ {𝑝} ⊆ 𝐴) → 𝑋 ⊆ (𝑋 + {𝑝})) |
18 | 1, 2, 16, 17 | syl3anc 1370 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ 𝑝 ∈ 𝑈) → 𝑋 ⊆ (𝑋 + {𝑝})) |
19 | osumcllem.m | . . 3 ⊢ 𝑀 = (𝑋 + {𝑝}) | |
20 | 18, 19 | sseqtrrdi 4047 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ 𝑝 ∈ 𝑈) → 𝑋 ⊆ 𝑀) |
21 | osumcllem.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
22 | osumcllem.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
23 | osumcllem.c | . . 3 ⊢ 𝐶 = (PSubCl‘𝐾) | |
24 | 21, 22, 6, 7, 10, 23, 19, 5 | osumcllem1N 39939 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ 𝑝 ∈ 𝑈) → (𝑈 ∩ 𝑀) = 𝑀) |
25 | 20, 24 | sseqtrrd 4037 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ 𝑝 ∈ 𝑈) → 𝑋 ⊆ (𝑈 ∩ 𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ∩ cin 3962 ⊆ wss 3963 {csn 4631 ‘cfv 6563 (class class class)co 7431 lecple 17305 joincjn 18369 Atomscatm 39245 HLchlt 39332 +𝑃cpadd 39778 ⊥𝑃cpolN 39885 PSubClcpscN 39917 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-iin 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8013 df-2nd 8014 df-proset 18352 df-poset 18371 df-plt 18388 df-lub 18404 df-glb 18405 df-join 18406 df-meet 18407 df-p0 18483 df-p1 18484 df-lat 18490 df-clat 18557 df-oposet 39158 df-ol 39160 df-oml 39161 df-covers 39248 df-ats 39249 df-atl 39280 df-cvlat 39304 df-hlat 39333 df-psubsp 39486 df-pmap 39487 df-padd 39779 df-polarityN 39886 |
This theorem is referenced by: osumcllem9N 39947 |
Copyright terms: Public domain | W3C validator |