Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > osumcllem2N | Structured version Visualization version GIF version |
Description: Lemma for osumclN 37981. (Contributed by NM, 25-Mar-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
osumcllem.l | ⊢ ≤ = (le‘𝐾) |
osumcllem.j | ⊢ ∨ = (join‘𝐾) |
osumcllem.a | ⊢ 𝐴 = (Atoms‘𝐾) |
osumcllem.p | ⊢ + = (+𝑃‘𝐾) |
osumcllem.o | ⊢ ⊥ = (⊥𝑃‘𝐾) |
osumcllem.c | ⊢ 𝐶 = (PSubCl‘𝐾) |
osumcllem.m | ⊢ 𝑀 = (𝑋 + {𝑝}) |
osumcllem.u | ⊢ 𝑈 = ( ⊥ ‘( ⊥ ‘(𝑋 + 𝑌))) |
Ref | Expression |
---|---|
osumcllem2N | ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ 𝑝 ∈ 𝑈) → 𝑋 ⊆ (𝑈 ∩ 𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl1 1190 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ 𝑝 ∈ 𝑈) → 𝐾 ∈ HL) | |
2 | simpl2 1191 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ 𝑝 ∈ 𝑈) → 𝑋 ⊆ 𝐴) | |
3 | simpr 485 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ 𝑝 ∈ 𝑈) → 𝑝 ∈ 𝑈) | |
4 | 3 | snssd 4742 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ 𝑝 ∈ 𝑈) → {𝑝} ⊆ 𝑈) |
5 | osumcllem.u | . . . . . 6 ⊢ 𝑈 = ( ⊥ ‘( ⊥ ‘(𝑋 + 𝑌))) | |
6 | osumcllem.a | . . . . . . . . . 10 ⊢ 𝐴 = (Atoms‘𝐾) | |
7 | osumcllem.p | . . . . . . . . . 10 ⊢ + = (+𝑃‘𝐾) | |
8 | 6, 7 | paddssat 37828 | . . . . . . . . 9 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) → (𝑋 + 𝑌) ⊆ 𝐴) |
9 | 8 | adantr 481 | . . . . . . . 8 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ 𝑝 ∈ 𝑈) → (𝑋 + 𝑌) ⊆ 𝐴) |
10 | osumcllem.o | . . . . . . . . 9 ⊢ ⊥ = (⊥𝑃‘𝐾) | |
11 | 6, 10 | polssatN 37922 | . . . . . . . 8 ⊢ ((𝐾 ∈ HL ∧ (𝑋 + 𝑌) ⊆ 𝐴) → ( ⊥ ‘(𝑋 + 𝑌)) ⊆ 𝐴) |
12 | 1, 9, 11 | syl2anc 584 | . . . . . . 7 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ 𝑝 ∈ 𝑈) → ( ⊥ ‘(𝑋 + 𝑌)) ⊆ 𝐴) |
13 | 6, 10 | polssatN 37922 | . . . . . . 7 ⊢ ((𝐾 ∈ HL ∧ ( ⊥ ‘(𝑋 + 𝑌)) ⊆ 𝐴) → ( ⊥ ‘( ⊥ ‘(𝑋 + 𝑌))) ⊆ 𝐴) |
14 | 1, 12, 13 | syl2anc 584 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ 𝑝 ∈ 𝑈) → ( ⊥ ‘( ⊥ ‘(𝑋 + 𝑌))) ⊆ 𝐴) |
15 | 5, 14 | eqsstrid 3969 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ 𝑝 ∈ 𝑈) → 𝑈 ⊆ 𝐴) |
16 | 4, 15 | sstrd 3931 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ 𝑝 ∈ 𝑈) → {𝑝} ⊆ 𝐴) |
17 | 6, 7 | sspadd1 37829 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ {𝑝} ⊆ 𝐴) → 𝑋 ⊆ (𝑋 + {𝑝})) |
18 | 1, 2, 16, 17 | syl3anc 1370 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ 𝑝 ∈ 𝑈) → 𝑋 ⊆ (𝑋 + {𝑝})) |
19 | osumcllem.m | . . 3 ⊢ 𝑀 = (𝑋 + {𝑝}) | |
20 | 18, 19 | sseqtrrdi 3972 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ 𝑝 ∈ 𝑈) → 𝑋 ⊆ 𝑀) |
21 | osumcllem.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
22 | osumcllem.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
23 | osumcllem.c | . . 3 ⊢ 𝐶 = (PSubCl‘𝐾) | |
24 | 21, 22, 6, 7, 10, 23, 19, 5 | osumcllem1N 37970 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ 𝑝 ∈ 𝑈) → (𝑈 ∩ 𝑀) = 𝑀) |
25 | 20, 24 | sseqtrrd 3962 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ 𝑝 ∈ 𝑈) → 𝑋 ⊆ (𝑈 ∩ 𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ∩ cin 3886 ⊆ wss 3887 {csn 4561 ‘cfv 6433 (class class class)co 7275 lecple 16969 joincjn 18029 Atomscatm 37277 HLchlt 37364 +𝑃cpadd 37809 ⊥𝑃cpolN 37916 PSubClcpscN 37948 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-riotaBAD 36967 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-iin 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-1st 7831 df-2nd 7832 df-undef 8089 df-proset 18013 df-poset 18031 df-plt 18048 df-lub 18064 df-glb 18065 df-join 18066 df-meet 18067 df-p0 18143 df-p1 18144 df-lat 18150 df-clat 18217 df-oposet 37190 df-ol 37192 df-oml 37193 df-covers 37280 df-ats 37281 df-atl 37312 df-cvlat 37336 df-hlat 37365 df-psubsp 37517 df-pmap 37518 df-padd 37810 df-polarityN 37917 |
This theorem is referenced by: osumcllem9N 37978 |
Copyright terms: Public domain | W3C validator |